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Continuing a program discussed in two earlier papers, we have calculated the left-hand partial-wave dis-
continuities in fourth-order perturbation theory. The s-wave and P-wave dispersion relations are solved by
standard X/D techniques. It is found that the relative contributions arising from the double-spectral terms
and the inelastic single-spectral functions are negligible. As a perturbation theory the procedure appears to
be sensible for coupling constants [X [ less than about 0.1.High-energy P-wave resonances can be made to
occur for

~
X ) of about 0.2, but with very large widths. It is suggested that the physical pion-pion system

may not be describable in terms of a one-parameter theory, and this notion is given experimental meaning.

I. INTRODUCTION

'HIS is the third and final paper of a series describ-
ing an attempt to understand pion-pion scattering

from an "almost Lagrangian" viewpoint. Under the
circumstances it seems appropriate to begin with a brief
review of the ideas underlying our work.

%e take as our starting point the notion that the
pion-pion interaction may not be very "strong. "More
precisely, if the value of the elastic m.-m scattering ampli-
tude at the "symmetry point" corresponding to isospin
r
0i
1 1S

2
r
5

dr(se ——to=is= s) = 0 X, (I.1)
2

then for X smaller than about 0.2 it should be possible to
utilize an expansion in powers of X in order to obtain the
scattering amplitude. ' Since part of our interest will be
the calculation of resonant amplitudes it is clear from
the outset that conventional Feynman-Dyson perturba-
tion theory is not appropriate. Thus, it is necessary to
find the proper quantity to be expressed as a power
series in P.

In order to see how to proceed consider the energy-
variable dispersion relations for the partial-wave scat-
tering amplitudes. ' As is well known, the dynamics
(ignoring, for the moment, inelastic processes) is con-
tained in the function that gives the discontinuity of a

+Work performed under the auspices of the U. S. Atomic
Energy Commission.

'K. Smith and I. L. Uretsky, Phys. Rev. 131, 762 (1963);
A. Saperstein and J.L. Uretsky, ibid. 133, 32340 (1964).

~ Estimates of X have been made by Bipin R. Desai, Phys. Rev.
Letters 6, 497 (1961), and R. F. Sawyer and K. C. Wali, Phys.
Rev. 119, 1429 (1960},among many others. All such estimates
known to us agree that

~
X

~
lies in the range 0.1-0.2, although there

is no universal agreement as to the sign.
g For an introduction to the Mandelstam relation with applica-

tions and bibliography see G. F. Chew, S-Matrix Theory of Strong
Interactions (W. A. Benjamin and Company, Inc. , New York,
1961).

partial-wave amplitude across the real, negative, energy
axis. If the exact discontinuity function is known then,
of course, the (exact) partial-wave amplitude is ob-
tainable as a solution of the dispersion relations. A more
interesting observation, however, is that if the dis-
continuity function is well approximated over a low
(negative)-energy region including the threshold, and
if the behavior of the function for very large argument
is not too singular, then the low-energy scattering
amplitude will also be well approximated. From this
point of view, then, we are instructed to seek an ap-
proximation technique that permits us to "work our
way out" in energy for each partial wave.

As a matter of fact one knows that there is just such
a perturbation theory available for potential scattering. 4

It is obtained by taking the negative energy dis-
continuity of the first n Born approximations as the nth
approximation to the "left-hand" discontinuity. In the
case of potential scattering this coupling constant
expansion for the left-hand discontinuity gives the exact
discontinuity over an increasing range of the left-
hand cut.

