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Equations are derived for calculating three-body partial-wave amplitudes once all singularities other
than the unitarity discontinuity are known. The equations can easily be reduced to Fredholm equations.
They have a similar structure to the two-body equations, but are more complicated owing to the presence of
disconnected diagrams. The D function is related to the form factor in the usual way, and it has the expected
zeros and cuts on the unphysical sheet. A subsidiary problem which is treated is the determination of a
function with kinematical branch points when the discontinuities across the dynamical cuts on all sheets
are known. Also, a brief discussion is given of the many-channel analog of the Omnbs equation. This discus-
sion may be useful to those who do not wish to study the mathematical theory in detail.

y. zgTRODUCTION
' 'T is the aim of this paper to obtain ~V/D equations
~ ~ for the relativistic three-body problem analogous to
the familiar two-body X/D equations. For the two-
body system in simple cases, the problem is to use
unitarity to find a partial-wave scattering amplitude
when the left-hand discontinuity is given. In all but
the simplest cases a two-body partial-wave amplitude
may have singularities in the complex plane, and a
three-body amplitude will certainly have such complex
singularities. The problem may then be stated as fol-
lows: Given the contributions of all singularities except
the right-hand cut to a partial-wave amplitude, it is
required to find the complete partial-wave ampli-
tude.

One need hardly emphasize that the problem which
has just been formulated is only a small part of the
three-body problem. The singularities other than the
right-hand discontinuity would have to be determined
from the right-hand discontinuity by crossing, and a
self-consistency procedure would have to be developed.
Further, if fixed angular-momentum states are used at
all, one would have to use complex angular momenta in
order to avoid the difhculties associated with the di-
vergence of the partial-wave expansion. Since such a
program has not yet been carried out consistently for
the two-body problem, it would obviously be impracti-
cal at the moment to apply it to the three-body problem.
We are certainly not deriving the 1V/D equations with
the aim of using them as they stand in numerical cal-
culations. However, one may be able to carry out much
simpler but cruder treatments with further approxima-
tions in order to make qualitative estimates of three-
body eGects. Moreover, it appears to be essential to
treat resonances on a par with particles in two-body
calculations if the results are to be at all accurate. Since
a state consisting of a particle and a resonance is really
a three-particle state, the three-body equations may be
helpful in treating doubtful points in the equations for
particle-resonance scattering.

*Preparation of this manuscript for publication was supported
by the U. S. Air Force Once of Scientific Research, Grant No.
AF-AFOSR-232-65.

B

Another application of three-body 1V/D equations is
to the study of the complex J plane in three-body sys-
tems. For this purpose it is unnecessary to know the
left-hand and complex singularities, since the discon-
tinuities across them can be proved to be holomorphic
functions of J. In the present paper we shall concern
ourselves with integral values of J only, and we shall
leave the question of complex angular momenta to a
subsequent paper.

The three-body problem may be looked upon as a
two-body problem with a continuous infinity of chan-
nels. However, there are complications in the three-
body problem which do not exist in the two-body
problem. Such complications are associated with dis-
connected diagrams in which two particles scatter while
the third is unaffected. The equations giving the dis-
continuity across the right-hand cut will now be more
complicated than for the two-body system. Besides the
discontinuity when the total energy is real and above
threshold, there will be discontinuities when the center-
of-mass energy of any pair of incoming or outgoing
particles is real and above threshold. For reasons which
we shall discuss in the following section, the unitarity
equation will take a convenient form only if the varia-
bles are suitably chosen. Furthermore, the kinematics
associated with the correct variables will be much
simpler when the physical "Dalitz" region retains its
shape with increasing energy as it does in the nonrela-
tivistic case, than when it does not. Since a system with
a Dalitz region of fixed shape possesses all the essential
features of the problem without the kinematical com-
plications, we shall begin by discussing such a system.
The general system will be examined in the second half
of the paper

In the following section we shall deal with the choice
of variables and, for the problem with a fixed Dalitz
region, we shall choose a set in terms of which the
unitarity condition takes a simple form. In Sec. 3 we
shall express the scattering amplitudes of the two-body
subchannels in terms of these variables and, in Secs. 4
and 5, we shall derive the cV/D equations and shall
separate o6' the disconnected parts. In Secs. 6—9 we
shall investigate the problem with the more complicated
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kinematics necessary when the shape of the Dalitz
region is not fixed. We shall show that the equations ob-
tained do not difkr in principle from those of the simpler
system, except that the unitarity condition must now be
applied in the physical region for reactions such as
A+8 —+ C+D+E+F as well as in the physical region
for the reaction A+8+C —+ D+E+F.

In the course of our work we shall come across two
mathematical problems which may possibly be of inter-
est apart from their application to the three-body
system. The 6rst is the multichannel integral equation
with Cauchy singularities in the kernel, analogous to
the familiar single-channel Omnes equation. The Omnes
technique is only applicable to the single-channel
equation, but an extensive theory has been developed
for the multichannel equation. ' As many physicists are
probably unfamiliar with this theory, we have collected
some of the results in Appendix I.The other mathemat-
ical problem we shall encounter is the determination of
an analytic function which has kinematical branch points
of known character due to the choice of variables, and
which also has dynamical cuts with known discontinuities
on each of the kinematical sheets. ' The solution to this
problem is an extension of ordinary dispersion relations
and is given in Sec. 7.

Though all the work of this paper is done on the three-
body problem, we feel that the e-body problem should
not difkr in principle from it. The three-body problem
may therefore be regarded as a model for deriving general
results applicable to the e-body problem.

1 F;i(s') Il;i(s)—
7;;(s)=F;;(s)+ ds' P ——

s —sI

Xkg(s')Sq;(s'), (2.1a)

1 k;(s')1V@(s')
Do(s) =1+— ds'

g s —s
(2.1b)

In addition to the variable s, there are the variables i
and j which specify the channels and which take a dis-
crete number of values only.

For the three-body problem we shall begin by taking
the Omnhs' variables. Besides the total angular mo-
mentum J there will be seven variables, which Omnes

¹ I. Muskhelishvilli, Siwgu4r Integral Equa@ons, translated
by J. R. M. Radok (Stechert-Hafner Service Agency, Inc., New
York, 1953).

~ The usual threshold branch points are of course regarded as
dynamical singularities not kinematical singularities.

~ R. Omnia, Phy .Rev. IM, S1543 (1964).

IL CHOICE OF VAKULSLES

We first write down the many-channel two-body iVjD
equations in order to observe their structure which will
be essentially the same as the structure of the three-
body X/D equations which we shall derive:

takes to be (i) the total energy S; (ii) the partial energies
s&, s2, s&' s2' where, for instance, s& is the square of the
sum of the energies of particles 2 and 3 in their own
center-of-mass system. Unprimed variables refer to the
initial state, primed to the final state. (iii) The helicities
M and 3f' of the initial and fLnal states, measured with
respect to some body-centered axis. The set of variables
s~, s2 and M may be regarded as channel indices,
analogous to the variable i in the two-body case. Now,
however, instead of having one discrete variable, we
have one discrete and two continuous variables.

The third partial energy will be given by the equation

ss=5+3m' —sg —s2, (2.2)

where we have assumed equal masses for simplicity.
We shall denote the connected part of the scattering

amplitude by the symbol A&, and that disconnected
part containing a factor b(s; s) (i=—1, 2, 3) by the
symbol u;. According to the unitarity condition, the
imaginary part of At.- will consist of seven terms, one
of the form At.-*Ay, three of the form a;~Ay and three
of the form A~*a;.4 It might be thought that these
terms represent the discontinuities in the variables 5,
s; and. s . However, Bonnevay and, independently,
Bronzan and Kacser' have shown that the formulas for
the individual discontinuities are rather more compli-
cated. They may certainly be written in the form A &~A&,
u;*Ag or Ay~a;, but the integration over the inter-
mediate partial energies may have to be taken over a
contour which is deformed out of the physical region.
Such a complication can occur even when the initial
and 6nal variables are within the physical region for
three-particle scattering. On the other hand, the sum
of the discontinuities across the cuts in all the variab1es
5, s;, and s is equal to the imaginary part of Aq. As
long as we are in the physical region, therefore, the sum
of the discontinuities will be given by the straight-
forward unitarity condition, with the intermediate
variables integrated over the physical region.

Owing to the complications in the unitarity condition
it is not convenient to choose S as our dispersion vari-
able and s; as the parametric variables corresponding
to the channel indices in the two-body case. The dis-
continuity of the scattering amplitude Az across the
cut in the 5 plane does not assume a simple form when
the s s are kept 6xed. However, one can replace the
s s by the variables

s;—4m~
y'=r—

5—9m'

s —4m'
y =-,*— —. (i=1, 2, 3.) (2.3)5—9es'

The constant —,
' and the minus sign have no deep signi6™

cance and are only inserted for comparison with the

'In addition, there will be a term Z;&,. a;*a, which need not
concern us at the moment.'

¹ Sonnevay, Nuovo Cimento 30, 1325 (1963);J.B.Bronzan
and C. Kacser, Phys. Rev. 132, 2703, 2712 (1963).
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variables which we shall use in the second part of the
paper. The variables y; and y satisfy the relations

yi+y2+ys ——1 yi'+ys'+ys'= 1. (2.4)

=2Yi- 3

Physical region ot
intermediate energiea

If the y's are kept constant and positive, and 5 crosses
the real axis to the right of 9m', then all seven variables
S, s;, and s will move across the real axis above their
threshold. The discontinuity in 5 across the right-hand
cut when the y's and y s are kept constant is therefore
given by the straightforward unitarity condition, and is
equal to the sum of the seven terms A~*A~, u, *Aq and
A ~*a;, the intermediate variables being integrated over
the physical region.

We shall therefore provisionally take our variables to
be S, y», yg, y»', y2', M, 3f', and the total angular mo-
mentum J. The total energy S will be the dispersion
variable, the y's and M are the variables analogous to
the channel indices of the two-body problem, and J is a
fixed parameter. The y's have been plotted in tri-
angular co ordinates in Fig. i. The boundary of the
physical region is given by the equation

(3yq —1)'+3(y~—ys)' —3m '(S—9ta2)

X (yi--', )(ys —s)(ys- s) -1=o (2 5)

As 5 increases from threshold to inanity, the physical
region spreads out from the circle to the triangle shown
in Fig. I.

The phase-shape factor in the unitarity condition is
constant over the entire physical region at any particular
value of S, and is given by the formula

G(S)= (S—9m')'/(256 'S). (2.6)

Another variable we shall require is cos8», the cosine
of the angle between the directions of motion of the
particles 1 and 2 in the center-of-mass system of 2 and
3. It is given by the formula

cose~ ——sg'I2Tg '(-,' —yg) '12(ys —ys), (2.7)
where

s~= (-,' —yg)(S —9m')+4m',

Tg' (S—9m') (s+yg)'+1——2m'yg.

(2.8a)

(2.8b)

Equation (2.5) is just the condition coseq ——l.
As we shall see in a moment, one runs into difhculties

if the shape of the physical region changes as the energy
S is increased. Our present variables are therefore still
not suitable for the problem. It is not hard to 6nd vari-
ables in terms of which the shape of the physical region
does not change, but the kinematics becomes rather
complicated. %e shall avoid these "inessential complica-
tions" by omitting the terms proportional to 5—%n' in
(2.5) and (2.7). The physical region is then given by the
circle of Fig. 1 for all values of S. In other words, we
shall adopt a nonrelativistic approximation in de6ning
the physical region and in expressing cos8» in terms of the
y's. After solving the simpli6ed problem we shall treat
a system with full relativistic kinematics and we shall

ysical region
near threshold

I region at large energiea

Fio. 1. Kinematical variables for the three-body problem.

