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The anomalous magnetic moment of the electron, ~(g-2), is computed using dispersion theory. The
analytic continuation is made in the mass of one of the external electron lines and only the one-electron one-
photon states arc retained in the absorptive amplitude. In this way we relate g-2 to the Cornpton amplitude
which has a known exact threshold behavior. Our approximation is an expansion in the low-energy behavior
rather than a perturbation expansion in powers of 1/137, and we are able to show that a major contribution
to g-2 comes from the low-mass region of the electron-photon system near the threshold of the absorptive
amplitude. First, in a purely nonrelativistic calculation, we find that a major part of the n/2~ correction
is accounted for by the Thomson limit. Further refining our calculation by including the exact residue of
the pole terms in the Compton amplitude in accord with the low-energy theorem on Compton scattering,
we find that electron-photon states below 2,5mc' in the absorptive amplitude reproduce 90% of the
—0.328+'/x' contribution and predict a value of +0.15m'/x3 for the sixth-order term. We also give a
simple physical interpretation of the difference of the muon and electron g-2 values. Finally we calculate with
this approach the anomalous magnetic moments of the proton and neutron, with the Kroll-Ruderman
theorem on meson photoproduction providing the low-energy "anchor" in this case. Again retaining only
the low-mass region of the absorptive amplitude, we obtain fair agreement with the magnitude and the iso-
vector character of the moments, finding Ap, =0,7(kppzp&) and Ap 0 9(&pexpt).

I. INTRODUCTION
" 'N his report to the 12th Solvay Congress on "The
~ ~ Present Status of Quantum Electrodynamics"
(QED), Feynman called for more insight and physical
intuition in QED calculations. To quote from a particu-
larly relevant passage'. "Itseems that very little physical
intuition has yet been developed in this subject. In
nearly every case we are reduced to computing exactly
the coeKcient of some specific term. We have no way to
get a general idea of the result to be expected. To make
my view clearer, consider, for example, the anomalous
electron moment, C-,'(g —2)=a/2s. —0.328n'/s']. We
have no physical picture by which we can easily see that
the correction is roughly u/2n. , in fact, we do not even
know why the sign is positive (other than by computing
it). In another field we would not be content with the
calculation of the second-order term to three significant
figures without enough understanding to get a rational
estimate of the order of magnitude of the third. We have
been computing terms like a blind man exploring a new
room, but soon we must develop some concept of this
room as a whole, and to have some general idea of what
is contained in it. As a specific challenge, is there any
method. of computing the anomalous moment of the
electron which, on first rough approximation, gives a
fair approximation to the 0. term and a crude one to o.',.
and when improved, increases the accuracy of the o.'
term, yielding a rough estimate to n' and beyond'"

This paper is our answer to this challenge. We will

show that the Schwinger correction, ' a/2s, of the elec-
tron (or muon) magnetic moment can be calculated
approximately and very simply in terms of the exact
Thomson limit to Compton scattering of photons by
electrons. ' All that is needed by way of formalism are
the nonrelativistic Pauli two-component theory of the
electron and the analytic property of Feynman graphs
in perturbation theory that allows us to write a dispersion
relation for the electromagnetic interaction vertex. 4

We can do better than this by keeping relativistic
kinematics and by using the full content of the exact
low-energy theorem on Compton scattering including
the magnetic-moment contributions which are linear
in the energy. ' If we include the moment to order n/2m

in the Compton amplitude, the correct sign and approxi-
mately correct magnitude are obtained for the n' cor-
rection of —0.328a'/s' as computed in fourth-order
perturbation theory by Sommerfield and Petermann. '
Including the n' moment term in the Compton ampli-
tude leads to the prediction of =+0.15n'/m' to sixth
order. We also give a simple physical interpretation and
calculation of the diGerence between the muon and
electron moments.

Finally, with this approach we calculate the anoma-
lous magnetic moments of nucleons. In this case the
Kroll-Ruderman theorem provides the low-energy
"anchor, "and fair agreement is obtained both with the
magnitude and the isovector character of the moments.

' J. Schwinger, Phys. Rev. 73, 416 (1948).
I W. Thirring, Phil. Mag. 41, 1193 (1950).
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FIG. 1. Feynman graphs contributing to the first-order
radiative corrections of the electron current.

II. NONRELATIVISTIC CALCULATION AND

THE SCHWINGER CORRECTION

The Schwinger correction, -', (g —2) =nj2vr, is found in
lowest-order perturbation theory by evaluating the
radiative correction to the electromagnetic vertex, Fig. 1.
Instead of following this procedure we shall appeal to
the familiar result that the Feynman amplitude for
Fig. 1, studied as a function of the (mass)' of one of the

external lines, with the other two on their mass shells,

satis6es a dispersion relation in this variable. This

property is valid to all 6nite orders in perturbation
theory. In order to compute the anomalous moment
—,'(g —2) from the dispersion integral we must assume

that the dispersion relation for the magnetic-moment

part of the amplitude requires no subtractions; other-

wise g
—2, like the charge e, would be another parameter

in the theory.
First we consider the analytic properties of the Feyn-

man amplitude corresponding to Fig. 1 as a function of

the invariant mass W'= (p+I)' of the incoming elec-

tron' with the photon and outgoing electron set on their

respective mass shells: 32=0, p'=ng'. The scalar func-

tions multiplying the spinor factors, considered as func-

tions of 8", are analytic functions in the cut S' plane
with a branch cut from m' to +~.The absorptive parts
of these amplitudes are given by the discontinuity
across this cut and are obtained by setting the internal

photon and electron lines on their positive-energy mass
shells. This is done by replacement of the propagators
of these internal particles according to'

