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Origins of the Lee Triangle'
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The Lee triangle, VSiZ+[Pss) —iA ~Ps )=2i" [As. ), is shown to be a consequence of any Harniltonian
which transforms as a member of an SU(3) octet, and which satisfies one simple constraint. If the Hamil-
tonian is constructed in the form Zg„L(BXB)(„)Xwjw), where n =8~,8y, 10,10*,27, the required constraint
is g»=g&0+. Thus the baryon-antibaryon decuplets must appear with equal weights, but the octets and
(27)-piet are placed under no restrictions. This result is used to explain why some dynamical models and
symmetry arguments predict the Lee triangle, while others do not. %'ithin the framework of SU(6), it also
correlates the orbital angular momentum in Z+ ~ nx+ with the Lee triangle.

l. INTRODUCTION
' ~VER since it was 6rst proposed, the Lee triangle'

V3(Z+~P s)—(A~P -)=2(=--(Aw-) (1)

has been something of a puzzle. For one thing, it is the
only new development arising from the use of unitary
symmetry in nonleptonic hyperon decay, and for
another, it is a consequence of several distinct argu-
ments. ' These argtnnents all start at the same point,
namely, the assumption that weak interactions belong
to an octet, but then they diverge, either in the direction
of symmetry properties, ' ' or toward dynamical models'
which have no apparent symmetry. The question we
wish to consider here is why they all lead to the Lee
triangle.

Our answer is centered upon the effective decay
Hamiltonian. If it transforms as a member of an octet,
it will include five independent terms which engender
observable decays. By virtue of the hT=-,' rule, there
are only four observable amplitudes, and therefore the
most general Hamiltonian yields no predictions beyond
those of hT= —,'. Furthermore, it is reasonable to suppose
that one linear relation among these amplitudes will be
predicted only when two constraints are imposed upon
the five coupling constants. %hat is surprising about
the Lee triangle is that this supposition is not correct:
It can in fact, be derived from one constraint alone.
The extra degree of freedom which this entails is then
responsible for the variety of the triangle's derivations.

To prove these statements, we first use the hT=-,'
~ Supported in part by the U. S. Air Force and the National
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A. Pais and S. B. Treiman, in Proceedings of the 1Zth Annual
International Conference on Ligh-Energy Phys@ s, D@bnu, 1064
(Atomizdat, Moscow, 1965); and by R. H. Dalitz, from lectures
given at the International School of Physics "Enrico Fermi" on
%'eak Interactions, Varenna, Italy, 1964 {tobe published).' M. Gell-Mann, Phys. Rev. Letters 12, 155 (1964); B. Sakita,
ibid. 12, 379 (1964); S. P. Rosen, ibid. 12, 408 (1964); S. Okubo,
Phys. Letters 8, 362 (1964); S. Coleman, S. L. Glashow, and
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4 H. Sugawara, Nuovo Cimento 31, 635 (1964);S. Coleman and
S.L. Glashow, Phys. Rev. 134, 8671 (1964);B.@'.Lee and A. R.
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rule to recast Eq. (1) into a form which involves only
one m meson, namely, the ~—.Next, we construct the
effective Hamiltonian by coupling baryons to anti-
baryons, and then to pseudoscalar mesons in order to
form an over-all octet. The observable terms are

L(B)&B)&„&&t,'rrj«&, ts= 8o—,8s,10,10*,27 .(2)

A comparison of the new version of Eq. (2) with the
Hamiltonian reveals that the Lee triangle is auto-
matically satisfied whenever the baryon-antibaryon
system is an octet or (27)-piet; there is, however, only
one combination of the decuplet and its conjugate which
gives rise to Eq. (1).In other words, the Lee triangle is
a natural consequence of three of the coupling schemes
in Eq. (2), and it is for this reason that the Hamiltonian
need be subject to one constraint instead of two.

As pointed out in an earlier paper, ' the unitary sym-
metry scheme contains two types of weak-symmetry
R conjugation and T-I. invariance. In general, a Lee-
constrained Hamiltonian Li.e., one which predicts
Eq. (1)) satisfies neither of them, and so we may antici-
pate nonsymmetric dynamical models for the Lee
triangle. Ke can also explain the existence of purely
symmetric derivations by noting that certain sym-
metries include the Lee constraint as one of their
necessary conditions.

Our basic result is proved in the next section, and it
is examined from the standpoint of weak symmetries
in the third. To illustrate its wider implications, we use
the result to show that if weak interactions transform
according to the 35-dimensional representation of
SU(6),s then the Lee triangle forces Z+ ~ m.+ to be a
pure S-wave decay. Some of the more detailed mathe-
matics is confined to an Appendix.