1—yz T&(xs —yz)'I'

2 2s»'~'

T~(r' —yi)"'
&ys& + . (2.9)

2s»/2

Now, if
S—9m') —12''y~/(s+y )' (2.10)

the variable T» will be real, so that the range of integra-
tion (2.9) is real. In fact, the inequality (2.9) is precisely
the condition for the point y», y2 to be within the physi-
cal region. However, if y»&0 and S—9m' decreases be-
low the value given in (2.10), T~ will become complex
and the range of integration (2.8) becomes complex.
Equation (2.9) defmitely gives the range of integration
in the unitarity term a»*A~, so that this range will
become complex if the inequality (2.9) is not satisned.

In Fig. 1, the integral in the term u»*A g is to be taken
along the line AB between the ends of the physical

find that the equations, though more complicated, are
fairly similar in form.

In a nonrelativistic approximation we could replace
the factor S in the denominator of (2.6) by 9m'. There
is no need to do so and since this approximation, unlike
the other nonrelativistic approximations, neglects a
factor which increases without limit at large 5 and may
afkct the singular nature of the equations, we shall leave
(2.6) as it stands.

Ke return to explain the difFiculties which occur when
the shape of the physical region changes with the energy
S. The dispersion relations will be written at 6xed
values of the y's, and we shall therefore require the dis-
continuity in 5 for all values of y» and y2 within the
triangle of Fig. 1, even when we are outside the physical
region. %e have seen that the unitarity condition has a
simple form within the physical region. Ke shall now
show that the intermediate-state ranges of integration
in the terms a;*Ag can become complex if the initial
state is outside the physical region.

The scattering amplitude g» has a delta function
b(s~ —s~') and there is thus only one variable of integra-
tion in the term a»*A, which we may take to be cos8».
The integration in the unitarity condition must there-
fore be performed with y» 6xed and with cos8» ranging
from —1 to 1. If cos8~is replaced byy2, Eq. (2.7) shows
that the range of integration is
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region. As 5 decreases the physical region decreases
in size, and becomes tangential to the line AB when the
equality corresponding to (2.9) is satisfied. If the value
of 5 is decreased further, the range of integration be-
comes complex.

In the dispersion relations the variables yi and y~
are to be kept real and constant, we have seen that they
are analogous to the channel indices in the two-body
problem. Ke cannot therefore work with these variables
if the range of integration becomes complex, and we

must choose our variables in such a way that the shape
of the physical region does not change with energy.

One consequence of our present choice of variables is
that we shall not obtain the correct threshold behavior
unless the left-hand cut satisfies certain conditions. The
situation is analogous to that of higher partial waves in
two-body systems, where the physical region shrinks to
a point in the t plane at threshold. Since the scattering
amplitude is analytic in t, we can conclude that the
integral A(s, t)Pg(1+//2q') behaves like (q-')'. In the
present case the physical region shrinks to a point in the
space of the s,'s as well as in the t plane and the ampli-
tude, besides behaving like (q') ', must also become inde-
pendent of s~ and s2. To obtain the precise threshold
dependence we should expand the amplitude in a set of
orthogonal polynomials in y& and y2, and in y&' and y2'.
A particular component will then behave like (q') ~+"'+"'

at threshold, where n~ and n2 are the degrees of the
polynomials in y, and y .

If we make an arbitrary choice of the left-hand cut,
the resulting amplitude will not have the correct thresh-
old behavior. This feature must be regarded as an in-

accuracy of the approximation scheme. The fact that
the amplitude at threshold must not depend on the y's
is a diGerence between the three-body problem and the
many-channel two-body problem.

III. TWO-BODY AMPLITUDES IN TERMS
OF THREE-BODY VAMABLES

The scattering amplitudes a;(i 1, 2, 3) =which occur
in the unitarity condition refer to the process where two
particles scatter and the third remains fixed. In this
section we shall obtain a formula relating the Jth
partial wave of such an amplitude, regarded as a three-
body amplitude and expressed in our present variables,
to the ordinary two-body amplitudes. Most of the
formulas will be able to be used unchanged when we
treat the fully relativistic kinematics.

Ke shall derive our formulas for the amplitude a~,
analogous formulas will hold for a2 and a3. Before one
makes the angular-momentum projection, the amplitude
will be given by the expression

/y(sl) coso&) 8(p& pl ) ~ (3 1)

The symbol ]i denotes the two-body amplitude, n~ is
the angle of scattering in the center-of-mass system of
the particles 2 and 3, and y~ and y~' are the initial and

cose~= {y~(2—3y~) } "'(y2 —y3) . (3.3)

The azimuthal angles P and @' will be the same
whether we measure them in the center-of-mass system
of the particles 2 and 3 or of the particles 1, 2, and 3,
since the relative velocity between these systems is
directed along the pole. If, therefore, we take the body-
centered axis of the Omnes variables to be along the
direction of motion of the particle 1, i.e., along the
direction of motion of the particle which is not scattered,
the variables p and @' will be the Omnes azimuthal
angles for the initial and final state.

The angular-momentum projection of the scattering
amplitude will be given by multiplying (3.2) by $&&~ ~

and integrating over angles. Thus

ar(S, s~, s2,s~', s&',ill, 3f',J)8(5 5') = dd dP—' do

X/r{s, cos8~ cos6'+sin6 siner' cos(P—P') }5(»—s&')

X &(Pi—pg') X)'sr~ (d, O,qf) . (3.4)

The angle 0 in this equation is the angle of scattering
of the particle 1, which is zero. As

d .~n (0)r=&m~,

the integration over 0 will just give t,his Kronecker
delta. The angular part of the function 8(p~ —p&') has
thereby been taken into account, and the expres-
sion ~(»—»')&(I p~l I p~'I)/I p~l I

p~'I may be written
45T&—'(5—9m') —

~~%(y&—y&')h(5 —5'), the quantity T&
being given by (2.7b). As the integrand depends only
on p —p' the integral over one of the @'s will be trivial,
and (3.5) may be written

aq(5, »,s2,»', »', M,M', J)

= 8~ST&—'(5—9m')-'~' d(@—@')

Xh{~r, cos&~ cos8~'+sin8~ sin8&' cos(@—@')}

Anal momenta of the first particle. We can revrit. e
(3.1) as

kg{sr, cos8g cosoy

+sin8~ sin0r' cos(Q —@')}b(p~—p&'), (3.2)

where 8~ and 8~' are the initial and Anal angles between
the directions of motion of the particles 1 and 2, in the
center-of-mass system of the particles 2 and 3, while

g —p' is the azimuthal angle between the directions of
initial and final motion of particle 2, with the direction
of motion of particle 1 taken as the pole. The variables
8~ and 8j' are internal variables of the initial and 6nal
state, respectively. With our present kinematics, they
are by the equation
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We can then make a change of variable

x= cos8i cos8i'+ sin8i sin8i' cos(@ i'—')

and we obtain the equation

ai(S,sississi'ssi'sMsM's J)=SiriSTi '(S 9m—') '"

X dx x'+cos'Hy+cos'Hi' —I —2x cosHy cosHj.

Xti(s, ,x) Tss
x—cos8g cosHy

8(yi yi—') bsrsc, (3.6)
sinHt sin8~'

where the integral is to be taken around the branch
points of the function in curly brackets. The function
T is the esth TchebycheG polynomial, i.e., the expres-
sion for cosm8 in terms of cosH.

If the partial-wave expansion converges, (3.6) can be
integrated to give

cl(Sssiss2ssl ss2 )MsM sJ)
=8irSTi '(S—9m') 't' Q(21+1)ti(si)
XP& (cos8i)Pi™(cos8i')5(yi—yi')8srsr . (3.7)

With the present kinematics we are only interested in

physical values of cos8i, so that (3.7) can always be
used in place of (3.6) but, in the fully relativistic case,
we shall also have to deal with unphysical angles. We
could replace the summation in (3.7) by a Sommerfeld-

Watson integral and we could then use it when the
partial-wave expansion does not converge.

It is important to notice that the right-hand side of
Eqs. (3.6) and (3.7) are independent of J.

The above equations are true for the particular case
where the body-centered axis of the Omnes variables
coincides with the unscattered particle. However, we
can always transform from one axis to another using the
formula

a'(M, M') =dssc.~-(cosP.)
Xa(M"sM"')dssr . sr(cospi) l (3.8)

where P is the angle between the old and the new axis
for the initial state, Pi for the final state. With arbitrary
body-centered axes (3.7) therefore becomes

s,(S,s, ,s, ,s,', ,',M,M', J) =8 sST '(S 9') o'gd*(—s'+case, +coo'S, ' —1—2*cose, cosH, ')

X ti(sisx) Tss
sin8~ sinH~' M"

x—cosHy cosHy
8(yi —yi) Q d iLris (cospei)d ~ ia (coster ), (3.9)

where Pei and Pei' are the center-of-mass angles between the body-centered axis and particle 1 in the initial and
final states. If the body-centered axis is taken along particle 2, P» is given by the formula

cosPii ——
I (S—9m')(yiyi —y&)+10m'+12m'(yi+yi) I/TiTi. (3.10)

(3.11)oi ct18(yl yl ) ~

IV. THE N/D EQUATIONS WITH A FIXED
DALITZ REGION

Construction of the Equations

Now that we have developed the kinematics, the
actual writing down of the equations is a relatively
simple matter and, in fact, the equations are a straight-
forward generalization of (2.1). We shall take as our
unknown function the to/ul scattering amplitude A,
including the disconnected parts. If we do so, the uni-
tarity equation will take the simple form

PA]=A*OH.

If, on the other hand, we were to use the connected
part of the scattering amplitude A~ as our unknown
function, the unitarity equation would contain extra
terms of the form a;*A& and A z*u;. Needless to say, we
shall have to separate the disconnected parts from our
integral. equation in order to make it nonsingular. We

In the sequel, all amplitudes with a delta function

(yi —yi') will be written with the subscript 1, as ai.
The coeScient of the delta function will be written
a~ so that

only do so after writing the total amplitude in the form

A=ED ' (4.2)

and writing the equations for X and D. The numerator
and denominator functions will both contain discon-
nected parts. The connected parts of S and D will not
be the same as the functions E~ and Dg, de6ned by the
equation Ae=AeDe '

We should emphasize that the process represented by
Fig. 2 does not complicate the discontinuity equation,
as it would if we had been keeping the s s rather than
the y's constant. The singularity associated with Fig. 2
is a pole in a momentum transfer N. If the y's are kept

FIG. 2. Diagram corresponding to a pole in the physical
region of the scattering amplitude.
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1 1.(5')
F(5)= ds'—

x 5'—5
(4.4)

I. being 1/2i times the discontinuity across the left-
hand cut. The y's and M's have been suppressed and will
continue to be suppressed in subsequent equations. By a
product such as F(5)G(5')AT(5') the integral

dye" dym" P F(s,y&,yz, yz",ym", M,M")
3P'

XG(5')E(5',y&",ym", y&', ym', M",3f')
is always implied.

Removal of the Delta-Function Singularities

The function I' will contain disconnected parts and a
connected part:

P —Pc++ f, (4 5)

where the subscript i indicates the presence of a delta
function b(y;—y, '). It follows from (4.3a) that the func-
tion .V will also contain disconnected parts:

S=Xc+P n; (4.6)

We can now substitute (4.6) and (4.5) into (4.3a). By
equating coefIj.cients of the three delta functions, as well
as the terms without delta functions, we obtain the
following equations for n; and Ãt.-..

,f.(5') f'(5)—
n, (S)=f(S)+ ds' — -G(S')n;(S'), (4.7)5'—5

,f'(5') f'(5)—
iVc(5) =Fc(S)+ QdS' G—(5')Ãc(5')

5'—5
pc(5') —Fc(5)

+—g dS' (5')n;(S')
g 5'—5

constant, the variable 5 moves from 5—i~ to 5+i& as u
moves from u —ie' to I+i&', so that the singularity may
be regarded as a normal right-hand cut in S. When the
s s are kept constant, the variable 5 moves from 5+~e
to 5—ie as u moves from u —ie to u+ie, and the singu-
larity structure in 5 is slightly more complicated.