(q'+is) '(k' m'+—ie) '~
2~'~(&'-~') e(~0»(q') ~(qo)

The absorptive amplitude will be given by

d'q d'k
(2~)4V(q+I p t)a(p—) V (—q, k,p)

(2n.)' (2x)' q~+ jg P2 —~2+gg

8'—m'

32m 8" dx u(p)$(W-', x), (2)

where x=q I/~I~' in the center-of-mass system with

p+ I= (W,O) and q = —It. The quantity X is a numerator
factor appearing in the amplitude, and is a polynomial
which does not influence the analytic properties accord-
ing to the Feynman rules which tie together the two
ends of the internal photon line with' g„,. The "cut"
graphs corresponding to the absorptive amplitude of
Eq. (2) are shown in Pig. 2 where we have indicated
both the vertex and self-energy parts. These graphs
illustrate how the absorptive part is obtained by multi-

plying the electromagnetic current by the Compton
amplitude followed by an integration over the scattering
angle x according to Eq. (2). This direct dependence of
the absorptive amplitude on the Compton amplitude

and on the current is the input that introduces physics
via the factor .&Y in the numerator.

Using the established analytic properties of the Feyn-
man amplitude we can now exploit the known exact
low-energy behavior of the Compton amplitude to
estimate the anomalous moment. Before presenting a
more formal discussion that provides a basis for a sys-
tematic iteration scheme we shall give a "first rough

=0

k2=m2

~ A. M. Bincer, Phys. Rev. 118, 855 {1960).Our notation in
the following is: p'= po —p'= p„p&; g&"= (1, —1, —1, —1);
&"& +& &"=2g" ~p =k&(v@7 'v vp) iP= pe%" and ~=4=1.' S. Mandelstam, Phys. Rev. 115, 1741 (1959); R. Cutkosky,
J. Math. Phys. 1, 429 (1960).' lt is necessary to specify this particular gauge choice in com-
puting the absorptive part because the amplitude for an oG-mass-
shell particle with arbitrary P to come onto the mass shell upon
radiation of a photon, / =0, is not in general gauge-invariant.
Sy tying the internal photon line endings together with a g„„we
ensure that the numerator X(q,k,p) in Eq. (2) is purely a poly-
nomial and does not in6uence the analytic properties of the Feyn-
man amplitude which are determined by the denominator factors
and for which there is a Nambu representation.

k k2=m2

FIG. 2. Cut Feynman graphs contributing to
the absorptive amplitude.
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approximation" to g
—2 using only the nonrelativistic

Pauli two-component theory of the electron. The
transition current for a Pauli electron with the gyro-
magnetic ratio g to emit a photon of momentum 1~ 0 is

Xy*fe(1/m) i—e(a &(1/4m) g)X, ,

where X~ and X; denote the final and initial two-com-
ponent spinors of the electron at rest and Eq. (3) is
accurate to lowest order in s/c. In a relativistic disper-
sion study of the vertex as a function of electron mass
lV', the charge e and the normal moment g = 2 associated
with it in the Dirac theory are given by a subtraction

constant as required by the W'ard identity. ' It is only
the change in the g value g

—2 arising from the radiative
corrections contributing to the absorptive amplitude
in Eq. (2) that we calculate from the dispersion relation

1 "Img(W')dW'
g
—2=-

W' —m'
(4)

For Img(W') in the Pauli approximation we return to
Eq. (2), multiply on the right by X; for the incident
electron, insert nonrelativistic expressions for iV, and
project out the spin-dependent amplitude from

W2 —m'
dx ur(P) $(W',p)X;

32m W' (W~m}

(W' —m')m

$Qg W2 spins
dh(LX, * Q .„v„,X„)LX„*q,X,)

In Eq. (5) e„is the photon polarization vector; Xf 7„X
is a nonrelativistic approximation to the Compton
amplitude. By the low-energy theorem the perturbation
result in terms of the physical charge e is also the exact
Thomson amplitude as y -+ 0 and (W—m) ~ 0:

:—(e'/m) 8„,Xg*X
(W m}

For the time component V „() we invoke current
conservation,

3

2 +rags +rug=0,

so that

Xr*1',oX:—(q„/q)(e'/m) Xr*x„.
(W m}

The components of the transition current in the Pauli
theory are given by

X *goX;=eX *X;,

X *jX;=eX ~L(k+y)/m+(i/2m)nX(k —y))X;, (9)

describing the Schrodinger plus the spin currents created.
when the initial electron of momentum p accelerates to
the intermediate one with momentum k.

Introducing Kqs. (6)—(9) into Kq. (5), performing the
angular integral, and picking oG the coe%cient of e
gives simply

Img(W') =((W' —m')/4s. W' )e'= (n/W')(W' —m') . (10)

Near threshold, as W-+ m, Kq. (10) may be compared
with the absorptive amplitude obtained from a rela-
tivistic perturbation approach. As we shall see later it
not only reproduces the absorptive amplitude in the
/2~, nor Schwinger, approximation but is, in fact, exact

in this limit. "From the low-energy theorem we know
that the perturbation calculation of the Compton ampli-
tude, expressed in terms of the exact renormalized
charge, reproduces the exact Thomson limit as
~= W—m~0. However, the dispersion integral in
Eq. (4) extends over the entire physical range of Comp-
ton scattering energies nz'& W2& ~ and, for large W,
Eq. (10) will fail for purely kinematic reasons. In fact
the dispersion integral of Eq. (4) for g

—2 diverges
logarithmically if we use Eq. (10).Introducing a cutoff
we find

—2 o. ~' dl'V' n A'
=@= =—ln—

7

2 2x m' W' 2x m'

which shows that the major part of the Schwinger cor-
rection arises near threshold when m &W&1.7 m.