From the potential-scattering analogy we are led to
consider the applicability of the same technique in the
relativistic problem. In this case the right-hand side of
Eq. (1) is taken as the first Born approximation to the
scattering amplitude. Repeated application of unitarity,
analyticity argttrnents, and crossing symmetry then
generates an expansion of the scattering amplitude from
which the partial-wave left-hand discontinuities may be
extracted. For low orders, at least, the iteration pro-
cedure is known to reproduce exactly by the Feynman-
Dyson perturbation theory for a coupling proportional
to X(P P)', thus providing a connection with Lagrangian
field theory. '

The potential-scattering analogy is, of course, not an
exact one. Primarily as a consequence of crossing sym-

4 G. F. Chew, S. C. Frautschi, and S. Mandelstam, Phys. Rev.
126, 1202 (1962).' The idea of generating the discontinuity function from pertur-
bation theory was first suggested by Stanley Mandelstam, Phys.
Rev. 112, 1344 {2958).
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metry there is no order of the perturbation expansion
that gives the exact discontinuity function anywhere on
the left-hand cut. Nevertheless, inspection of the tract-
able Feynman diagrams suggests that the procedure we
are discussing gives fairly rapidly convergent expressions
for the discontinuity at Axed low (negative) energies
for

~
X

~
of the order of 0.1 or less. Consequently, we have

some confidence in our ability to calculate pion-pion
scattering amplitudes provided that the interaction is
not too strong and that it is governed by the X(((l P)'
coupling.

In the preceding two papers' of this series we have
reported upon calculations of the s- and p-wave ampli-
tudes calculated from the second- and third-order (in X)
discontinuity functions. In performing those calcula-
tions it was presumed that the low-energy scattering
(for small enough X) was being predicted correctly. On
the other hand it was recognized that the dominant
observable feature of pion-pion scattering, namely, the
p resonance, could hardly be considered a low-energy
phenomenon, and an important test of the theory must
be its usefulness for predicting the p. Consequently, it
seemed imperative that we continue to the next order
calculation in order to see whether the p resonance could
be obtained for a small enough P so that the low-energy
predictions remained unchanged.

It is clear, of course, that a negative result from the
fourth-order calculation would not constitute a proof
that the p is not a consequence of a X(P P)' interaction
among pions. One would always be left with the
tantalizing possibility that one higher order in the
perturbation expansion would be required in order to
get "physics. " From a practical viewpoint such a
possibility is an empty one because the fourth-order
calculation exhausts our present capabilities. In this
sense the calculation reported here provides the crucial
test of the present approach to pion-pion scattering. In
a broader sense, however, one can look upon our work
as outlining a methodology for treating medium-strong
couplings so that the applicability to the pion-pion
system need not be of primary interest.

The calculation of the fourth-order discontinuity
functions from unitarity, crossing, and analyticity does
have features that are intrinsically of interest. This is
because the fourth order is the lowest order that admits
of inelastic intermediate s.ates, and one wants to dis-
cuss these as an iteration of the fundamental coupling in
Eq. (1).Further, this is the lowest order that contributes
double-spectral functions to a Mandelstam representa-
tion of the scattering amplitude, and it was thought that
such terms would play a crucial role in the scattering at
moderate and high energies. Section II, following, is
devoted to a discussion of the derivation of the fourth-
order amplitudes. The relevant formulas are compiled
in the Appendix. Section III contains a discussion of
the numerical results. Section IV contains the con-
clusions and some 6nal remarks. Experimentalists read-
ing this paper are advised to proceed directly to Sec. IV.

s=4(v+1),
t= —2v(1 —z),

(II.2a)

(II.2b)

u= —2v(1 —s), (II.2c)

in units where h, c, and the pion mass are all unity. The
functions F, H, and K are de6ned in the Appendix. The
amplitude Ar(v, s) is normalized so that the elastic
unitarity relation reads (for v)0)

l ( v 1(2

ImAr(v s) dQ'A r (v,s')A r"
(v,z"), (II.3)

4(v(v+1

where
s"=ss'+ [(1—s') (1—s")]'"co&'. (II.4)

Finally, A is obtained by putting Eq. (II.3) into a
dispersion relation, subject to the condition (I.1), and
then applying the requirements of crossing symmetry.

When the expression on the right of Eq. (II.1) is
inserted into the integral of Eq. (II.3) and the terms
proportional to X4 isolated it will be found that these are
of two kinds. Some, after the integration on angle, will
be functions only of the energy variable s (or equiva-
lently, v). These will make contributions similar to those
already encountered in the lower-order calculations and
will be referred to as the elastic, single-variable contribu-
tions (see Appendix).