In analogy with (2.1), we may now write the following
equations for X and D:

1 " F(5') F(5—)
iV(5) =F(5)+ ds—' G(5')cV(5'), (4.3a)

9m~ 5'—5
1 " G(5')X(5')

D(S)= 1—— dS' (4.3b)
x 9~ 5'—S

where

where

f~, i(sx')- fi,i(si)
ds k(sg') ng, g(s'), (4.10a)

sy Sj.

1 tt'sr —4m' "'
k(s,)=

16s.E sg
(4.10b)

Equation (4.9) is just the equation for the numerator
function of the two-body channel, as was to be proved.
Ke can obtain similar equations for a2 and aa except
that (4.9) must be replaced by an equation correspond-
ing to (3.9) instead of (3.7).

We now turn to Eq. (4.8). Since the function f, in
the kernel contains a delta function in s;, it is not a
Fredholm equation. We can convert it to a Fredholm
equation by the method used by Weinberg' in the
Schrodinger potential problem. To do this we consider
the resolvent of (4.7), i.e., we de6ne a function r; by the
equation

1 f'(5') f'(5)„—
r-,(S,S')=- ' '

G(S)5'—S

„f'(5') f'(5")—+- dS"r;(S,S") G(S') . (4.11)SI SII

By writing r; in the form (4.9), we can separate (4.11)
into partial waves of the two-body channel, exactly as
we did with (4.7). We now multiply both sides of (4.8)
by the function

The functions n; and f; indicate the coefncients of the
delta function in n; and f; We shall examine (4.7) and
(4.8) in turn.

It is not dificult to see that (4.7) is precisely the equa-
tion for the function n of the corresponding two-
particle subchannel. The variable 5, being equal to
(s;—4m')y;+9m', is linearly proportional to s, , and the
dispersion relation in S may therefore be replaced by
one in s,. Analogously to (3.7), we may write

nq=8s52'~ '(S—9m') '~'g(21+1)n~q(sq, )
XPg (cos8g)P( (cos8g')8(yg —yg')8srsr ) (4.9a)

fg=8sSTq (5—9m ) 'I P(21+1)fg, q(sq)

XPs (cos8~)Pg™(cos8~')b(y~—y~')bsrsri, (4.9b)

provided that the body-centered axis is taken along the
direction of pq. If we substitute (4.9) into (4.7), the
angular integrals simply separate out the amplitudes of
diferent $. The equation thus becomes

ni, z(si) = f),1(sl)

'(5') —f.(5)
+ P ds G(S')n, (S')

5'—5
1 Fc(5') Fc(S)—

G(5')Xc(s'). (4.8)
jr 5'—5

b(S—5')+Q r;(S,S') .

On doing so, we And that certain terms cancel because
of (4.11), and the remaining kernel contains no delta

fl S. Weinberg, Phys. Rev. 133, 3232 (1964).
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functions. Thus

where

.Vg($) =I(5)+ dS'K($,$')Xc($')dS', (4.12a)

1,Fc(5 )—Fc(5)
I(5)=F(S)+—Q dS' G($')n, (5')+ Q— dS' r;(5,$')Fc($')

S' S
1 „,Fc($") Fc($—')

+—P dS' dS" r;($,$') G(S")n,(5"), (4.12b)S"—S'

„f~($') f~(5—")
K(S,S') =—P dS"r,( 5, 5") G($')

7r iyi 5'—5"
1F(S ) F(S)— 1, „Fc($) Fc($"—)+-, (5')+- Z dS"r'($,5"), „-(5").(4.12c)S'—S m S'—S"

The kernel (4.12c) contains no 6 functions, since any
delta function b(s;—s,') in f; or r; becomes multiplied
by a continuous function of s; or s . Equation (4.12)
is thus a Fredholm equation which can be used to cal-
culate the function E~.

Having found the function 1V, we can use (4.3) to
find D. It is easy to see that

On multiplying (4.17b) by 1++,(d; ')c, we find that

(D ')c+Z(d; ')cd'(D ')c+(1+2 (« ')c)Dc-(D ')c

+f1+K(« ')o)(Z «c(d' ')c

+Dc+Dc Z(« ')c) =0, (4.18)

where

D=1+2 «c+Dc,

dsC 4 i
q

(4.13a)
which is a Fredholm equation for the function (D-')c.
The whole problem has thus been reduced to the solu-

(4 3 ) tion of Fredholm equations.

d; being the d function for the two-body channel, re-
lated to the partial-wave functions d&, ; by an equation
analogous to (4.9). The connected part Dz is given by
the equation

G($') iVc(5')ds'—
(5'—5)

1
Dc(5) = (4.14)

D '=1+2(d ')c+(D ')c (4.15)

the equation will be

(1+2d'c+Dc) (1+2(~' ')c+(D ')c) =1. (4.16)

We can separate (4.16) into the following equations for
(«—')g and (D-')g.

(d, ') =d, ' —1

(D ')c+2 Ac(D ')c+Dc(D ')c

(4.17a)

+2 «c(d; ')c+D.+D. ~-(d; ').=0 (4.17b)-.

Finally, the equation for D ' in terms of D will be an
integral equation in the variables y~ and y2, with delta
functions in the kernel. Thus, if we write

General Remarks

In the single-channel two-body problem, the function
D ' is the form factor for the process under considera-
tion. In the multichannel two-body problem the func-
tion D—' is not quite the form factor, since the D function
has two-channel indices whereas the form factor has
only one. The difference between the equation for the D
function and for the form factor is that the inhomo-
geneous term in the former equation is 8;;, whereas in
the latter it is C;, the numbers C depending on which
form factor is being considered. The form factor is
thus simply equal to D;, 'C;. Similarly, for the three-
body problem, the form factor will be J'dye'dy&'
XQ~r D '(S,yi,ys,yx', y2',~,~')C(y&', y2', M'), where the
function C depends on the particular form factor that is
being considered.

If there is a resonance in the i subchannel, the func-
tion (d, ')c will have a pole on the unphysical sheet
when s,= sg. The presence of both left and right factors
(d, ')c in (4.18) indicates that (D ')g will have poles on
the unphysical sheet when s;=sg and when s =sg.
The function XD ' will also have poles when s;=s&
and s = sg, since ~V contains disconnected terms of the
form b(s, —s ). The scattering amplitude will there-
fore have the expected poles when one of the sub-
energies is at a resonance.
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In writing down our N/D equations we have taken
all integrals along the positive real axis. Since, however,
all functions appearing in them are analytic, we may
deform the contour of integration into the complex
plane. We thereby obtain a continuation of our ampli-
tude onto the unphysical sheet. If one or more of the
subchannels has a resonance, the associated amplitude
a; will have a pole in S (at fixed yi and y2) on the un-

physical sheet. If we wish to continue past this pole, we
shall have to add extra terms to the equations. Such
terms correspond to an extra two-particle channel,
consisting of the resonance and the third particle, which
communicates with the three-particle channel. One can
thereby show that the scattering amplitude is mero-
morphic on the unphysical sheet except for the usual
particle-resonance cuts.

V. THF N/D EQUATIONS WITH A FIXED
DAI.ITZ REGION, BUT WITHOUT

ANALYTICITY OF THE DIS-
CONNECTED PARTS

The method given in the previous section, which
treated the whole scattering amplitude rather than the
connected part, was the simplest for the particular
problem under consideration. It made use of the fact
that the disconnected diagrams satis6ed the same analy-
ticity requirements as the connected part, they were
analytic in 5 when the y's were held fixed. With the
fully relativistic kinematics we shall find that the dis-
connected diagrams are not analytic in 5 when the other
variables (to be defined later) a,re held fixed, but that 5

functions in 5 occur. In order to use a method that can
be taken over to the case of interest, we shall therefore
not make explicit use of the analyticity of the discon-
nected diagrams in S.

Ke denote the connected part of the amplitude by the

where
R= P a;*Ga, . (5.1b)

The last term of (5.1) is the contribution to the dis-
continuity resulting from processes depicted in Fig. 2.
We can also infer the existence of this term by writing
A =Ac++ a; and using (4.1) together with the equa-
tion La;7=a;~Ga;. From the remarks near the begin-
ning of the last section we may conclude that this last
term is an ordinary right-hand cut, and that the factors
A~ and A& in the unitarity condition refer to the values
of A below and above this cut.

We now write A q in the form

Ag —lA' gD e (5.2)

LD7= -G-~ c+-G 2 a;D+. (5.3b)

The first term in (5.3a) is the discontinuity across the
left-hand cut, the remaining terms are discontinuities
across the right-hand cut. The subscript + indicates
that the function is to be evaluated above the cut in the
5 plane. By using the formulas

LD '7= —D PD7D+ ',
P'cD '7=~'c kD'7+9'c7D+- (5 4)

It will turn out that the function D is the same as in the
factorization (4.2). However, we shall not be able to
obtain linear equations for iVq and D if we put all the
right-hand discontinuities of A into D. Instead, we put
the discontinuities associated with the first and. third
terms of (5.1) into D, and those associated with the
second and fourth terms into E~. More precisely, the
discontinuities of Eq and D will be given by the
formulas

$ Vc7 =LD+Q a;*GATV c++RD+, (5.3a)

ymbol A&. It will satisfy the unitarity condition we can easily show that (5.3j implies (5.1 .
G& ++ G& ++ & ~G +R (5 1 ) From (5.3), we can write down the following coupled

integral equations for E~ and D:

1
iVc(5) =—

1
D(S)=1

L(S')D(5') 1
dS' +—

5'—5—ie m g 2

G(5') iVc(5')
d5'

g ~ 5'—S—ie

R(S')D(5')
d5'

IS —5—ie

P a (S')G(5') i c(S') 1
dS' +-

S'—5—ie gm'

G(S )P a*(5 )D(5)'
d5'

gm 5'—S—ie

(5.5a)

(5.5b)

Equations (5.5) involve the functions iVc and D on the right-hand cut, and also D on the left-hand cut. The first
step in their simplification is to eliminate D on the left by substituting (5.5b) in the 6rst term of (5.5a). Thus

1 " Fr, (5') Fr,(5)—
N, (5)=R,(5)+ dS' G-(S')(Nc(5')+p a,(S')D(S'))5' 5

1
D(5) =1—— G(5')Xc(5')

d5'
5'—5—ie

1+-
9m

G($')P a,(S')D(S')

g 2 5'—5—ie

Q a;*(5')G(5')Nc(5') 1
ds' +—5'—S—ie gm'

R(5')D(5')
(5.6a)5'—5—ie

(5.6b)
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where
1 L(S')

Fl,($)= —dS'
5'—5

(5.6c)

The Eqs. (5.5) are Cauchy integral equations, with kernels containing dispersion denominators. A single-channel
uncoupled equation of this form can be reduced to a Fredholm equation using Omnes method. His method is not
applicable to coupled integral equations, even with a finite number of channels. However, there is a well-developed
theory by means of which they can be reduced to Fredholm equations. That part of the theory which we require is
treated very cursorily in the Appendix. To apply it to our example, we bring all terms of (5.6) to the left-hand side
and regard it as a matrix equation in V and D. %e then multiply on the left by the operator:

dS!/1
1+— 5"—5+i&

Q a'*(S )G(5 )
—G(S")

R($ )
—G($"')2 a'(5")

The resulting equation, which is free of Cauchy singularities, is

1—2i P a*($)G($)

2iG($)

2iR—($) .Vo(5) Fg($)+J~($) iVo(5')
dS'{E($,$'))

1+2iG(5)P a;(5) D(S) 1—g e;(5)—Jo(5) D(S')