This result provides an interpretation of the
Schwinger correction in terms of the Pauli current and
the exact classical low-energy Thomson amplitude,
which determines, moreover, the sign of the moment
correction. Beyond this it suggests a program for com-
puting the electron magnetic moment to higher accuracy
by making full use of all the information in the low-
energy theorem for scattering of light by a spin- —,'parti-
cle. In addition to the exact Thomson limit at zero
energy, Gell-Mann, Goldberger, and Low' proved that
the terms in the Compton amplitude linear in photon
energy can be expressed exactly in terms of the experi-
mental magnetic moment of the electron (fermion). We
may include these along with the Thomson limit in

"F. Low, Phys. Rev. 110, 974 (1948).This corresponds to the
fact that the absorptive amplitude for J I(g ), when P=O,
vanishes identically because real transverse photons cannot be
radiated or absorbed in zero-zero transitions, or without flipping
helicity for a Dirac particle of spin $. The charge thus appears as
a subtraction constant.

"In Eq. (23) we Qnd that the relativistic perturbation calcula-
tion differs from Eq. (10) simply by a kinematic factor m /H/ .



S. D. DRELL AND H. R. PAGELS

Fzo. 3. Three-body intermediate state contributing to the
absorptive amplitude to order ~'.

I (q) p+8 ~~(-4j

Kqs. (6) and (5), obtaining in this way an algebraic
relation between the moment we wish to compute on the
left-hand side of Kq. (4) and a quadratic form in p on the
right-hand, side. In the spirit of a perturbation expansion
in n, an input on the right of the anomalous moment
accurate to order n" gives an output to order n"+' since
the terms in Img(W') are proportional to a, ap, and up'
depending on whether the charge or moment currents
appear at the vertices of the Compton amplitude.

The expansion is not equivalent to the straight per-
turbation expansion in powers of a. In a complete calcu-
lation to order 0,' for instance, it is necessary to include
radiative corrections both to the vertex and to the
Compton scattering parts as in Fig. 3; this means three-
body intermediate states, containing an electron plus
two photons in the absorptive amplitude. However, the
success of Kqs. (10) and (11) in approximately repro-
ducing the Schwinger correction motivates us to retain
nothing more than the full contents of the low-energy
theorem as the major contributor to the absorptive
amplitude. We do this now with the full relativistic
kinematics in order to avoid an improper and exagger-
ated emphasis on the large 8" region and sen.sitivity to
the cutoft. This means keeping the pole diagrams with
physical charge plus magnetic moment vertices as in
Fig. 4 in the Compton calculation. %'e want to see how
well this approach reproduces the computed and meas-
ured 0.' contribution to the moment'":

2 (g 2)ghgopy u/2s' 0 328' /s'

2(g 2)ax&eriment=a/2s' E0.327&0.005](a /s' ). (12)

In that we And that both the sign and approximate
magnitude of —0.3a'/s' are obtained with this ap-
proach, we are encouraged to draw the conclusion that
the a' result which emerges, =+0.15a'/s', does indeed
have something to do with the full accurate result that
awaits a very major calculation at this time.

The basic assumption is that the major contribution
of the higher radiative corrections are contained in the
pole terms of the Compton amplitude that are responsi-
ble for the low-energy theorem. %e thereby relegate to
a minor role the additional radiative corrections to the
vertex and scattering amplitudes, due both to their

1 (-8) p-q I„(qj

Fzo. 4. Pole-term contribution to the Compton amplitude.

virtual internal photons as well as the real ones ex-

changed between the vertex and scattering amplitudes. "
%ith this approach a close agreement to the known n'

moment is found, again with emphasis on the low-energy
scattering region and with a logarithmic cutoG de-

pendence for the dispersion integral. It is upon this
result that we base our confidence in the o,' prediction.

Before turning to the formal calculation we may
review Feynman's remarks and ask what we have
accomplished. A physical picture of the n/2s contribu-
tion has been given based formally on the existence of a
disperson relation but with the simple elementary
physical input of the Pauli current and Thomson ampli-
tude. Correcting this calculation by making the kine-
matics relativistic and including the entire low-energy
Compton scattering amplitude via the pole terms with
physical vertices we obtain a good approximation to the
n' result and oGer an estimate of the n' term. Moreover
we can systematically improve our calculations by
keeping higher terms in the dispersion theory expansion
over real intermediate states.

III. RELATIVISTIC CALCULATION

%e return now to a covariant formulation in order
both to give a systematic reduction to the Pauli two-
component result of the last section and to initiate an
iteration procedure for achieving higher accuracy in the
calculation of g

—2.
The most general expression for the electromagnetic

current with the emerging electron and photon on their
mass shells p'=m' and 12=0 takes the form'

eg(p) 1'„(p,p+f) =eu(p) L(Fi+(W')y„—F2+(W')(ia„,l /2m)+F8+(W')1„)(p+ 1+m)/2m
+(Fg (W )y„F2(W2)(ia„,l"/2~)—+F3 (W )l )(—P—1+m)/2m]. (13)

~ D. T. Wilkinson and H. R. Crane, Phys. Rev. 130, 852 (1963).
"These corrections must always be included to the same accuracy in a perturbation expansion to avoid infrared difBculties.