The other kind of contribution will come from cross
terms of the form F(t')F(t") and will still have a t (or-
equivalently, s-) dependence after the angular integra-
tion is carried out. Taking the imaginary part with
respect to the t variable of the result one then obtains

II. COMPUTATIONAL DETAILS

The elastic scattering amplitude, to third order in X,

0
may be written, for isospin 1

2

5' "25'
A'(v, s)= 0 X+X'c 0 F(s)

2

15
+ 5 [F(t)+(—1)'F(u)] ~

9

125 55
+X'q 0 H(s)+ 35 [H(t)+(—1)'H(u)]

8 43

75 55
+ 0 K(s)+ 10 [K(t)+(—1)rK(u)] ~, (II.1)

18 28

where v and z are, respectively, the square of the bary-
centric momentum of one pion and the barycentric
scattering angle. The variables s, t, e are the usual
Mandelstam ones dehned by
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the lowest order elastic contribution to the double-
spectral function which is

p, '(s, t) =—
225

4@4
00 I/2

25 [s(s—4)] "' dt, 1——
4 ~1

where

1/2

X dt2i 1—— E(s; ttit.), (II.5)
4

s~&4, t&~ 16.

One sees, thereby, that p, r(s, t) arises from the exchange
of two pair of s-wave mesons in the t channel. The
double-spectral function is so normalized that the con-
tribution to the amplitude is (neglecting the required
subtractions at so, to)

ds'(s' s) '—dt'(t-' —t)-'p '(s', t') . (11.8)

There is now another contribution to the (s,t)
spectral function that arises from the exchange of two
pairs of s-wave mesons in the s channel. This inelastic
contribution is obtained from Eq. (II.S) as a conse-
quence of crossing symmetry and is

p,'(s, t)= P Mzr p, '(t,s), (II.9)

where Mgy is the usual crossing matrix'

2
(Mrs ) =si 2

2

10
—5

1
(II.10)

The total (s,t) spectral function may now be denoted by

p"(s,t) =.'(s, t)+ p, '(s t) (».11)

and the (s,u) spectral function is readily seen to be

p2'(s, u) = (—1) pi'(s, u). (II.12)

Finally, one more application of crossing symmetry
gives the third, or (t,u), contribution as

pir(t, u)=Q Mrr pg'(t, u). (II.13)

At this point all that is lacking are the inelastic single-
variable terms and the contribution of the "X"diagram

K (sj ttlt2) t+tl +t2 2(ttl+tt2+tlt2)
4tt—,t,/(s 4)—(».6)

is the same function that is discussed in Mandelstam's
original work. The integrations in Eq. (II.S) are confined
to values of t~, t2 for which E is positive, thus giving
rise to the further restrictions

I'ro. 1. The fourth-
order X diagram which
was omitted from the
calculation. It is ob-
vious by inspection that
this diagram contributes
symmetrically in t and
N, and, in consequence,
enters only into even
angular momentum am-
plitudes.

of Fig. i. These are not obtainable from elastic-unitarity
so that we must now take into consideration the lowest-
order (X') amplitudes for four-pion production. In order
to obtain these as an iteration of the fundamental
coupling of Eq. (I.1) it is necessary to consider first the
three-meson-to-three-meson scattering which will then
give the two-meson-to-four-meson amplitude by cross-
ing one of the lines.

The lowest-order three-particle scattering amplitude
corresponds to the disconnected diagram where two of
the particles scatter' and one goes "straight through, "
and where the scattering is given by the right-hand side
of Eq. (I.1). Iteration of this amplitude by three-
particle unitarity then gives a second-order "straight
through" contribution plus nine 5-function terms that
may be identified as the imaginary parts of Feynman
propagators. One more such term is then added in order
to maintain crossing symmetry. One of the incoming
legs is then "crossed over" in order to convert the three
particle scattering amplitude into a production ampli-
tude. The result is simple in form but tedious to write
and will not be reproduced here. It is, of course, also
readily obtainable by application of the Feynman rules
to a (P P) interaction.