1 dS' Q e;(5') —Q e;(S)+—
5' —5 —C(5')+ C(5)

where

—P e;(5')+P e,(S) —G(S')

dS"

Fa(5') Fg(5) Q a' (S)G(S) R(S') Xo(S')
(5.8a)—G($')2 a'(5') D($')

J~(5)=FL,($)+-
g

~5"—5+is
d5"

Q a,*(S")G($")F(5"),

JD($)=- „G($")Fi($"),-
g, s S"—5+i&

dS// d5//QO 1
e'(5) =- „G($")a'(5"), e*($)=- „.a''(5")G($"),

7r g
s5// —5+i& m g

~S// —5+ic
dS//1

Fa($) = R(—S"),
g

sS// —5+i&

dS//1
C($)=- G($"),

g ~ S"—5+is

1 Pa;(S') 1 " dS"

0 0 s' g ~ (5"—5+ie)($"—5')

1 Fr,($') Fr,($)—
K($ S') =— G(S')

S'—5

It follows from (5.1b), and the unitarity equation for a, , that

Q a,(5")G(5"){F&(5') Fr($"))G(5') Q a—;(5")G($"){Fl(5')—F&($"))G($')Q a,($')

G($"){Fr,($') Fr (5"))G($')— G(S"){Fr,($')—Fr.($"))G(5')Q a,($')
(5.8b)

1—2i Q a~($)G(5)

2fG(5)

2iR($)—

1+2iG(S)g a;(S)

1+2iG($)g a,(S)
—2iG($)

2iR($)

1—2i P a*(S)G(S)

and that the determinant of this matrix is unity. The
factor on the left-hand side of (5.8a) can thus easily be
brought to the right, and it follows from the results
quoted in the Appendix that the original equation (5.5)
is fully equivalent to the resulting equation. This equa-
tion has no Cauchy singularities, but it still has delta
functions from the disconnected diagrams. They can be
removed by the methods used in the previous section,

and our equations have thus been reduced to Fredholm
equations. The calculation of D ' from D is identical to
that given in the previous section.

As we pointed out in this section, the present method
differs from that of the previous section by writing
only the connected part of the scattering amplitude in
the form Ã&D '. Once the equations have been solved
we can easily write the whole amplitude in the form
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VI. THE VARIABLES WITH FULL RELA-
TIVISTIC KINEMATICS

De6nition of our Variables

We have emphasized that it is necessary to de6ne our
variables in such a way that the shape of the physical
region is independent of the variable S. This can be
achieved by taking as our starting-point the center-
of-mass momenta of the three particles rather than the
partial energies. If the center-of-mass momenta of the
incoming particles are denoted by pz, p2, and pz, the
variables x; (2=1, 2, 3) are defined by

x,=P /(Pz'+P2'+P2'). (6.1)

The x's clearly satisfy the equation

xz, +x2+x3 1 ~ (6.2)

The boundary of the physical region is deaned by the
triangular inequalities in p and, expressed in terms of the
x's, it is given by the equation

3(xz—-', )'+ (x2—x2)'=-', . (6.3)

This is the same as the equation for the non-relativistic
physical region in terms of the y's and, if the x's are
plotted in triangular coordinates, it will be a circle as
before. In the nonrelativistic region S—9m'=0, the
x's become equal to the y's.

We de6ne variables x' for the 6nal state in the same
way. Our variables for the problem will then be S,
xy, x2, xg', xg', 31, M', and J, of which J is a constant
parameter, S is a variable which can be real or complex,
and the remaining variables are real parameters corre-
sponding to the channel indices of the two-bodyproblem.

It is now necessary to obtain equations for the partial
energies in terms of the new variables. These kinematical
relations are unfortunately more complicated than they
were for the nonrelativistic case. They are most easily
expressed implicitly, as a function of the parameter

w=Pz +P2 +P2 ~ (6.4)

The variables S and si mill then be given by the formulas

Sz/2 —(x w+2N2)z/2+(x w+212)z/2+(x w+2/22)z/2 (6 5)

sz ——S+2/22 —2{S(xzw+2/22)) '". (6.6)

Equation (6.6) is a restatement of the formula for the
center-of-mass energy of one particle (or subsystem) in
a two-particle system:

ez ——{S—mz2+2/222)/2$z/2

.4=.VD ' by defining

X=Xc+E /2'D (5.10)

and leaving D unchanged. It is obvious that the ampli-
tude XD ' is equal to the total amplitude, and it
follows from (5.10) and (5.3) that X and D satisfy the
familiar conditions PEj/2 0, /——zDjs GX. ——

where 2/zz and 2/22 are the masses of the particles (or sub-

systems), S is the square of the center-of-mass energy
of the whole system, and e& is the center-of-mass energy
of the first subsystem.

Equations (6.5) and (6.6) provide a parametric
formula for s~ in terms of x~, x2, x3, and S. The param-
eter I can be eliminated, to give a quartic equation for
sj. in terms of S.The equation adopts a slightly simpler
form if we replace s& by the variable

O.g =S+ns' —si.

It then takes the form

(6.7)

D0,4—40 z2Sxz(2xz —1)+20,'S{Sxz(4xz —1)—xz—D)
—4~zS {Sx,'+*,(—3xz+1))+S'{S'xz'
+2Sxz(—3xz+.1)—3xz'+2xz+D) 0) (6 8a)

where
D=3(„—-)2+ (x2—x,)2—-' (6.8b)

Remarks on the Solution of the Kinematical
Equations

In order to study the character of the solutions of the
equations we have just derived, it is easier to use the
parametric form (6.5)—(6.6) than the explicit form
(6.8). There will be a number of solutions, depending
upon the signs chosen for the square roots. The square
root in (6.6) must have the same sign as in (6.5). We
notice that a change of sign of all the square roots will
not aGect the relation between S and s~, so that there
will be four possibilities, all the signs may be positive or
any one may be negative. To study the solutions further
we must know the relative magnitudes of the quantities
x~, x~, and x3, let us suppose that x2&x~&x3. The
quantity S'"will then be real as long as —2/22/x2(w( ~.
H we let the parameter w go from + ~ to —m2/x2 and
back to +~, the square root (x2w+2222)z/2 will change
sign when w touches the point —282/x2. Thus, the solu-
tion with all square roots positive will pass over into
that with (xzw+2/2')'/' negative, while the solution with
the square root (xzw+2/2') z/' negative will pass over into
that with (xzw+m2)z/2 negative (since a change in the
sign of all the square roots will not alter the solution).

As the parameter w goes from + ~ to —2/22/x2 and
back to + ~, there will thus be two distinct solutions.
These have been plotted as the two upper curves of
Fig. 3. It is not dif5cult to show that the variable s~ goes
from + to — without repetition in both solutions.
Since S'I' is real, the variable S is positive or zero. From
(6.6) we observe that, if it is zero, sz ——2/22, and one can

We shall also need the formula for xi in terms of si,
s2, s3, and S. This is most easily obtained from the fol-
lowing explicit formula for m:

w = (1/4S) {sz2+s2'+s2'+S' —142/2'S —32/2') . (6.9)

Substitution of (6.9) into (6.6) gives us the required
formula immediately.
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I'IG. 3. A plot of 5 against s& for axed values of x& and xo.

easily show that the point s~=m', 5=0 occurs in one
solution. As I-+ ~, 8 —+ + ~. The relation between S
and s~ thus has the character indicated by the upper
curves of Fig. 3.

We can obtain further solutions by allowing m to go
from —ss'/xq to —~.The square roots will then all be
imaginary so that, from (6.5) and (6.6), 5'l2 will be
imaginary, and the variables s~ and 5 will both be real.
We can then let the parameter w go from —~ to rn'/x3-
and back to —~ and, when w touches the point —m'/xa,
the square root (xaw+m')'~' will change sign. Again,
therefore, one of the four solutions will pass into another
at this point, and there will be tvro distinct solutions.
These have been plotted as the lower curves of Fig. 3.
Since 5'" is imaginary, 5 will be negative or zero, and
it will again be zero only if s&=m'.

I.et us novr investigate some particular points of Fig.
3. First, if we put m=0, we obtain the follovring four
solutions:

s) ——4'' S=nz'

sg ——0, 5=ns';

sg=0, S=m'.

The erst solution is the normal threshold, while the
second is the "other normal threshold, " familiar in the
two-body unequal-mass case at the point s=(m —p)'.

~ ~ r ~its

(a)
= ($~ —m)

= —S+m l+K
lI

$1= CO il
I I

kX&'41 i
S l

—4 Ill
lh~l

(d)

I'xG. 4. Lines of constant s~ in the x~-x2 plane.

Since we have two solutions at s~=0, S=m', this will be
a point of self-intersection. Further, since we have seen

that two solutions touch at the point si=m', 5=0, in
the manner indicated in Fig. 3, this will be a point of
osculation.

We have plotted Fig. 3 for the case x2)x~&x3. If
xj. is not between x2 and x3, the solutions will join onto
one another di6erently. As before, there will be two
solutions for S)0 and tvro for S(0, but, for one or
other of the cases 5)0, 5(0, the two right-hand solu-

tions and the two left-hand solutions will join onto one
another, instead of a right-hand solution joining onto a
left-hand solution. There vrill then be an interval of si
within vrhich there are only tvro real solutions for 5
instead of four. However, vre can verify that there are
alvrays four real solutions for 5 if st~4m'. Thus, the
unitarity cuts for the s& reaction and the associated
thresholds will always lie along the real (positive or
negative) 5 axis.

%'e observe from the above reasoning that, if any
of the four variables 5, s~, s2, and s3 is real and above its
threshold (9m' or 4m')& the square roots in (6.5) will

either all be real or all pure imaginary. We can therefore
classify the solutions according to the signs of the square
root. That solution vrith all square roots of the same sign
will be denoted by the subscript 0, while the solutions
with the root (x,w+ns')'12 of opposite sign to the others
will be denoted by the subscript r (r=1, 2, 3). The
variable s~ is greater than 4m' when S is greater than
9m' for the zeroth solution, or when S is greater than
m' for the 6rst solution. For the second and third
solutions s~ will not be greater than 4m' if 5 is positive,
but there will be negative values of S for which s~) 4m'.
Corresponding results hold for s2 and s3.

One can also plot the kinematics by taking a Axed
value of S, and dravring the lines of constant sy within
the physical region of the (real) xr-x2-x3 plane. We have
carried this out for the physical solution in Iiig. 4(a).
If 5—4m' is not too large, the lines will be practically
horizontal and, in the nonrelativistic limit, they vrill

be exactly horizontal. The other solution for S&0,
s)4y' will have a similar character.
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The character of the negative —5 solutions will be
di8erent. If —5)3m', there will be at most one solu-
tion for s1 which is greater than 4m'. This has been
plotted in Fig. 4(b), there is no solution greater than
4m' in the shaded region. As —5 approaches 3m', the
shaded region shrinks to zero and, for larger values of
5, there may be two solutions for s1 which are greater
than 4m'. The two solutions for —5&3m' are shown in
Figs. 4(c) and 4(d); for the shaded region of Fig. 4(d)
there is only one solution. As the variable —5 approaches
infinity, the unshaded region of Fig. 3(d) expands to fill
the whole circle. If we move along one of the lines of
constant si in Fig. 4(c) or 4(d), the variable s2 will
change from ~ to —~ (or from —~ to ~) at the
bottom of the curve, the variable s& will similarly pass
from —~ to ~ (or from 03 to —03). We have already
remarked that, for negative S, s1 can be greater than
4'' only in the second and third solutions, similarly s2
can be greater than 4m' only in the first and third solu-
tions and s~ greater than 4m' in the second and third
solutions. It follows that we pass from the second to the
third solution, or vice versa, as we pass the bottom of a
constant si curve in Fig. 4(c) or 4(d).

where
Ri/x1 R2/*2 R3/x3 (6.10)

Ri= (52—2S(si+m')+(si —m')')/45. (6.11)

The volume element of phase space is then

Gdx1dx2,
where

(5—9m')'
G=

256~~5
45'z

X (6.12)
(5 9m ) (xi&20 3+x20 30 1+'x3&1&T2)

the quantity a; being defined by (6.7). In the nonrela-
tivistic limit, the second factor of (6.12) approaches
unity.