ANOMALOUS MAGNETIC MOMENT

'=, +l~' and are defined in the cut 8" plane withThe F;+(W') are invariant functions of the scalar lV =(p+ ) an
h

' t W'= ' s discussed in the preceding section and illustrated in Fig. 5; or m,
ard-Takahashi identity'4F;+ W' =lim, 0+F;+(lV'+ie) A further restriction on Eq. (13) comes from the Ward-Ta ' ' '

y
which fixes

u(p)1'„(p,p+1)l~=u(p)l

. (13) F +(W') =Fi (lV') = 1, a constant independent of W', and evidently the normal Dirac moment
he dis ersion a roach in the W'g=2 together with the charge appear entirely as a subtraction constant in t e isp

'
pp

plane. r "Equation (13) now simplifies to

(P)1'.(P P+l)=eu(P)Lv. +((—i "l"/2m)F '(W')+1.F '(lV'))((P+~+ )/2m)

+{(—so„,l" /2m)F 2 (W')+E„F&(W'))((—P —1+m)/2mjg. (14)

Ii 2+ is recognized as the anomalous magnetic moment as we go on to the massass shell "W'= m-'

eu(p) F„(p,p+ l)u(p+l) =u(p) I ey„(ie—ir„.l"/2m)-,'(g 2)]—u(p+l) .

This is the quantity of interest to us and we project it out of Eq. (14) with the operator'

.'"(p,l,s) = —(m/2(W' —m')') P(P+ 1+m)(—s,.l')+3l.(P+~—m) )u(P;), (16)

which gives

Tr Q eu(p, s) I'"(p, p+l)v„&"(p, l,s)= —(e/2m)F2+(W') .

The dispersion relation for F~+(1V') is taken to be an
unsubtracted one

g
—2 1 " dW'

F2+(m'-) =——=—
2 m ~ W' —m'

ImF,+(1V'), (17)

~4 J. C. Ward, Phys. Rev. 78, 1821 (1950); Y. Takahashi,
Nuovo Cimento 6, 370 {1957}.I'„(p,p+l), the sum of all vertex
graphs for the incident electron off the mass shell, {p+l) =g, is
related to the Dyson irreducible vertex V„(p,p+l) by

u(p}&„(p,p+&) =u(p) V„(p,p+I)S&'(p+I)S&- (p+I),
i.e., F„{p,p+l) includes the self-mass insertions on the virtual
electron leg. Therefore, from the identity of the above references,

u{p)V„(p,p+l)l =u(p)Sg'(p+/) ',
and we construct

u{P)I'„{P,P+l)l =u(P)SF'(P+l) '=u(P)l
using the vanishing of the inverse propagator at the pole:

u(p)SF'(p) '=u(p)Sg '(p) =u(p}(p—rn) =0.
» The term proportional to /„vanishes by time-reversal invari-

ance; see I'. J. Krnst, R. G. Sachs, and K. C. Kali, Phys. Rev.
119, 1105 (1960).

'6 It has been proved that I"q {0.~), considered as a function of the
photon mass a~ with the electron on the mass shell, must also
vanish for g~ ~ + oo if the photon is to be described by an un-
subtracted propagator and if, consequently, the vacuum polariza-
tion is to be a calculable quantity. See S. D. Drell, A. C. l inn,
and A. C. Hearn, Phys. Rev. 136, B1439 (1964}.

i.e., the charge e is the only coupling parameter intro-
duced into quantum electrodynamics. "The anomalous
moment is calculated from the radiative corrections.

We must now make a dynamical assumption in intro-
ducing ImFs+(W') on the right-hand side of Eq. (17)
and this we do by retaining only the two-particle
intermediate state of one electron plus one photon as in

I'ig. 2. %e can now write this approximation using
Eq. (2), and projection operator of Eq. (16):

ImF2+(W') = —(m'/8~) p(W')

&( p dx u(p) T"'u(k)u(k) y.v„', (18)
SglnS

where p(W') = (W' —m')/W' is a purely kinematic phase
space factor. Here eiove«~"u(p)Tv, u(k) is the Comp-
ton amplitude for an initial photon of momentum

q and polarization ~(,)", and an electron momentum k
to scatter to a anal state of a photon of momentum l
and polarization ~~E)& and an electron of momentum
p=k+q l. In the ce—nter-of-mass of the scattering
processp= —l, q= k, p,+lo W,—x=q. l/~q——

~
~l~. Equa-

tion (18) is the relativistic generalization of Eq. (5).
The exact Compton amplitude, and any satisfactory

approximation to it, will satisfy the requirement of
current conservation, i.e.,

l„u(p)T""u(k) =0,
q,u(p) Tv'u(k) =0.

The 6rst of these relations in particular permits us to

Irn W

W PLANE

0

FIG. 5. Analytic properties of the invariant functions F;{g'}.
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discard all terms in Eq. (16) fore„ that are proportional to l„when inserting into Eq (18). Together with the
identity, valid when P=O, 1( —io„,l') =l„lwe can simplify the projection operator to

4
&'& —+ ( —m/2(W' —m')')(p+m)( Z—o,.l') u(p s) = (—m'/(W' —m')') Q u(p s')u(p s')(—io l')u(p s) (20)

and cast the absorptive amplitude of Eq. (18) into a more transparent form:

—m' —m' I

ImF2+(W') =
84r W'(W' —m')) 4.","' dxLt4(p, s)T„„u(k,s")jLu(k, s")y"u(p, s')]Lu(p, s') {—io 'l, ju(p, s)j. (21)

Equation (21) is the product of a kinematic factor, the
Compton amplitude u(p) T„„u(k),the electron transition
current from a state of momentum y to k, u(k)y"u(p),
and the spin projection operator. %e can return to our
previous nonrelativistic form by a systematic low-energy
reduction from it or we can proceed directly to higher
order corrections by including the full content of the
low-energy Compton theorems in T„,.