2. THE LEE-CONSTRAINED HAMILTONIAN

By means of the relation

(3)

which follows from hT=-,', we can rewrite Eq. (1) in

5 S. P. Rosen, Phys. Rev. 137, B431 (1965).'F. Gursey and L. A. Radicati, Phys. Rev. Letters 13, 173
(1964); A. Pais, ibid. 13, 175 (1964); B. Sakita, Phys. Rev. 136,
B1756 (1964).
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the form

The particles appearing in (4) correspond to the follow-
ing components of the baryon and meson octets'.

A- —(~3)V2)Boo -'(V3Zo —A)- —(~3(~2)B
5

p Bi Bb il &r2

and so the equation is equivalent to

(B '
I
B '&r ')= (B i

I
B b&r ') . (6)

It now follows that, if a Hamiltonian is to predict the
Lee triangle, it must include the terms

G —=Bg'BP, Gf,—=8/833 (7)

in the combination

(G.+G b) &ro'. (8)

(I.M) „«=I.b«M„",
(12)

The space-time structure of H, ff is irrelevant to the
present discussion and has therefore been suppressed.

Because Dio appears with the same weight in (9) as it
does in (10), the first term of H.« includes G. and Gb
in the combination of Eq. (8). Similarly, the second
term also includes them in the required combination.
The last term engenders decays involving a x meson
via [27]oi"&ro', from the properties of the (27)-piet, ' it

' S. Okubo, Progr. Theoret. Phys. (Kyoto) 28, 24 (1962); see
also the Appendix below.

The point to notice about Eqs. (7) and (8) is that G,
is orthogonal to the unitary multiplet (BXB)«o«& and
Gb to (BXB)&io&. [The (10) is antisyzmnetric in the
upper indices and symmetric in the lower ones; for the
(10*) these permutation symmetries are reversed. ')
Therefore, if the Hamiltonian is constructed as in
Eq. (2), Eq. (8) will give rise to at least one constraint,
namely between the coupling constants of the n= 10
and n= 10* terms.

To show that no other constraints are needed, v e
express G and G~ in terms of the components of the
(BXB)&.&.

G«bD1~+ oF1 +«[10]11'+ «[27]11 r (9)

G = 'D '+-'Fi'+bi[10*-]io'o+-,'[27]ib". (10)

D and I' are the usual R-symmetric and R-antisym-
metric octets, respectively, and the [10], [10*), and
[27] terms are deined by Okubo"; the detailed deriva-
tion of (9) and (10) is given in the Appendix. Next, ive
write the observable part of the Hamiltonian as

JI.« =f(D&r) oo+ g (F&r)o'+ k[[10)o'&r+ [10*]2o&r]
+h'[[10]o'&r—[10*]o'&r]+k[27]"or+H.c. , (11)

where

follows that

[27]oPiro'= —([27]&P+[27]&P)&ro'. (13)

Comparing the right-hand side of this equation with
(9) and (10), we see that G, and Gb again appear as in
Eq. (8). Therefore, any Hamiltonian of the form

&[(BXB)&o&X&r)&»+p[(BXB)&2»X&l]&o& (14)

will always give rise to the Lee triangle.
From the permutation symmetries and traceless con-

ditions" of [10]„,«" and [10"]„"",it follows that

[10]oio'oro'= [10]&i"&ro',
[104] 82 i—D 04] bb i (15)

Consequently, the required combination of G, and Gt,
appears in the third term of H, ff but not in the fourth
[see Eqs. (9)—(12)]. It is now evident that the only
constraint needed to predict the Lee triangle is

h'= 0. (16)

Henceforth we shall refer to Eq. (16) as the Lee con-
straint, and to a Hamiltonian which satis6es it as a Lee-
constrained Hamiltonian.

3. WEAK SYMMETRIES

There are two weak symmetries available in SU(3).
One, R conjugation, is dered by

F.: X„«—b X«" (X=B, B,ir)—(17)

and the other, the T-I transformation, interchanges
the indices 2 and 3:

2~3, (18)

A given Hamiltonian may be even under (18), or odd,
or neither even nor odd. The even case corresponds to
T-l.(1) invariance and the odd case to 2'-l. (2)
invariance. '

In general the Lee-constrained Hamiltonian has no
deinite symmetry. The D and F terms of Eq. (11)trans-
form in opposite ways under (17), and they are related
by (18) to unobservable interactions which are not in-
cluded in H, ff e.g. ,

(Der) o' ~ (D&r) b'=—Db'&r, ". (19)
It is, therefore, not surprising that there exist non-
symmetric cynamical models' 4 for the Lee triangle. An
example of such a model is one based upon meson poles, '
e.g. :

-P+E 4 x
strong weak

(20)

By virtue of the strong vertex, the eA'ective interaction
takes the form [(BXB)&» Xmr]&o& and is therefore Lee-
constrained. It is not T-l-invariant, and unless there
are accidental cancellations at the two vertices, it is not
R-invariant.