When evaluating the contribution to the unitarity
integral from the disconnected diagrams, which contain
factors such as 8(si—si'), we shall require the deriva-
tives of s1, s2, and s~ with respect to our new variables.
They can be obtained from the formula

dsi=
X10'20'g+ X20 gO 1+XgO 10 2

X (dxiI x2(s2 —s3)+5+m' —s27

—xidx2(s2 —s3)) . (6.13)

There will be similar formulas for ds2 and ds~.

Some Useful Formulas

We now quote the formula for the phase-space factor
in the unitarity integral. First we note the formula

Also of interest is the formula for cos81in terms of our
new variables where 81 as before is the angle between
the directions of motion of particles 1 and 2, in the
center-of-mass system of particles 2 and 3.The formula is

x2—x, si '~2 (4R35)'~'-
COS81=— (6.14 '

$1—415 S+$1—PE

Relation between the Solution of the Kinematical
Equations and the Physical Region

for Various Processes

When S)9m' or s;)4m' (i=1, 2, 3) we shall have to
evaluate discontinuities using the unitarity condition,
and it is therefore necessary to investigate whether or
not we are in the physical region. As long as 5)0 there
is no difFiculty, since the square roots in Eq. (6.5) are
real. When all the square roots have the same sign
(corresponding to the zeroth solution) we are in the
physical region for the process 112+3~X. If the
square root (23ixi= m2)'~2 is negative while the other two
are positive (corresponding to the first solution), we are
in the physical region for the process 2+3 —& 1+X.In
this region the variable s1 is positive while s2 and s~
are negative, and the discontinuity equation for s1 is
thus a straightforward unitarity equation for s1 in the
physical s1 channel.

For the cases 5(0, si)4m' (corresponding to the
solutions 2 and 3) the situation is slightly more compli-
cated, and we shall now prove that these regions cor-
respond to real energies but imaginary angles for the
process 2+3 —+ 1+X.The parameter w in (6.5) is then
negative and greater than m'/x, (i= 1, 2, 3), so that the
momenta and energies of all three particles are imagi-
nary. On transforming to the center-of-mass system of
the particles 2 and 3, one can easily see that the mo-
menta of all particles in the direction of motion of the
particle 1 are real, but the momenta perpendicular to
the direction of motion of the particle 1 are pure imagi-
nary. We are therefore in the physical energy region for
the reaction 2+3 —+ 1+X,but the angle 81 between the
directions of motion of the particles 1 and 2 is pure
imaginary. As we move along a dotted line of Fig. 4(c)
or (d) the variable cos8i will increase from the value 1
which it has at the edge of the circle and, at the bottom
of the curve, it will reach the value ~ LEq. (6.13)7. It
then goes to —~, and increases to —1 when we reach
the edge of the circle again.

Though the interior of the circle does not strictly rep-
resent the physical region when 5&0, we shall show in
Sec. 8 that the contour of integration in the unitarity
equation can be deformed to values of

~
cos83~ greater

than 1. The unitarity integral is thus always performed
over values of the x's within the circle.

With our relativistic kinematics, the scattering ampli-
tude will not be uniquely determined by the variables
5, x1, x2, x1', x2', M, Af', and J, since we also have to
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specify which of the four possible values the quantities
si and s~' take. In other words, we require indices n and
o.', running from zero to three, in addition to the above
variables. We shall denote the amplitude by 2 . The
disconnected parts a, will similarly be denoted by the
symbols a;, , where the first subscript denotes the
presence of a delta function 8(s;—s ), and the last two
indicate the solutions of the kinematics. Owing to the
presence of the delta function, not all combinations of n
and o.

' occur in the disconnected terms. Thus, when i = 1,
and si&4m', me cannot have a transition between
the zeroth solution, where s~&5 and the erst, where
s~&S. Ke also cannot have a transition between either
of these and the second or third solution, where S(0.
We can however have a transition between the second
and third solution, since we have seen that the constant
—si lines in Figs. 4(b) and (c) go from the second to the
third solution, or vice versa, at the bottom of the dia-
gram. The combinations which occur are thus a] pp,

a~ ~i, ai, ~2, ai, 33, ay, 23, and ai, 32. Similar combinations
occul for a2, aa' and aa, ea"

VII. DISPERSION RELATIONS FOR MULTI-
SHEETED FUNCTIONS

General Methods

Our partial-wave amplitude is an analytic function of
the variables 5, s;, and s, except for the usual left-
and right-hand cuts. However, the variables s; are ob-
tained in terms of 5 and x, by solving quartic equa-
tions, so that these variables, expressed as functions
of 5 with x; kept fixed, mill have branch points. The
partial-wave amplitudes will therefore have branch
points as functions of 5 when the x's are kept fixed.
We shall call these branch points kinematical branch
points, while the branch points associated with the left-
and right-hand cuts will be called dynamical branch
points.

In the usual analyticity problem of relativistic quan-
tum mechanics one requires to find a function when the
discontinuities across its cuts are known. Our present
problem is rather difI'erent. We are given a Riemann
surface divided into several sheets by the kinematical
branch points. The function which we require to find is
defined on this Riemann surface, and it has dynamical
cuts in addition to the kinematical cuts. The discon-
tinuity across the dynamical cuts on each of the kine-
rnatical sheets is known, but the discontinuity across
the cuts separating the kinematical sheets is not known.

In order to illustrate the method, we shall first con-
sider an example with a simple kinematical sheet struc-
ture, and shall treat a function of a variable $ with two
kinematical sheets connected by branch points at
(=~a. In other words, the function has the same sheet
structure as (P—a')'". It will also have certain dy-
namical cuts with known discontinuities. A general
function with these properties will satisfy the disper-

sion relation

(7 1), 2(Y)

where the integrals are to be taken over the dynamical
cuts. If the discontinuities across the dynamical cuts
on the two kinematical sheets are f, and fi„ then

f.(k) =fr(k)+(k'-&')"'f~(k),

f (t) =f (k)-(&'- ')"'f (3)

(7.2a)

(7.2b)

Since the functions f, and f& are given, Eqs. (7.1) and
(7.2) provide the solution of our problem.

We may require our function f to approach zero as $
approaches infinity. The solution (7.1) does not have
this property, owing to the factor (P—a')'~-'in front of
the second integral. However, we can easily construct
a solution with the required property, namely,

,f3(Y) (&'—a')"'—5
4 ($)=- dk' + , 4(&')

d ' . (7.3)

where the pi are polynomials. The subscript n denotes
the sheet. LIt would fix the sign of the square root in
Eqs. (7.1)—(7.3).]As an example of the functions f, one
could take f i——1, f' „=(i1 )" '. A function with the
given sheet structure, together with the dynamical
cuts, will then be given by the equation

" f-)(k),f),(k')
4- l)=

X=1
(7 4)

If f ($) (0.=0, , n —1) are the given discontinuities
on the n sheets, the functions f&, in (7.4) can be obtained

The functions f3 and f4 will be given by replacing
($'—a')'" by ($'—a')'"—$ in (7.2). Since the factor
outside the second integral in (7.3) does not increase
with $ on the kinematical sheet where the square root
(P—a')'I' is positive, the function p($) defined by (7.3)
will tend to zero in this limit. The function p(() will not
tend to zero when $ approaches infinity on the other
kinematical sheet and, in fact, it is impossible to con-
struct a solution which approaches zero at infinite & on
both sheets unless f, and fi, have special properties.

In the example considered, the functions il = (t2 —a')"'
and $ are related by an equation of the second degree.
Now let us consider a problem where the kinematical
sheet structure is the same as that of a function g which
is related to $ by an equation of the nth degree. There
will be n, functions f i f „(one of which may be
unity) which have the same sheet structure as i1 but no
dynamical cuts, and which are not related by an equa-
tion of the form

Q pi(z)f ),=0,
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from the equations

(7.5a)

or
fi(k)={{}') (k)f-($), (7.5b)

where {l'}—'i is the matrix reciprocal of l i. We dis-
cuss below the possibility of the matrix P & being
singular.

One can de6ne the functions P in such a way that
they remain finite as f approaches infinity on one of the
sheets. For, if q~ C$ on that sheet, one can take
{' i 1,——{ „=(g ')" ', where g '=g —C$. With that
choice the function p($), defined by (7.4), will approach
zero at infinite $ provided discontinuity across the cut
approaches zero. On the other sheets the g's may ap-
proach infinity like $" ' at infinite $, so that the func-
tion p may behave like P—'.

The question now arises whether it is possible to make
a choice of the g's diferent from the original choice 1,

, g" ', which has the property that all the f's ap-
proach infinity less rapidly than $" ' on all the sheets.
One can show that such a choice is not possible unless
the equation connecting $ with g has exceptional points,
such as points of self-intersection or points of oscula-
tion. If there are exceptional points it is possible to make
a choice of functions with the desired property. Suppose,
for instance, that there is a point of self-intersection at
$= $,. Two of the g 's will then be equal at this point,
so that it is possible to 6nd a set of n constants c„,not
all of which are zero, satisfying the equations

{{} 'g ($) ~ C'), $
"& &, (7.8b)

We have chosen the {'s so that they do not increase
asymptotically on one kinematical sheet. If we denote
this sheet by +=0, then

n(0) =0.

Applications to the Problem of Interest

(7.8c)

Once the t's have been redefined in the manner just
described, the quantities l i($) will be linearly inde-
pendent everywhere except at the kinematic branch
points. This follows from the fact that the rom matrices

p
" ' (a=1, , e) can only be linearly de-

pendent if two of the g 's are equal. The case of equality
corresponds either to kinematic branch points or to
points of self-intersection which we have just treated.
The matrix reciprocal {l}'i therefore exists every-
where except at the kinematic branch points. These
branch points will not occur within the ranges of the
integral equations to be derived.

We shall require the relation between the behavior
of { and {{'}' at high $. Let us suppose that

{ x($) ~ C ),5"", ,"~~, (7.8a)

where n(u) is an integer. If the asymptotic behavior of
{ i depends on X, we take n(n) equal to the largest
asymptotic power for that value of 0. and put C ),=0 for
those components with slower increase. Further, we can
assume that the f's have been de6ned so that the c's
are linearly independent; if not, we can take new linear
combinations of the f's with slower asymptotic behavior
than is given by (7.7a). It then follows that

The function

r-0
(7.6)

(7.7)

We can now apply these results to the problem under
consideration. The partial-wave amplitude is a function
of S, sg, s2, sg', s2'. The functions sg and s2 have the same
sheet structure, since they are related by the equation

2s2= 5+3m' —sy

will be regular at $= $0, will have the same sheet struc-
ture as g, and it will behave like P ' at infinity. This
function, together with the functions 1,g,
provide a choice with the desired properties.