First, however, we may remark that the Klein-
Nishina formula of lowest order perturbation theory,

u(p) T~"u(k) = —e'u(p) Ly"(P+l—m) 'y"

+v"(p q m) 'v—"ju—(k), (22)

when introduced in Eq. (21) gives

Impm+(W2) —1n((W2 m2)/W2)(m2/W2) (23)

which reproduces the Schwinger correction —',(g—2)
=n/24r. Equation (23) differs from our earlier two-
component calculation of Eq. (10) only by a relativistic
kinematic correction m'/W' Lrecall that ImEs+(W')
=-', Img(W') j.The ingredients of that earlier approach
are apparent in the factors of Eq (21); .in particular,
there appear the Thomson amplitude and the transition
current from the initial electron with p to one with
momentum k. The detailed reduction of Eq. (21) to
that result is carried out in the Appendix.

We also see in Eqs. (23) and (17) the dominant role
of the low-mass region near threshold 5' ns in the

I'„(l)=y„+((g—2)/Sm)Ly„,l7,

y, ~ I',( q) y—„+(=(g 2)/Sm—)[q,y,7
(25)

The complete vertex of Eq. (14) reduces to Eq. (25) at
the intermediate electron pole as seen in Eq. (15). As
shown by Low, Gell-Mann, and Goldberger' the non-
relativistic reduction of Eq. (22) with the currents of
Eq. (25) operating at the vertices as in Fig. 4, gives the
exact low-energy Compton amplitude through first
order terms in the energy ~, i.e.,

magnetic moment calculation. If we keep only the con-
tribution between m&W&e, —=Xm in Eq. (17) we
find that

k(g —)~=(n/ ~)( —,'~') (24)

which shows that more than 80% of the Schwinger
correction comes from the mass region &2.3m or within
0.65 MeV of threshold. Comparing Eq. (24) with Eq.
(11) we see that the correct relativistic kinematics has
converted the logarithmic cuto6 dependence there into
(1—1/X'), a convergent factor as X —+~.

Encouraged by this result we proceed to a calculation
of higher order corrections to —',(g—2) by including the
entire contents of the pole terms to the Compton scat-
tering amplitude in Eq. (21). This means replacing the
bare vertices y„in Eq. (22), corresponding to a Dirac
particle with g= 2, by the vertex for a Dirac particle
with arbitrary g:

e4"e,"u(p,s)T„„u(k,s') -y, *L—(e'/m)e4 e,+(4e'/m)( 4o2/m)
(ca 8 —tn~Q)

X{(g—1) ~ X,+( g') 'L(,Xj)X( X1)]+(-'g)L(,.1) ( Xl)—( 41), ( Xj)]j]x. , (26)

where 4o= (I( = (q(, 1=1/(1(, and j=q/(q(. The corrections in Eq. (25) are proportional to n and to higher powers
in the fine-structure constant and we turn to them, and through them to the full low-energy Compton scattering
theorem of Eq. (26), as the major contributors to the higher order corrections to the electron g

—2 value.
Including then corrections by setting 2(g—2) =n/24r in Eq. (25) we compute the n' contribution to the absorptive

part. To the extent that we are able to reproduce in this way the known o.' contribution to the g
—2 value of the

electron we are motivated to push on, including the value of g
—2 through second order in n' in Eq. (25) to derive

an approximation to the a' moment.
The absorptive part Eq. (21) to order n"-is found using Eqs. (22) ancl (25) by direct calculation:

n"- (1V-"—m')
{Iml'~+(11'"-) ) ( "-) --=

167r

2m'- lf" tV2 6lf '—Snab"-
I

ill
ff -' —m- H'"' —xn- m"- tf -'

——(n'/3n. )(W''-—m')'/m4, 1V'-—m-'~ 0—3n'/84r,
'

W-))m2.



ANOMALOUS MAGNETIC MOMENT

Inserting Eq. (27) into Eq. (17) and cutting off the logarithmically divergent integral at W=Xm gives for thea
correction

, = —0.28n'/x' for X'=5,
—,'(g—2) '= —(n/2x)'((1nX')(-, '+(2(X'—1)) ')—7/4+5/4X') 0 33 9/ g f (28)

(29)-', (g
—2) = (n/2x) —0.328n'/x'

and choosing the same cutoff indicated in Eq. (28). In this way we deduce the approximate a' moment according
to the idea of low-energy dominance which was successful to orders n and n2.

The total contribution to the absorptive part Eq. (21) to all orders of a coming from the pole terms, Eqs. (22)
and (25), is

n (W' —I') m' g(g —2) 2m' ( IV' W' 6W' —5m' (g
—2)' W' —m-'

ImFq+(W~) =— +
~

ln——1 — +, (30)
2 W' W' 16 (W' —m') (8"—m' m' 8" 4 8"

and the resulting g
—2 value is

showing as in Eq. (24) that more than 80% of the correct fourth-order anomalous moment contribution comes the
mass region &2.3'. Evidently the sum of contributions from radiative corrections to the vertex and to the
Compton scattering amplitude in addition to the pole terms in Eq. (18), as well as the high-energy contributions
to the dispersion integral, play only a minor role.

We proceed then to the next higher order in 0., including the full pole term in the Compton scattering, setting the
anomaly to its "experimental value"

g
—2 n e g(g —2)- 3 1

(ln), ') -+
2w 4 2 2P~' —1)

7 5 e g
—2—-+ +- lnX2 —1+—

4 4X2 2x 2

2Cl"
=——0.28—+0.14—for X2=5,

2~ x2
.

x3

CX tX 0!=——0.33—+0.17—for X2=6,
2m 7r2 Ã3

(31)

or approximately
—2 a/2x

2 1+0.6n/x

Equation (31) represents our final result and is pre-
sented here as our answer to Feynman's challenge
quoted in the first paragraph.