%hen the contribution of the production amplitudes
is added to the unitarity relation (II.3) there again
result two classes of contributions. As expected, there
are the single-variable inelastic terms which are also
tabulated in the Appendix. In addition there are the
double-variable terms which include the contributions
already obtained from crossing arguments, Eq. (II.9),
and the X diagram. This last has not been included in
our work since it can only contribute to the high-energy,
even angular-momentum states and is algebraically
awkward to deal with.

III. NUMERICAL COMPUTATIONS
AND RESULTS

The major computational problem in the fourth-order
calculation was to evaluate the contributions of the
double spectral-functions which are given in the
Appendix as three-dimensional integrals. It seemed
reasonable at this stage to adopt the most direct ap-
proach and perform the three dimensional integrals
numerically on Argonne's CDC 3600 computer. The

' David I. Olive, Phys. Rev. 135, B745 (1964).
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FIG. 2. The scattering lengths az in second (dashes), third (solid),
and fourth (dash-dot) order.

numerics was slightly complicated by the occurrence
of square-root singularities in some of the integrands;
however, it was not difficult to obtain results that were
accurate to within a few percent. The time required for
the total double-spectral contribution to the three
partial-wave discontinuity functions at a fixed energy
was about one minute.

The results were surprising and disappointing. It
turned out that the total double-spectral contribution
to the discontinuity functions was never more than a
few percent of the contributions from the fourth-order,
elastic, single-variable terms. Further, the single-
variable inelastic terms contributed only to the very
distant left-hand cut and were also estimated to be a
small correction. Thus, for our purposes it was adequate
to use only the elastic, single-variable discontinuity
functions in calculating the partial-wave amplitudes.

It had originally been our idea to introduce the per-
turbation theory inelasticities into the right-hand
singularities of the partial-wave amplitudes. However,
as will be seen, the results obtained using just elastic
unitarity suggested that such an added complication
would probably not be worth the trouble.

The calculations that were finally carried out were
performed on the CDC 3600 using the basic program
constructed by K. Smith. ' To this had been added sub-
programs for calculating the third- and fourth-order
partial-wave discontinuities. As before, the partial-wave
dispersion relations were solved by means of the cVjD
technique. '

The main features of our results are depicted in Figs.
2 through 5. Fig. 2 compares the three scattering lengths
as calculated in second, third, and four th orders, thus

20

(b)

(c)

600.

400.

200.

FIG. 3.The realpartof theinverse amplitude, f& =I v /(v+j. )j ~'

gcotb~ in second (dash-dot), third (solid), and fourth (dashes)
order. Where fewer than three curves are shown the results are
indistinguishable. The calculations are for X= —0.1.

indicating the limits of applicability of our perturbation
approach. Another measure of the convergence of the
coupling constant expansion (for the discontinuity
functions) is given by the relative magnitude of the
fourth-order contribution near the threshold. For X of
0.1 it turns out to be about 30% which suggests that
for this magnitude of coupling the convergence will al-
ready be slow. It also turns out that the discontinuity
functions for very large argument become more and
more singular (higher powers of ln~ u ~) in higher orders,
but such singularities are weak enough to have little
e6ect upon the low-energy scattering.

In Fig. 3 we show the energy dependence of the three
solutions, each in second, third, and fourth order for a
coupling constant —X equal to O.i. These graphs show
explicitly how the higher orders of approximation have
their important inQuence upon the higher-energy
behavior of the scattering amplitude.

In our earlier papers we pointed out that the notion
of crossing-symmetry is not well-defined when one
deals with only a finite number of partial-wave ampli-
tudes. One may, however, speak of approximate crossing
symmetry over a region of the left-hand cut of the
partial-wave amplitudes. Figure 4 shows the extent to
which our calculation satisfies such approximate cross-
ing symmetry, again for A, of O. i. %e consider that the
agreement between the two discontinuity functions is
reasonable in view of the fact that the partial-wave sum
must diverge anyhow at u= —9.