One can prove in a similar way that each point of self-
intersection enables us to reduce the degree of one of
our functions fg by 1. 'Thus, with no points of self-
intersection, the degrees of our functions g are 0,
1 ~ ~ n —1. With one point of self-intersection, one can
6nd functions g of degree 0,1, ,n —2,n —2. If there
are two further points of self-intersection, making three
in all, one can make a choice of the f's of degree
0,1 n —3,n —3,n —3. In counting points of self-
intersection, a point of osculation with dg/dg=0 will
count as two points of intersection. At such a point
there are two coincident double roots gi($),gs(f) and
q, (p),g4(g), and one can consider it as a point of self-
intersection between qj. and y3 and between q2 and q4.

xi—xg si —2$i(S+5i )—(S—tg )2
+ (7.9)

X1 S+sy—sl

as may easily be shown from (6.10) and (6.11).Thus, if
we neglect the primed variables for the moment, the
partial-wave amplitude must have the same kinematical
structure as the function si(S). Now si satisfies a quartic
equation in S at given values of xl and x2, but we saw
in the previous section that the equation has a point of
self-intersection as well as a point of osculation with
dsi/dS=O. We must therefore be able to find four func-
tions P of degree 0,1,1,1 with the required sheet struc-
ture and which are not related by an equation of the
form (7.4).

One could obtain the functions by the systematic
method which we have just given, but this is not neces-
sary. It follows from (7.9) and (6.10) that the functions
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'N ~ 5, S—+~.
{g I/2+x 1/2+x 1/o) 2

Ke may therefore de6ne the four functions

f' q(S) = 1(independent of n), P.10a)

f' o(S)= sg, ,— S, (7.10b)
x 1/2+ x 1/2+ x 1/2

x 1/2 xol/2+x 1/2

{ o(S)=so, — S, (7.10c)
x 1/2+, x 1/2+x31/2

f 4(S)=w.— S.
{xi+go+go) '

(7.10d)

The subscript a denotes the kinematical sheet, and it
takes the values 0, 1, 2, and 3 according to the prescrip-
tion given in the previous section.

From (7.10), we find the following asymptotic be-
havior for the f's:

f'o~(S) ~ Co/„f ),(S) ~ C./, S~~ . (7.11a)

The constant C ~ is actually zero, since i &=1. It fol-
lows from (7.8) that

{f'} '/, o~C/o', {0) '&, ~C/, 'S ', S~~ (7.11b)

since it can easily be verified that the c's are linearly
independent.

We can now use these functions f' to construct a
solution to our analyticity problem, using Eqs. (7.4)
and (7.5). Our scattering amplitude will have separate
kinematical branch points associated with the initial
and final states, since the branch points arise from the
branch points of s; or s as a function of 5 with the x's
and x"s 6xed. We have already pointed out in the last
section that a scattering amplitude has two kinematical
subscripts n and n', and Eqs. (7.4) and (7.5) must be
modified by including f' factors corresponding to both
subscripts. It is in fact easier to work in X space than in

s2 and m have the same sheet structure in S as s~, so
that a possible choice of the functions t' would be 1,
s~, s2, m. It may be veri6ed that these functions are not
related by an equation of the form (7.4). However, we

wish to define our functions in such a way that they do
not become in6nite as 5 approaches inanity on the physi-
cal sheet, i.e., the sheet obtained by taking positive
signs for all square roots in (6.5). Now, according to
(6.5) and (6.6)

x 1/21x 1/2+x31/2
sg~

x 1/2+x 1/2+x 1/2

xg'/' —xo'/o+ xo'"
s2~ - — S,

g 1/2+x 1/2+x 1/2

The function A» will satisfy an ordinary dispersion
relation

L~ ~v(S'))
Ag/, (S')=— dS'

7r S'—5
(7 13)

Equations (7.12) and (7.13) are together equivalent to
(7.4), with two factors f' instead of one.

In our problem, we are given equations for the dis-
continuity of the function A, we use (7.12) to con-
vert them into equations for the discontinuity of A» .
%'e then solve the problem in terms of the amplitudes
A/, /, , using the simple dispersion relation (7.13) in con-
junction with the discontinuity formulas. Finally, we
convert to the amplitudes A using (7.12). All prod-
ucts of scattering amplitudes become matrix products
in the ) 's, as well as in our other variables, during the
course of our calculations. Notice that we have inde-
pendent functions associated with each subscript in X

space, whereas the functions pass into one another at the
branch points in e space.

The functions f' have been chosen to remain constant
at high energy on the zero sheet, but they increase with
energy on the other sheets. The scattering amplitudes
which we calculate mill therefore tend to zero at high
energy on the physical sheet for three-particle scattering,
but not on the other kinematical sheets. In the exact
problem the amplitudes might be expected to approach
zero on all sheets, and this would be the case provided
the input left-hand discontinuities had certain proper-
ties. The failure of the scattering amplitude to approach
zero on the other sheets may be regarded as a failure of
the approximation scheme and, since the approximation
scheme is not expected to be accurate at high energies,
it is not a serious failure.

One might suspect that the increasing asymptotic
behavior of our scattering amplitudes would give us
integral equations which are singular at infinity. Fortu-
nately it turns out, as a consequence of the asymptotic
behavior (7.11), that the integral equations for A/, /, . are
no more singular than they would have been if the com-
plications associated with the kinematical branch points
had been absent.

VIII. THE UNITARITY CONDITION

Let us begin by recalling the relation between the four
solutions of the kinematics and the physical regions for
the various processes. In the zeroth solution me shall be
in the physical region for three-particle scattering, pro-
vided S&9m2. All seven variables S, s;, s will then be
above their thresholds, and there will be terms in the
unitarity condition of the form A*GA, a;*GA, and

n space. We thus de6ne amplitudes A». by the formulas

(S)={i) ' -(S)~-(S){f& ' -(S) (712a)
ol

~- (S)=f-~(S)~~K (S)|-v(S) (7 12b)
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A*Ga;. In the other three solutions, we shall not be in
the physical region for three-particle scattering, but we

may be in the physical region for an s; or an s channel,
i.e. , for a reaction in which two particles go into four.
The term A*GA will then not contribute to the dis-
continuity, but there will be contributions from the
terms a;*G~4 and A*Ga;.

We now divide the unitarity discontinuity into seven
parts as follows:

[A]=[A]s+2 [-1]';+2[:1]; (8.1)

The subscripts indicate the solution to the kinematics,
as has been explained in Sec. 6.

We next treat the discontinuity [A]„.We have seen
in Sec. 6 that s~ will be real and greater than 4&n2 in
solution 1 of the kinematics when 5 is real and greater
than m', and also in solutions 2 and 3 when 5 has cer-
tain real negative values. The discontinuity [A ]„
will therefore be equal to a*i ~GA ~ ~ when S&0 and to
a*i, gGA2 +a ~, 3GA3 ~ when 5&0. At the end of Sec.
6 we pointed out that certain components of a
vanished, so that we may write

[A lsd' «t«t«le(~ 222 )a l, llGal«' (~«2+ ~«8)

X e($1 4212 ){a 1,«2GA 2«'+ a 1,«2GA 2«') ~ (8.3)

The minus sign in front of the second term occurs be-
cause the imaginary parts of the variables s~ and 5 have
opposite signs when 5&0, s;&4m' and the x's are real.

As the amplitude a,* has a delta function h(si —si'),
the unitarity integrals in (8.3) will be over a single

The term [A]s is the contribution from the physical
region for three-particle scattering, including the terms
a,*GA and A*Ga;. The term [A],, is the contribution
from the case where s;&4m', but where we are not in the
physical region for three-particle scattering. According
to this separation, the term [A]s comes from an inter-
mediate state with the zeroth solution of the kinematics,
while the terms [A],, and [A],,, come from inter-
mediate states with the other three solutions. We could
have included the terms a;*GA; in the contribution
[A]... even when they come from the physical region
for three-particle scattering. However, it turns out to
be more convenient to include all discontinuities from
the physical three-particle region in one term. To avoid
confusion, we should emphasize that all terms of (8.1)
refer to the discontinuity in S when the x's are kept
fixed. The s s are not regarded as the variables in our
problem, and discontinuities corresponding to the s;
channels become reHected as discontinuities in S.

With this decomposition, the formula for [4],s will be

[A...]s——e(~—9m2) {A*.oGA o.

3 3

+P S.oa*, , o,G lo. +P &. oA'. Ga;,oo). (82)

variable which may conveniently be taken as cos8&.
We have in fact to integrate over the dotted lines in Fig.
4. However, we must bear in mind that the interior of
the circles in Fig. 4(b), (c), and (d) correspond to values
of cos8& greater in magnitude than unity when 5&0,
whereas the unitarity integral should be taken over the
range —1&cos8~&1. In order to perform the integrals
within the circle one has to deform the contour to cover
the range

~

cosei~ )1 and, in the deformation, there are
several points to be considered.

First, we may encounter singularities of the ampli-
tude .4, because a three-body amplitude will in general
have singularities in the complex cos8 plane. Since we
are assuming that the discontinuities across such cuts
are known, they will not cause any difhculty. We simply
have to include an extra term I „on the right-hand
side of (8.3), and this term will in general be known.
Thus

[:t ..],,
= 8 10(S m')—a* 1G11al, «('5«2+8 3)0(si—4m')

X {a*i,«2GA2«+a*i, «2GA2«)+I. .„. (8.4a)

Xext we enquire whether we encounter any singulari-
ties of the amplitude a*. This amplitude is given by
(3.6) or (3.9), and we assume that the two-body ampli-
tude t is analytic in x with cuts along the real axis. We
now insert (3.6) in (8.4a), and attempt to continue the
initial-state variable cos8~ from a value between —1 and
1 to a value greater in magnitude than 1 and, at the
same time, to deform the unitarity integral implied by
(8.4a) to cover the range

~

cos81'
~
)1. We find that we

can continue the variable cos8& to a point just above the
real axis and deform the contour of integration to cover
the range

~

cos81'~ )1, Im(cos81') = o, or vice versa, but
that we must keep the signs of the small imaginary
parts of cos8j. and cose~' the same.

To see what this implies, we recall that the amplitude
A2 ~ will have s3 as well as s~ positive when 5&0, and
A3 ~ will have s2 as well as s~ positive. Each of these
amplitudes therefore has a discontinuity [A]„or [A],„
in addition to [A]„,and we must investigate whether
the amplitudes A in (8.4a) are to be evaluated above or
below this discontinuity. Now, if costi. has a positive
imaginary part, the variable s& will have a positive
imaginary part in the region for which it is positive,
while s3 will have a negative imaginary part. If, there-
fore, we do the unitarity integral in (8.4a) with cos81
and cos8~' above the real axis, we conclude that the
amplitudes A on both sides of (8.4a) are to be taken be-
low the cut [A]„,but above the cut [A]„(we again re-
call the reversal of sign between Ims; and Im 5
when Re5(0). We could have taken all ampli-
tudes above the cut [.4]„and below the cut [A]„,but
further possibilities are not allowed.

The equations for the discontinuities [A ]„and
]„are given by formulas similar to (8.4a):
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[A ..].„=b.st&&(5—m')

Xa*s,ssGAs ' (6 i+5 s)8(ss —4m'-')

X{a*s, sGAs +a*i, iGAi }+I „„,(8.4b)

[A ],„=8 se(5—m')

Xa"s, ssGA s. —(S.,+S.s)tl(ss —4m')

X{a*s iGAi +a*i sGAs }+I, ,, (8.4c)

When 5&0, the amplitudes in (8.4a) are to be taken be-
low the cut [A]„,but above the cut [A]„,the ampli-
tudes in (8.4b) are to be taken below the cut [A]„
but above the cut [A]„,and the amplitudes in (8.4c)
are to be taken below the cut [A]„but above the
cut [A]„.

In (8.4) we have used the symbol a* for the amplitude
at complex as well as real values of cos8~. %hat is im-
plied is the analytic continuation of a* from the physical
region, even though it is not equal to the complex
conjugate of a.

Since the range of integration in the second term of
(8.4) includes the point cos8;= ~, the equations will

only be meaningful as they stand if the amplitudes a;
decrease sufficiently rapidly at infinite momentum trans-
fer. Nevertheless, we shall show that our integral equa-
tions can be constructed for the general case if the two-
body amplitudes have a Regge asymptotic behavior.

The formulas for the discontinuities [A .]„,. will be
precisely the same as those for [A, ],, and they need
not be written down separately.