The analyticity properties of Feynman graphs to-
gether with the exact low-energy Compton scattering
limits for photon-electron scattering have been used as a
basis for an approximation scheme. The Schwinger
correction of a/2x is reproduced approximately using
only the exact Thomson limit at zero energy to the
Compton amplitude and the two-component Pauli
current for a nonrelativistic electron. These physical
inputs also fix the sign of g—2 correction. Retaining
relativistic kinematics as well as the full content of the
low-energy Compton scattering theorem gives the exact
Schwinger correction as well as a good approximation
to the Petermann-Sommerfield term, —0.328n'/x'. On
the basis of this success we conjecture that our a3 pre-
diction of =+0.15n'/~' is correct in sign and approxi-
mately valid in magnitude.

In order to complete this program and to establish

the validity our approximation of dominance of the low-
energy amplitudes two calculations must be undertaken.
One includes a more complete treatment of the current,
represented by u(k)y"u(p) in Eq. (21) for the incident
electron to produce the 1y,1e state, by retaining the
full vertex structure of Eq. (14). This analysis is cur-
rently in progress and necessitates a discussion of the
compensating infrared divergences buried in F~ (W') as
well as in the 2y, 1e intermediate states. The aim here
is to compute as much as possible, if not all, of the con-
tributions to ImF~+(W') that are proportional to
(W —m )' near threshold (W —m') ~ 0, in addition to
the exact threshold term Eq. (10). It is readily estab-
lished that the additional contributions to ImFa+(W')
from the F&+(W') terms in Eq. (14) are proportional to
(W' —m')' as W' —m' ~ 0 and therefore do not disturb
the exact low-energy behavior of the absorptive ampli-
tude given by Eq. (10). The terms in Eq. (14) propor-
tional to F&+(W') vanish when contracted with the
Compton amplitude according to current conservation,
i.e., in Eq. (18), y, —+q„F3+(W') and by Eq. (19),
{u(p)T""u(k) )q.=0.

The second calculation is of course the complete n3

perturbation calculation including the (3y, ie) inter-
mediate states which must be faced up to eventually.
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Our prediction of =+0.15a'/w' cannot be tested.
against experiment unti. l more accurate determinations
of the muonium (p+e ) hyperfine structure in the ground
state, or of the deuterium or helium 6ne structure, yield
a more accurate determination of the 6ne structure
constant. "The present limit of accuracy

e '= 137.0388w0.0006,

when included in writing the n/2s. term in the formula

Eq. (12), leads to an uncertainty

8(~~(g—2))=b(e/2s) =a0.4a'/s',

due to the experimental uncertainty in 0. alone. Thus
more than a more accurate g—2 measurement itself is
needed before a test of the sixth-order anomalous
moment is achieved.

ta)

( b)

IV. MUON g-2 VALUE

An alternative dispersion approach to the calculation
of g

—2 is to study the electromagnetic vertex as a
function of the momentum transfer introduced by the
electromagnetic current, with both fermion lines on their
mass shells. This is the form of dispersion relation
familiar in the electromagnetic form factor studies, "viz. ,

In this approach the absorptive amplitude is obtained
by multiplying the current to produce a lepton pair by
the Bhabha scattering amplitude in the 3S~ and 3D~
states. Once again a perturbation approach reproduces
the Schwinger correction and the positive sign of the
moment correction corresponds to the fact that the
electron and positron attract one another via their
Coulomb interaction in the dominant 5-state inter-
action. %'e have preferred the sidewise dispersion rela-
tions of the previous section as being of more direct
intuitive appeal, although similar results to order a' and
n' can be obtained from Eq. (32) by including anomalous
moment contributions to the e e+ rescattering"; no
exact low-energy theorem can be cited, however.

%hen we turn to a study of the muon g
—2 value,

7% E Clelands J M Bailey~ M Eckhauses V Sr Hughes
R. M. Mobley, R. Prepost, and J.E.Rothberg, Phys. Rev. Letters
13, 202 (1964).' G. F. Chew, R. Karplus, S. Gasiorowicz, and F. Zachariasen,
Phys. Rev. 110, 265 (1958); P. Federbush, M. L. Goldberger,
and S. B.Treiman, Phys. Rev. 112, 642 (1958).Here 4' is the
threshold for a state containing a fermion-antifermion pair. There
are states containing photons only with a threshold at cree=0, but
these 6rst contribute to F~(q ) to order ag.

"H. R. Pagels, Ph.D. thesis, Stanford University Physics
Department, 1965 (unpublished). The idea of using the approach
with Eq. (32) to answer the Feynman challenge occurred in-
dependently to A. Petermann and to one of us (SDD) in 1962 and
was discussed then as a way of relating the positive sign of the
Schwinger correction with the attractive nature of the electron-
positron interaction. See S. D. Drell and F. Zachariasen, Phys.
Rev. 111, 1727 (1959).

Fxo. 6. Vacuum polarization contribution to the muon current.

however, our previous considerations fail. This is be-
cause we have relied heavily on the assumption that the
low-energy behavior near the Compton scattering
threshold plays the dominant role. For muons, however,
there exist states such as the one-muon plus t, e+ pair
states shown in Fig. 6(a) which has a very low-lying
threshold at

(m„+2m,)~m„'[1+4m,/m„j 1.02m„~,

and must not be ignored. This absorptive amplitude
arises from the indicated cut through the vacuum polari-
zation bubble in Fig. 6(b). Whereas this vacuum polari-
zation contribution is totally negligible for the electron
g
—2 value" and has a threshold of 3m, above and

beyond our low-energy region, it plays an important
role in the muon problem with its low-lying threshoM.