Finally, in Fig. 5 we show the effect upon the p-wave
amplitude of varying X. It is at this point that we are
really hunting for the p resonance which we would take
seriously if it were obtainable at the correct energy
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Fro. 4. The left-hand spectral functions as calculated from
fourth-order perturbation theory {broken) and, u posreriori, from
crossing {solid). The calculations are for X=0.1.

(v=6.25), with a reasonable width (I'=1) and for a
reasonably small value of X(~ X~ =0.1). It may be re-
called from our previous work that in the second and
third, order it was just not possible to make the p wave
resonate at such a high energy for any value of X. In
the present calculation the situation is quite different
and very-high-energy resonances may be obtained as a
result of the more singular high-energy behavior of the
discontinuity functions.

Nevertheless, the fourth-order calculation does not
appear to be capable of providing a p resonance. First,
in order to obtain a p-wave resonance near the correct
energy it is necessary to have X as large as about 0.2
(resonances occur for both signs of X), and this is too
large for our perturbation approach to make sense.
Secondly, the widths come out to be more than 6ve
times too large so that it is very hard to be1ieve that
these resonances bear any relationship to the p.

IV. CONCLUSIONS AND COMMENTS

The 6rst question to be faced is whether the tech-
niques described here constitute a reasonable approach
to the physics of particles whose interactions are of
moderate strength. %'ith some quali6cations it would
seem that such is indeed the ease. That is to say, it
appears that a perturbation expansion of the "left-hand
cut" discontinuity functions permits one to explore in-
creasing areas of the energy angular-momentum plane
in a convergent manner. In doing so one is able to
impose unitarity, analyticity, and crossing symmetry to
the extent that the latter notion is meaningful.

The major quali6cation has to do with the conver-
gence of our procedure which obviously cannot be

Fzc. 5. The real part of the inverse p-wave amplitude for ~
chosen to produce a resonance at the position of the p. The solid
curve is for X=+0.213, the dashed curve for X= —0.2005. See
Fig. 3 caption for dehnition of ffI.

a0/a2 5 (IV.1)

Deviations from this ratio then provide a measure of
the coupling strength. It is worth noting that the only
way that a2/a2 can be negative in our scheme is for there
to be an s-wave bound state in the I=0 channel. In this
case we could no longer consider A. to be small and our
particular perturbation scheme would. not be applicable
anyhow. If ao/a2 is negative and there is no s-wave
bound state then the concept of a one-parameter calcu-
lation would have to be discarded. If ao/a2 is positive
but greatly different from the ratio (IV.1) then we
would guess that P is not small and again the perturba-

studied by calculating a hnite number of contributions.
All we really have to go on, in fact, is the weak analogy
with potential theory and. the trends that are indicated
by the calculations that have been performed. It is clear,
from this point of view, that there are some difFicult
mathematical questions to be answered before we can
lay claim to a rigorous theory.

It has already been seen that (up to fourth order, at
any rate) the p resonance does not seem to be a conse-
quence of our model. It now becomes relevant to ask
where the model has deviated from "physics" and
whether it is capable of making any predictions what-
soever concerning physical pion-pion scattering. As will

be seen, it wiH be necessary to call upon the experi-
mental physicist for additional information in order to
answer this question.

First consider one of the basic assumptions of the
calculation, namely, that the efIective x-~ coupling
constant (X) is a small number. If this assumption is
true (within the context of the computational scheme)
then there is a de6nite prediction made concerning the
ratio of the s-wave scattering lengths. That is, the ratio
must be positive and approximately
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tion scheme would be inapplicable. In this event, how-
ever, one might still be permitted to retain (izs prizzcip/e)
the notion of a unique (P P)s couphng. Finally, if
Eq. (IV.1) is approximately satis6ed, thereby indicating
that the coupling is not very strong, then we would
suspect very strongly that additional parameters (per-
haps in the form of unstable "elementary" particles)
are needed in m-m calculations.

In this connection it is certainly not unthinkable that
the p itself is in fact an "elementary" particle, at least in
the context of ~-x scattering. This is, in fact, suggested
by the convenient way that the p hts into the SU3
symmetry scheme. ' The conventional expectation is
that such an elementary particle should manifest itself
as a CDD zeros in the P-wave amplitude, and the
presence of such a zero may be experimentally observ-
able if there is a substantial s-wave background with
which it can interfere.