The terms I in (8.4) are known discontinuities of the
scattering amplitude, and they are therefore ordinary
left-hand cuts. Ke must include contributions from
them in the function Fl. but, since we are taking this

function as given, we may henceforth neglect the terms
I in (8.4).

IX. THE N/D EQUATIONS WITH FULL
RELATIVISTIC KINEMATICS

We now combine the unitarity condition (8.2) and

(8.4) with the dispersion relations in order to calculate
the scattering amplitude. The discontinuity equations

(8.5) for [A],, are linear equations of the Omnes type,
whereas the equations (8.2) resemble the equations
which we encountered with the nonrelativistic kine-
matics. Our method will be first to eliminate the dis-
continuities [A],, and [A],, by solving the Omnes

equations (with a continuous infinity of channels).
%e will then be left with equations similar to those
of Sec. 5.

Elimination of the Discontinuities [A],, and [A],„'

According to the procedure developed in Sec. 7, we

write all integral equations for the amplitude A),), ,
where A), ), is related to the actual amplitude of inter-
est A, ~ by (7.11). The discontinuity formulas of the
previous section, which have been written for the ampli-
tude 3, will be converted into formulas for A), ), as
we go along.

At the moment we assume that the two-body ampli-
tudes decrease sufTiciently rapidly at infinite momentum
transfer for equations (8.4) to be meaningful as they
stand.

To eliminate the discontinuity (8.4a), we write

(9.1)

where the function M") satisfies the equation

1
M"&sv(5)=4s+— {f}—'».(5')a*i»(5')G(, 5')Pi.(5')M"'.s (5') ——, —{{}'s-(5')

"- S'—S—ie S'—S+i e

X(b.s+ &.s)e(si' —4m') {a*i,.s(5')G(5'){s„(5 )+a*i,&is(5') G(5')1 s,(5')}M"',s (5') . (9.2)

The reason for the sign of the ~e in the second denominator is again that points above the real axis in the s~ plane
correspond to points below the real axis in the 5 plane, so that an amplitude ai*, must be multiplied by an amplitude

below the cut in the S plane.
On using (8.5) and (9.2) to calculate the discontinuities of the function;1', we find that [A'],.=0, while

[4'», ],„=0(5—m-')Ms„"& '{t} '„sa*s ssG{sMs&'&A'ss —Ms„+&'&—
&{{ } '„(8 &+8 s)e(ss —4m')

X {a*sasGfs.M"'.
p,~+a*saiG{i.M.s"',}'1'sv (9 3)

%e have used the subscripts + and —to indicate whether M is to be taken above or below the cut in the S plane.
The subscript —on the first factor M ' in (9.3), and the subscript + on the factor M ' at the beginning of the
second term, arise from the formulas [XY]=X [Y]+[X]P'+ and [XI']=X+[V]+[I']X+,which we have
used to evaluate the discontinuities across the positive and negative real S axes, respectively. The subscript + on
the first factor M &'& within the curly bracket results from the prescription we gave after writing down Eqs. (8.4), that
the amplitudes in (8.4b) are to be evaluated above the cut [A].„.The factor {i,M&&&,„ in the second term within
the curly bracket of (9.3) will have no discontinuity in 5 along the negative real axis, as the variable ss is negative
in the first solution of the kinematics (for 5&0), and {'M&'& only has a discontinuity if si& 4m-'. It is therefore un-
necessary to indicate a + or —subscript on this factor. It is similarly unnecessary to indicate a + or —subscript
on the factor f2„M,„("in the 6rst term.
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We can now eliminate the discontinuity PA' ]„by defining a new function

where the function M(~} satis6es the equation

d5'
M"'xv(5)=4v+- Mx, "' '(5'){t} 'p2(5')a*2»(5, ')G(5')

x sS' —S—ie

dS'
&&i'2,(5')M&'&„(5')M&'», , (5')—— M&,„~&'& '(S'){|'}'„(S')(b i+b g)e(sp' —4m')

5'—5+i~

&& {a*2.i(5')G(5') 1 i,(5')M "„~(5')+a*2,.&(5')G(5'){i„(5')M"',r(5')}M"'ri (5') . (9.5)

In the same way we can eliminate the d&scontinuity LA j„by defining the function

In writing down the equation for M(3', we shall use the notation

M(»&».„——M{»,„,M{»„,.,
(9.6)

If it is unnecessary to specify one of the + or —subscripts, we shall replace it by a dot. The equation then adopts
the form

a - d5'
M"'xx (5)=b&y+ — M~p—"" '(5){{} 'I3(5')&i &&.»(5)G(5)

vr 25' —S—~~

d5'
gf', „(5')M&"&„~(5')M&'&,),.(5')—— M),„++"&&'(5'){{} '„~(5')(b~s+b„)e(s»' 4&a')—S' S+ie—

&& {a*3,-&(5')G(5')| i (5')M"""+(5')+a*3,-2(5')G(5')t 2 (5')M"".~(5')M "&.~ (5') (9 7)

where the upper and lower of the W and ~ signs are to
be taken together, and the two signs refer to nonover-
lapping parts of the range of integration. If we multiply
(9.8) by the operator

d5'
1+—

5'—Swi~
we 6.nd that

{1—2ih*(5) }M(5)= 1+r(5)

1 r(5') —r(S)+— dS' h(5')M(5'), (9.9a)5'—5
where

1 h(5')
r(5) =— dS'

S'—5+i e
(9.9b)

Now the function corresponding to h(5) in Eqs. (9.2),
(9.5), and (9.7) satisfies the unitarity equation

{1—2ih~(5) }{1+2ih(5)}= 1

Before proceeding further, we may note that the
Cauchy singularities may easily be removed from the
equations for the M's. The equations all have the form

1 dS'
M(5) =1+— {&h*(5')}M(5'), (9.8)5'—S&ie

Construction of the f&I//D Equations

Equations (9.1), (9.4), and (9.5) may be rewritten

A=MA{», (9.10a)
where

M =M {»M("M(3). (9.10b)

We can now eliminate the discontinuities (Aj., by
defining amplitudes 8 and b as follows:

baoo i,oa' =PaxM xybi, yy'M y'&'t a'v ~

(9.11a)

(9.11b)

so that (9.9a) may be written

M(5) = {1+2ih(5)}{1+r(5)
1 r(S') r(5)—

dS' h(5')M(5')}. (9.9c)
7r 5'—S

From the theorems quoted in the Appendix, it follows
that (9.9c) is fully equivalent to (9.8), provided that the
amplitudes u have no bound states or Castillejo-
Dalitz-Dyson (C.D.D.) poles. We shall discuss the
question of bound states or C.D.D. poles below. %e shall
also deal with other possible singularities of our kernel
arising from the 8 functions in u or an increasing
asymptotic behavior of a in the momentum transfer.
Before doing so let us write down the X/D equations
for the scattering amplitude.
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From (8.2), we obtain the following equation for [Bj

)Bj=8(5 9m—g) {B~HB+Q b;*HB

where

The subscripts X have been suppressed in (9.12a) and (c)
and will henceforth be suppressed. Matrix multiplica-

3 tion in these subscripts, as well as in the other variables,
is always implied.

Equations (9.12) have the same form as (5.1), except
that the quantity H is now a matrix. They can be solved

+P B*Hb;+Ra), (9.12a) in exactly the same way, and we can repeat line for line
the reasoning leading to (5.1) and (5.8)—(5.9). Thus, if
we write

H g:=~'g.go,Gfo, ~;v, (9.12b) 8= VgD ', (9.13)

Ea Qb;——~Hb; the functions Xc and D will satisfy the following
equations:

PIVe(5) 1+2iH(5)Q b;(S)

E D(S) 2iH(S—)

where

2iEa(5)

1—2i Q b;*(5)H(S)

t
t' F»(5)+Jaa(5) ) Ãc(5')

X
i i

— dS(Za(5, $))
Ee; (s)-J (s)J D(s'))
dS' Q e;a(S') Qe;a(5) —Faa(S') F„a(S)—

+—
5'—5 —C~ 5' +C~ 5 — e,~ S' + &,, 5

Q b;*(5')H(S') Ea(5') iVo($')X,(9.14a)—H(5') —H(5')Z b'(5') — D(5')

d5"1
&aa(5) =Fia(5)+-

g
5" —5+i&

Q b;*(S")H(5")Fs,a(5"),

dS"00

Jj)a(S)=— H(5")Fl.a(5"),
g ~S"—5+i&

dS"1 " dS" 1
e'.(5)=- H(5")b.;-(5"), e'.(5)=- . b'*(5")H(5"),

g ~5"—5+i& m g
&5"—5+is

1 " dS"Ra(5")
Faa(5) =-

g ~ S"—5+is

1 " dS"H(S")
Ca(5) =-

g
&5"—5+ie

1
Fsa ),);(5)= M——'g„(5"){{)-'„(5")L..(S"){f') '„.(5")M '„v(5"),

y. 5"—S+io

ds"

1 Fs,a(5') Fs,a(S) 1—
K (5a,5') =- H(5')

5'—5 0

d'5/IZb'(5') +—
0 gr-' g ~ (5" 5+i o)(5" 5")— —

Q b;(5")H($"){Fra(5') Fla(5"))H(S') —Q b;(S")H(5"){Fza(5')—Fsa(5"))H(5')Q b;(S')
X (9.14b)

H(S"){FI,a(5') Fsa(5"))H(S')— II(S"){Fla(5') FIa(5"))H(S')Q b,(S')—

Investigation of Possible Singularities in
the Equations

Equations (9.9c) and (9.14) contain no C'auchy
singularities. Before we can assert that they are Fred-
holm equations, we have to investigate three other pos-
sible singularities: (i) possible singularities from delta
functions in the kerneL, (ii) possible singularities at high

5, and (iii) possible singularities due to the increase of
the two-body amplitudes a; at high-momentum transfer.

The kernels in our integral equations involve the two-
budy scattering amplitudes a;, which contain factors
b(s, s,'). However, the delta fu—nctions can be removed
by iteration of the kernel. In fact, we have already
iterated the kernel to remove the Cauchy singularities,
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and Eqs. (9.9) and (9.14) contain products of at least
two factors a; in the kernel. The reason that such prod-
ucts do not contain delta functions with the present
kinematics, whereas they did with the nonrelativistic
kinematics, is that the argument of the delta function
is not now simply the difference between two x's. The
functions a; all occur in (9.9) and (9.14) in the form
J'dS"a1(5")a1(S')x(S",5'), where the function y does
not contain delta functions. Khen written out, this
integral is

dxl dx2 al(S y&1&x2)xl )&2 )al(~ )xl )x2 )xl)x2)

l9X2

Bsr(5', xr",xg") Bsr(5',xr",x:")

BX2

(9.16)

which may be calculated from (6.13). It is of course
necessary to check that the iterated kernel is non-
singular, for instance at the points where the Jacobian
vanishes, but this can be done. In the nonrelativistic
case, the Jacobian is identically zero, and the delta
function cannot be removed by simple iteration.

Products of the form a;a, (iW j) can be treated in the
same way as the product a;a;.

The investigation of singularities in the integral
equation at high energy proceeds analogously to the
corresponding investigation of the two-body problem.
The result in that case is that the S-wave equation is
not singular provided that the input left-hand cuts de-
crease at infinity. The same is true of the P-wave equa-
tion with a threshold behavior of (s—4m'), provided one
writes the equation with a subtraction in D at some finite
value sp of s. The phase shift will only tend to zero
logarithmically at high energy. The D-wave equation
is singular if one attempts to enforce a threshold be-
havior of (s—4m')'-. If we do not attempt to enforce the
threshold behavior, all partial waves are equivalent ~

Kith the three-body problem, the phase-space factor
increases proportionally to S instead of remaining con-
stant, so that the equations with a threshold behavior of
(5—9m')~ are equivalent to the two-body equations
with a threshold behavior of (s—4m')~+'. If we allowed

XX(S",S')6{s1(5",xr, x~) —s1(5",xi",x."))