In order to study the muon g—2 value we turn then
to Eq. (32) and attempt to calculate the deference be-
tween the muon and electron moments due to the
vacuum polarization contributions. Our aim here is to
give a very simple physical basis for understanding this
diBerence in sign and approximate magnitude. As com-
puted with perturbation theory" through order 0,' it
equals

—,'(g —2)„——,
'

(g—2),=0.75u'/s'
—(—0.328a'/s') —1.08n'/s'. (33)

%e achieve this by observing simply that a vacuum
polarization contribution necessarily enhances the pho-

~ It contributes

a~/x (119/36—~)=0.01~~/Q.
"H. Suura and E. Wichmann, Phys. Rev. 105, 1930 {1957);

A. Petermann, Phys. Rev. 105, 1931 (1957).
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ton propagator and, therefore increases the e e+ attrac-
tion since the spectral function s(o') is always greater
or equal to zero in"

—1 "s (o')do'
Dr'(q')" = —g..as'= g" —+

2 $2~02

For scattering q'= —
l ql

' and, since s(o')&0,

N

Dr'( —
I ql') =

- 1 "s(o')do' 1
+ «'+ lql'-

FIG. 8. Pion-nucleon intermediate-state contribution to the
absorptive part of the nucleon current.

Physically this inequality records the fact that the
vacuum polarization cloud shields the bare electron or
muon charge and thus a probe of the electron or muon
charge to within the range is/2mc 2X 10 "cm of the
vacuum polarization cloud "sees" a larger charge and
hence a stronger attraction. In the Lamb shift, for
example, vacuum polarization contributes" an added
binding of = —27 Mc/sec lowering the 25i~2 relative to
the 28~~2 level since in the latter state the electron and
proton remain outside of their vacuum polarization
clouds due to the centrifugal barrier.

The difference l Eq. (33)]in the vacuum polarization
contributions to the muon and electron g

—2 values
arises solely from the difkrence in their scales of energy
and momentum transfers, and hence of impact param-
eters of the rescattering of the p+p,

—or e+e pairs in
Fig. 7.The energy scale is determined by the rest masses
of the particles, i.e., by the threshold 4m' in Eq. (32).
The momentum transfer in the scattering, t=q2, is
related to the total energy s=o' according to

so the effective t values are just the energies s ~ m2 for
z—0 in Eq. (34). The p+p scattering is thus at small
impact parameters, =1/m„and the corresponding
vacuum polarization contribution is large. In fact, we

may simply extrapolate the $erber-Uehling" term for
the vacuum polarization contribution for large

l tl =t,
=m„'&&m,2 and enhance the muon g

—2 calculation by
just that amount

1( a t 1 1 a m„'

tk 3s m, 2 t t 3s' m,--
l.e.)

(35)

Up to terms of order unity relative to 1n(m„'/m, '),
Eq. (35) just accounts for the more accurately computed
di6'erence, Eq. (33). The sign of the difference is now
clearly seen to arise from the increased attraction be-
tween the p+p,—pair as they scatter with 1=1 at small
impact parameters, ~1/ss,„,within the vacuum polari-
zation cloud.

t = ——,'(s—4m') (1—x), (34)

where x is the cosine of the center-of-mass scattering
angle which is integrated over in the scattering. The
angular momentum and parity selection rules assure us
that only the 35& and 3D& scattering channels contribute
(i.e., 7=1 and C= —1 corresponding to a photon) and

V. NUCLEON g-2 VALUE

As a 6nal application of the ideas in this paper and as
independent evidence supporting the point of view
exploited her" namely that of dominance of the thresh-
old contributons to the absorptive amplitud- we turn
to the nucleon anomalous moment calculation as erst
studied by Sincer~ as a function of the incident fermion
mass 8".As illustrated in Fig. 8, the absorptive ampli-
tude at threshold W'= (M+p)' corresponds now to the
pion emission amplitude multiplied by photopion pro-
duction. The exact threshold behavior of the photopion
amplitud" -i.e., S-wave production of charged pions-
is given, for p/M —+ 0 for the external pion line, by the
renormalized perturbation term according to the Kroll-
Ruderman theorem" which replaces the Thomson limit
for this application. Its relativistic dispersion theoretic
form, i.e., the complete pole term, gives rise to both
I'- and 5-wave amplitudes with J=

2 that are relevant'
in our applications.FIG. 7. Cut vacuum-polarization Feynman graph.

~ G. ]Bi,lan, Helv. Phys. Acta. 25, 417 (1952). ~ R. Serber, Phys. Rev. 48, 49 (1935);E. Uehling, Phys. Rev.
Page 66 of Ref. 1 and A. Petermann, Fortshcr. Physik 6, 505 48, 55 (1935).

(1958). ¹M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233 (1954).
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Although it has an extra factor of (1V' —M2) at
threshold, the absorptive amplitude for the isoscalar
moment grows rapidly until for W'/M'&)1,

ImF, e(W') = —3 ImFmr(W') .

(b)

+7K

N

FIG. 9. Perturbation contributions to the nucleon current.