That the p is an elementary particle is, of course,
only one possibility. There have also been suggestions
of s-wave resonances near 400 MeV' and (or) 720 MeV"
(barycentric total energy), neither of which come out
of the present calculation. It may be that at least one
of these need. s to be "put in by hand;" and if this is the
case then the entire complexion of the calculation would
be greatly altered.

Here v is (s—4)/4 and Y=—Y(s) has already been de-
fmed. Lis(x) is the function" Dilog, and the D„r(x),
which are related to the Debye functions, "are given by

(AS)

t'0
The a, 's, for isospin ~, are given by

605 (5i 2zr'(185i-
a], 8 3a —60/

473 &8) 3 %131)

/235
as ——16~

&106

6 1079

1 55 1015 4x'(185
APPENDIX

1. The three functions appearing in Kq. (II.1) are

F(x)= (1/zr) {n—(1—4/x)"' lnF (x)},
a(x) =p(x) js,

(A1)

(A2)

a—=V2 tan-'(2') . (A6)

2. The single-variable contribution to the s-wave
left-hand discontinuity functions is

ImA, (v) = [4lt.'/(4 —s)zrs 1{ay[Lip( —1/ Y)+ (zr'/l2)
—-,'lnF ln(4 —s))+asDs+(Y)
+as[lnFDs (Y)—Ds (F)j+a4 ln'Y+as ln4Y

+as lnsF+ {ar+(as+as/v)[v(v+1) j'z }ln'Y
+ (azp+azzv) lnF+ (azs/v)[v(v+ 1)1'z } (A7)

IC(x) = —(4/3zr ){[x(x—4)jz"
X (zr'+ln'Y) lnF —(-,') ln'Y
—3zr(1+n)F(x)+ (~s)n(cP —4a—2zr') } (A3)

where

F(x)= [(1—4/x)'"+1j/[(1 —4/x)'" —1j, (A4)
ln "zs—= (inzs) ", (A5)

and the logarithm is real for negative values of x. Also,

/55) tr5 4s tr185)
az= 66al

(43) ES 3 E131j

tr 1535'
as= —6I

E 931i

235
cg= —12 )

37 5
azp ——3 ——(u' —2n )a+585a'

2 3

(
135~ tr635) t'1445)

+6- —29) &4111 E, 1157j

(5 tz3205i—
+I

k3 (1913)

235~-
ass= —2 a&p —azz —2'll

211)

a(3= —4n

(A9)

'M. Gell-Mann and Y. Ne'eman, The Eightfold gay (W. A.
Benjamin and Company, Inc. , Neer York 1964),especially Chap. 12.

L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
456 (1956); Freeman J. Dyson, ibid. 106, 157 (1957).' R. Del Fabbro, M. De Pretis, R. Jones, G. Marini, A. Qdian,
G. Stoppini, and L. Tau, Phys. Rev. 139, 3701 (1965). We are
indebted to Dr. Qdian for a discussion of this experiment."M. Feldman, %. Frati, J. Halpern, A. Kanofsky, M.

Nussbaum, S. Richert, P. Yamin, A. Choudry, S. Devons, and
J. Grunhaus, Phys. Rev. Letters 14, 869 (1965)."Ham(book of Mathematical Functions (A&5 55), compiled by
U. S. Department of Commerce, National Bureau of Standards
(U. S. Government Printing QKce, Washington, D. C., 1964),
p. 1004.