X &{Sr(5',x1",x2")—S1(5',xr, x2)) . (9.13)

The functions s1(5",xr, x2) and s1(5',xr, x~) are different
functions of x1 and x~ (if 5"WS'). The restrictions im-
posed by the delta functions will thus fix the values of
the variables of integration x~" and x:",but they will
not give delta functions in the x's or x"s. The integra-
tion over x~" and x2" thus becomes a simple product of
the two a' s, together with the Jacobian

a threshold behavior of (5—9m') ', and constructed
equations for the function (5—9m')A(5), the equations
would be true as written and the phase shifts would
tend to zero like S—' at high energy. If we did not allow
a singularity at threshold, the equations would have to
be modified by making a subtraction in the D function,
and the phase shifts would tend to zero logarithmically
at high energies. One cannot enforce a threshold be-
havior of (S—9m')" where n) 1.

In general, therefore, one would not be able to enforce
the threshold conditions, though they would be satis-
fied automatically if the correct left-hand discontinuity
were inserted. If one knew that the problem had a solu-
tion where the phase shift decreased more quickly than
1,~lnS, one could allow a threshold behavior of
(5—9m') ' and write the dispersion relations for iV and
D without subtractions. It would turn out that the
singularity at threshold was in fact absent in the solu-
tion. Ke remarked in Sec. 2 that there are further
threshold conditions relating to the dependence of the
amplitude on the x's, which can only be satisfied if the
left-hand cut has certain properties.

Ke should point out that the asymptotic increase of
the functions g does not give rise to singularities at
high S. The ('s occur in the discontinuity formulas in
the combinations {01{01.and { 1{{)'1. (n=1, 2, 3)
and, from the asymptotic formulas (7.11), we observe
that these products do not increase asymptotically.

If the two-particle amplitudes a, increase as the mo-
mentum transfer becomes infinite, the equations have
to be modified, since the region over which we integrate
the unitarity equation for t A],,(s,)4m', 5(0) in-
cludes the point cos8;= ~.Ke have seen that this point
corresponds to the bottom of Fig. 4(b), (c), and (d)
(when i= 1), where x1——0, x~ ——x, =-, The terms a; in
the kernel would become infinite at this point, so that
the integral equations for M would become singular.

The difhculty can be overcome by inserting the Regge
asymptotic behavior explicitly. Ke therefore substitute
into the formula (3.6) for a

p(s;)
t(s1 x) =to(sr, x)+ P ~„.)(x) .

sinxa(s;)
(9.17)

where the function M& does not increase asymptotically
with cosOI. As usual the variables s~ and cos8~ are to be
regarded as functions of S, x~, and x2. If n&0, it will be
necessary to add further terms to (9.18) with factors

We now divide the function 3f'" (i =1, 2, 3) into two
parts:

(5)xl, x2).l 1 )x2 )

=&0(5 xl x2, xl .1'2 )+{sln7IQ(sl))

X2-X3 '-

X@ S,—,xr', x..' (cos81) &"» (9.18)
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(cosei) ', etc. The reason why we have chosen the
variable (x2—x3)'/xi is that si is a function of this
variable near the point of divergence x~=0, g2=x3.
From the analyticity of M it is easy to see that the func-
tion @ is analytic in 5.

The unitarity equation for M now gives us linear
equations for the discontinuities of both MD and p, so
that we obtain coupled equations similar to (9.2) for
these two functions. %e shall not enter into the de-
tails of these equations. If there are several Regge poles
in one two-body subchannel, or if more than one sub-
channel contains Regge poles, we shall have to add
further terms to (9.18). After calculating the functions
M, but before solving the 7/D e.quations, we may re-
combine the terms of (9.18) into one, since the X/D
equations do not involve the region for which cos8& is
large.

A word may be said about the case where one or more
of the two-particle subchannels has bound states. In
solving the E/D equations (9.14) we would take these
states into account explicitly, just as with the nonrela-
tivistic kinematics. On the other hand, in the Eqs. (9.2),
(9.5), and (9.7) for the functions M, the bound states
would automatically be taken into account by using the
representation (9.18). As in the usual Regge formula,
they arise from the factor sinatra(s, ) in the denominator
of (9.18). Furthermore, this method of treating the
bound states enables us to overcome the problem of the
unique solubility of (9.8). Our treatment was based on
the theorem quoted in the Appendix, to the efI'ect that
the usual Fredholm results are true as long as the kernel
of (9.9) does not develop a pole when the function h is
increased continuously from zero to its final value. If
the two-body channel does have a bound state, this
theorem cannot be applied directly to (9.8), as the func-
tion h becomes discontinuous at threshold when the
state just becomes bound. By using the representation
(9.18), we can eliminate this difficulty, since the kernel
of the integral equation will not then develop a dis-
continuity when the state becomes bound. There will be
a singularity in the factor (sinirn(s, )) ' of (9.18), but
this factor does not enter explicitly into the integral
equation.

If the two-body scattering amplitudes have C.D.D.
poles the methods developed in this paragraph require
modification, since we assumed that there were no
C.D.D. poles in proving the unique solubility of the
Eqs. (9.2), (9.5) and (9.7). We shall not deal with C.D.D.
poles here. It turns out that the equations for M are
then soluble, but not uniquely. nevertheless, if we
demand that the functions MXa and Mr 'D (which
are the numerator and denominator functions of the
amplitude 2) have no poles, the final result is unique.

General Remarks

discontinuity equations associated with the numerator
and denominator functions, so that they may be re-
garded as the numerator and denominator functions of
the complete amplitude. The function D 'M~ will
satisfy the form factor equations, and the form factor
will be equal to

dxi'dx2' Q (D 'M )ua (.ri, xi':i', x2', M,M )
M', a'

X~ ai(xi )x2 )lM )

The situation is again the same as in the nonrelativistic
case, except that there is now an additional summation
over the kinematic index n.

The remarks which we made in the nonrelativistic
case with regard to deformation of the contour of the
5 integration in our main term (9.14) apply here too.
The presence of the terms a;*G.4 and AGa; in the uni-
tarity condition imply that the function A has a pole on
the unphysical sheet when one of its initial or final sub-
energies is resonant. Since the numerator function is
holomorphic, the denominator function must have a
zero eigenvalue at this point. If we deform the contour
past this point, we must include the resonance explicitly
in our calculation as a bound state, and we can then
prove the existence of cuts on the unphysical sheet.

Our final conclusion to the rather complicated treat-
ment of the fully relativistic case is thus that the kine-
matics complicates all the equations but that the essen-
tial results are unchanged. All the familiar results of the
;V/D approach to the two-body problem can be taken
over into the three-body problem.

APPENDIX. SOME RESULTS OF THE THEORY
OF CAUCHY INTEGRAL EQUATIONS

%e are interested in the equation

1 a„.(x')f,(x')
f„(x)= 1+— dx'

X X ZQ

(A1)

where the indices p, and I may be discrete or continuous,
and will hereafter be suppressed. Let us write it in the
form

1
f(x)—1—— a(x') f(x')

dx =0.
X S Z6

(A2)

Ke now multiply it by the operator

ACKNOWLEDGMENT

The author would like to acknowledge helpful dis-
cussions with Dr. Ian Drummond. He also wishes to
thank Mark Sharefkin for pointing out some errors in
the original draft.

As in the nonrelativistic case, we can show that the
functions M(Xa+Q apl) and Mr 'D satisfy the usual

1 a(x')
b(x—x')+-

7I X X+'l6
(A3)
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In other words, we consider the equation

1 a(x")
dx" b(x—x")+-

X' X X+16

1 a(x') f(x')
X f(*")—1—— dx' =0. (A4)

'jr X X Z6

On multiplying out and using the equation

= 2xib(x' —x),
x' —x—ie x' —x+ie

we find that

{1—2ia(x) }f(x) = 1+ b(x)

1 b(x') —b(x)
dx' a(x') f(x'), (ASa)

where
1 a(x")

b(x) =— dx"
7C X X+16

Thus

f(x)={1—»a(x)} '

b(x') —b(x)
X 1+b(x)+— dx' a(x') f(x') . (A6)

As long as the factor 1—2ia(x) has no zero, the equation
(A6) will be nonsingular.

It is important that the sign of the i~ in the denomina-
tor of (A3) be opposite to that in the denominator of
(A2). If we had used an ie of the same sign, the kernel
in (ASa) would have been

b+(x') b(x)—
a(x'),

where the function b is defined by (ASb), and the
function b+ by (ASb) with a ie in th—e denominator.
This kernel would still contain a Cauchy singularity
and would not be a I'redholm kernel.

Equation (A4), and therefore (A6) is a necessary
consequence of (A2). However, to go in the reverse
direction, one must know that the homogeneous integral
equation corresponding to the operator (A3) has no
solution. It turns out that the case where this homo-
geneous equation does have a solution cannot be re-
garded as exceptional. One can find functions a(x) such
that the homogeneous equation corresponding to (A3)
is soluble and continues to be soluble for all su%ciently
small changes of a. Another complication which may
occur is that the homogeneous equation corresponding
to (Al) may be soluble, and that the inhomogeneous

equation may also be soluble even if an extra arbitrary
inhomogeneous term is added to the right-hand side.
The solution of the inhomogeneous equation would not
be unique. Again this is not an exceptional situation,
and it may be contrasted with the Fredholm theory,
where the inhomogeneous term must be restricted by as
many linear conditions as there are solutions of the
homogeneous equation.

In the one-channel case where a has the form e'~ sinb

(8 real), these two complications correspond to the con-
ditions b(~) b(0—)= —nv. and b(~)—b(0) =n7r, re-

respectively, n being a positive integer.
We shall not go into the criteria which can be used to

distinguish between the various cases, but shall quote
a theorem which can be used in a large class of problems
to show that the complications do not occur: If the

function a(x) can be varied continuously from zero to its
final value in such a way that the factor {I—2ia(x) } ' in
(A6) never has a pole within the range of integration and
is zero at the ends of the range, then the homogeneous

equations corresponding to (Al) and (A3) are not soluble.
In such cases equation (A6) is uniquely soluble and its
solution is the unique solution of (AI). This theorem
thus reduces (Ai) to the Fredholm equation (A6) when
it is applicable.

We are often interested in equations where the func-
tion a(x) satisfies a unitarity condition

{1—2ia(x) } '=1+2ia*(x) . (A7)

If we increase all eigenphase shifts of a from zero to their
final values, Eq. (A7) will hold throughout the process,
and the function {1—2ia(x)} ' will not have a pole. The
conditions of the theorem are therefore applicable,
and Eq. (Ai) is equivalent to (A6). It will only be pos-
sible to increase the phase shifts continuously from zero
to their final values if b(~) —b(0)=0. One cannot
therefore use this theorem if b(~)—b(0) =m-.

Equation (A1) can be generalized by adding a term
Jdx'K(x, x')'f(x') to the right-hand side, where K is a
Fredholm kernel. The equation can also be reduced to
the Fredholm form by applying the operator (A3). If
the conditions of the above theorem hold, we can again
conclude that the original equation is fully equivalent
to the reduced equation and that all the results of
Fredholm theory apply to the original equation. It
may now happen that the homogeneous equation in-
stead of the inhomogeneous equation is soluble, just as
in the case of a normal Fredholm equation Lwith the un-
modified equation (Ai) this could not happen if the
conditions of the theorem heldj. We can also quote
another theorem that is useful: If the determinant of the
quantity I 2ia(x) is equ—al to one for all values of x, the
original Cauchy equation is fully equiv alent to the reduced
Fredholm equation, and the results of Fredholm theory

apply to the original equation.