Keeping just the leading term at threshold,
W' —M' —4, letting p/M —+0, repeating the calcula-
tions of Sec. III with the renormalized Born amplitude
for photopion production replacing Kq. (22), and with

eu(k)7"u(p) -+ gu(k)i7s~u(p) (36)

in Eq. (21), we find in analogy with Eq. (23) Lthe 1/lV'
comes from phase space as found in Eq. (2)$ that

ImF2~(W') = —ImFP(W') = ImF2r(W')
1(g2/4%)(W2 —M2)/W2 as W2

(37)

The superscripts I', Ã, and V denote proton, neutron,
and isovector, respectively, and the ~ in Eq. (36) are
the isotopic Pauli matrices; g'/4s =15 is the pion-
nucleon coupling strength. The resu1. ting anomalous
moments are

It is here that we see explicitly the failure of the per-
turbation calculations of the anomalous moments which

have long been known to predict much too large an
isoscalar part. "Evidently if we insert Eq. (39) into the
dispersion integral

1 " dS"
hp"s=F2, v s(M') = ImFgr s(W'), (40)

~2 8"—M'

and perform the integral over the full range of energies
3P&5"&~, we are just reproducing relativistic per-
turbation theory with the familiar unsuccessful result

hp~= (1/4s)(g'/4s) = 4hp", —p/M ~ 0.

The same failure has been noted in the dispersion calcu-
lations first performed with the photon mass as the
variable and with the nucleons on the mass shell. There
the large unwelcome isoscalar contribution originated
from the nucleon current of Fig. 9(a) and was discarded
due to its high threshold, qg =4M', compared with the
purely isovector contribution with threshold qg'=4@~

arising from the pion current in Fig. 9(b).
If we insert Eq. (39) into Eq. (40), but cut off the

absorptive integral at the low threshold X'=2.3, i.e.
&&5'&1.5', we find that the role of the unwanted
isoscalar term is greatly suppressed and that

1 g' ln)' 1 3-
+-— =1.2 =0.7(hp. ,t~),

2~4~ y2 —1

1 xs~2 dpi'2
hp~= —hp" =—(g'/4n) =—(g'/4s) 1n7'

2g 8" 2x

=2 for X' 2.3. (38)

1 g' 2lnX'-
Dp = ———2—N

2~ 4~ X'—1
= —1.7 =0.9(hp,„i,P) . (41)

The contribution to the isoscalar absorptive ampli-
tude vanishes ~ (W' —M')' at threshold. If we retain
the entire Born amplitude for arbitrary 8" but again
approximating p/M ~ 0 for simplicity we find

3 g' (3W' M')M' M' ln(—W'/M')
ImFme(W') =——

4 4x 8"—3f'23' 4

(W' —M') '
p g' y

~

—
~

for W2~M2 (39)
4M 4 &C~)

1 g' (W' 33P)M' M' ln(W'/M—')
ImF2 "(W'2) =—— +

4 4~ 28'4 R~' —M'

As in the electron g
—2 calculation we see that the low-

energy region plays a major role. Inserting just the pole
terms, we reproduce the measured moments with some
success. We conclude with this independent evidence in
support of the point of view exploited in the calculations
throughout this paper.

APPENDIX

Here we shall demonstrate the nonrelativistic re-
duction of the calculation of the Schwinger correction
n/2m and show that all that enters the final result is the
Thomson scattering amplitude multiplying the Pauli
current at the vertex. We begin with Eq. (21) which
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we write in the form

m' H/" —m' +
ImFs+(W') = ——

a s' s" dxfu(p, s)T„,u(k, s"))(u(k, s")y"u(p, s'))

m2

X a(p, s') t:, ~ l)u('p,s), , (Al)
2(W' —m') '

where the factor (Wo —m')/Wo arises from considerations of relativistic kinematics. To obtain the reduction of
Eq. (A1) as s&= W—m -+ 0, we may consider each term in the brackets separately

The third term in Eq. (A1) is the projection operator. Since u(p)o"l, u(p) =0, we need consider only the space
component as ar ~ 0,

m2 1
u(p, s') i~'"I), u(p, s) ~ X;*i(eXp)'X. ,

2(W' —m')'
(A2)

where p= —1. The second term in Eq. (A1) is the familiar Dirac current and has the nonrelativistic reduction valid
to order v/c, as in Eqs. (8) and (9)

u( k, s)y ou( Ps') ~ X.-*X. ,

u( k, s)y'u(
P, s) ~ X,"*((p+k)/2m+ iLeX (k—p)) (2m) ');X. , (A3)

in terms of the Schrodinger and Pauli current. The first bracket in Eq. (A1) is given by the low-energy theorem
Eq. (26) as cu —+ 0. The time components, u(p) T&ou(k) may be obtained from u(p) T&,u(k) by invoking current con-
servation as in Eq. (19)

Z g TI, =~Too ~= ~q~ =go q= —k

Putting all this together we obtain from Eq. (A1) the reduction as co ~ 0,

m' 8"—m' +' — fp+k (p—k)
I~&+(W') = —— p dx X,*2 &,x,.x, .*j +i X~ x,.+(q;/~)X, *T&;x,"x,"'x,.

4s. W' ~,","' i & 2m 2m

Lx..*(i(~X )p, /~8') x). (A4)
Using the full low-energy theorem Eq. (26) and the fact that

it is seen that the term

dX—X TgsX ~

z co

corresponding to the contribution from intermediate longitudinal photons, gives no contribution. The Schrodinger
current also gives no contribution in this limit which can be seen by substituting the Thomson limit

To, (e'/m) bo;— ——
in Eq. (A4) and taking the trace. What remains is just the Thomson limit of Compton scattering in conjunction
with the Pauli current,

m' 8"—m' 1

ImF2+(W') =——
a a' s"

c'
~ )i+X (k p)-

dx X,*~ ——4; jx,"X,-*I — X
)

in agreement with our previous result, Eq. (10).
XX,,*(i(oXp)a/8&us)x, = ia(W —ms)/W (A5)