~ Reference 11,p. 998.
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For the p wave we have

IrnA z'(v) = (5X /2„2)(64[(v+1) In 7+2(v(v+1))""]Dp(Y)—64(v+1)Dp (V)
+ (380/3) vDq+(F)+ (6/5) (v+ 1) In 7+[12(v(v+ 1)) / —(37/2) (v+ 1)+(95/6)] ln4V

—[(64/3)(v(v+1))'/'+br+ (1565/6)] In'Y+[bq( (v+v1))'/'+bq ]vIn'Y

+6[119(v+1)'+b4(v+ 1)+bp] In V+ [b p (v+ 1)—12bp](v (v+ 1))"'
+12[156v+b&][Lip(—1/V)+w'/12 ——,

' InV In(4 —s)]), (A10)
where

by = 4(11n+811/12 —vr')

by = 24—(11n+1561/24 m—'),
b p

= 6(—77n 40—38—/9n'),
b4= (1/12) [37cP—1170n'—(4020+ 747r') n —8(857—(1027/12)w')],

bp = —(1/24) [37n' 11—70n' —(5146+74/r') n (72—83—(3458/3) n')]
b, = 726 +1543,
b7 = 77n+ 38—(74/9) ~'.

3. The contributions of the double-spectral functions may be written in the form

(A11)

Inl/I n / (s) =
(4—s)'

where

dt P/[1+2t(4 s)]jr(s,—t)

+ dt P/[1+2t(4 —s)]Lr(s, t)+ dt ReQ/[1+2t/(4 —s)]Mr(s, t), (A12)

J"(s,t) = dt's 1—— dt2 1——

225 185

X& 25 [j(s; hh&hp)
—j(sp,' tt&tp)]+ 5 [j(4 s—t; tt&hp) j—(sp,' thzhp)] &, (A13)

,101

where t —(hl/P t 1/2)2. t —(hl/2 2)2

4 '~' "
fh 4

L'(s, t)= dt, 1——
dhoti 1——

tj

185

X& 30 [l(h& st, t,)—l(t; s,t,t,)]+ —5 [l(t, ; 4—2 —tt, t,)—l(t„s,t,t,)] ~, (A14)

101

185

3d.r(s t)
I t/2 00

4) 1/2

dt's 1—— dt's 1——
~

m(t; 4—s—ttqtq-)+ —1 m(4 s t; hhrtz)— —
4 4 t2)

(A15)

%e have defined

j(s; thats) = [s(s—4)] "'E(s; tt~lp) Ing, (s; tl, t,),
l(t; shrhp) = [t(t—4)]-'"E(t;st,t.) InZ, (l; st,t ,), .

m(h; xt,t,)= [h(t—4)]-//pit (t; &t,t,),
(A16)
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with K defined in the text. Finally,

1/2

zy(s; ttytg) = 1—— E(~; ttyts)+E($; ttgts)
s

1/2

1—— E(~ j tt14) —E($ I ttlt2)
s

(A17)

so($; ttyts) = ( [$+(ttytn) s] +[s (ttgtg) —s] }/([s+ (tt jt0) s] [s+ (tt$tQ) s] },
where s+ is the greater and s the 1esser root of K '(t; st&t~).

4. Lastly, we record the three inelastic single-spectral functions. These are

16~4 s t2

I(s) =+ dt, 1—— dt K(~; st~tq) 1n.4 (s; t~t, ) 1nA (tq., st, )
s 4

with

t~
——(s'"—2)' t, = (s'~' —tP')

(A18)

(A19)

1/2

A(s; t&t~)= s t& t~+ —1——— K '"(~;St~4)

1/2

s—~g
—f2— 1—— K '" ~ ) stgt2 )

s

where

&OX4 4 f/0

I&(s) =
7r S2 t,i

dt t '(tp —1) '[(t&—t&—1)'—4t.~'"[(t&—s—1)'—4s)'"
(A20)

where

t,'= (t,'~'+1)' ;t,"=-(s'~' —1)',

3' 1, 2

I,(s) = dt, 1—— dtzt. ' 1n[g+(s, t~, 4)/g (s,t, ,t~)],
2g s 4 ty

gr ($,4,4) =$(4+4—1)—4(4—1)&[(4—t~ —1)' 4t~]"—[(ts s 1)—'——4sJ~'.

(A21)

251

0
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I2 corresponds to a "bubble" diagram where one of the exchanged pions itself has a three-pion bubble, and I3 to
a 'bubble" inside of which a bubble is exchanged. The remaining possible graph gives rise to Ij. The three I's
occur, respectively, with the isotopic spin factors

825
0
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