8 B. W. Lee and A. R. Swift, Ref. 4, discuss this type of model
in some detail.
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and under (18),

[10]2's.+-+ [10*)s'vr

[10]P~~ [10],2~.

(22)

(23)

Despite this lack of symmetry in the general case,
the Lee constraint [Eq. 16)] does happen to be a
necessary condition for certain symmetries. To see
which they are, we assume that time-reversal invariance
is valid, and that the pion 6eld is coupled to baryon
6elds through its derivative. The terms of interest in
H, ff, namely those involving baryon-antibaryon de-
cuplets [see Eq. (11)],then take the form

(hg+ hg') ([10]23s.—[10*]32s),
+ (h),—h)„') ([10~]ger—[10]32m) (21)

for both parity-conserving (X=—p.c.) and parity-
violating (X=—p.v.) decays. The coupling constants
hq and hq' are all real, and the second term in each
SU(3) expression is the Hermitian conjugate of the
6rst (see the Appendix for details).

Under (17), the terms in (21) transform according to

4. SUMMARY AND DISCUSSION

We have shown that the Lee triangle follows from
any octet interaction in which the baryon-antibaryon
coupling has the form

f(BXB)...,+,(BXB)„„+h[(BXB)„.,
+ (BXB)(go~)7+h(BXB) . (26)

The only constraint needed is that between the (10)
and (10~) terms. Using this result, we have also been
able to explain why certain dynamical models and sym-
metry arguments predict the triangle, while others do
not. It is worth noting that time-reversal invariance is
not necessary for the proof of Eq. (26) (Sec. 2), but it
has been used in the subsequent discussion of weak
synunetries (Sec. 3).

To illustrate some other uses of this result, we shall
show how, within the framework of nonrelativistic
SU(6), ' it correls, tes the Lee triangle with the properties
of 2+~ n~+. We assume that baryons belong to a
(56)-piet and mesons to a (35)-piet. If the effective inter-
action also belongs to a (35)-piet, it will be a linear
combination of two terms:

From (21)—(23), we see that the constraint
&x~[(BXB)(as)xs](ss»
&a~[(BXB)&405)X~](ss) ~

(27)

h, '= h, .„.'=0 (24)

is necessary for E invariance and for 2'-L(2) invariance,
but not for T-L(1) invariance. In addition, RI' in-
variance (I' denotes parity) requires

and T-L(1)XP requires

(25b)

' Symmetry arguments have been summarized by A. Pais and
S. B. Treiman, Ref. 2, and by S. Coleman, S. L. Glashovr, and
B. W. Lee, Ref. 3.I N. Cabibbo, Phys. Rev. Letters 10, 532 (2963).

Thus there are three symmetry arguments which predict
the Lee triangle~: (i) Jf. invariance; (ii) 2'-L(2) invari-
ance; and (iii) RP and 2'-L(1)XE invariance. Notice
that if derivative coupling is replaced by nonderivative
coupling in H ff then each invariance I must be re-
placed by I)&P': for example the third argument
becomes (iii') 8 and 2'-L(1) invariance.

The first of these arguments is marred by the fact
that R invariance and derivative coupling predict the
wrong relative sign for the asymnnetry parameters in A
and decay. ' ' The second runs counter to Cabibbo's
theory, " in which nonleptonic decays turn out to be
T-L(1) invariant. ' We may therefore regard the last
argument, especially in its nonderivative form (iii ), as
the most attractive of the three. Whether it is also the
"true" derivation of the Lee triangle is a question which
we do not wish to discuss here.

H2(I' wave) =Q. (30)

Now, because the system Z+e has isotopic spin 2, it
does not belong to an octet and hence it cannot appear
in a (35)-piet. The decay Z+-+ es+ must therefore be
engendered by H2 alone, and if Eq. (30) holds, its
P-wave amplitude will vanish. In other words the Lee
triangle forces Z+ —+ n~+ to be a pure S-wave decay. If
experiment should show that this decay is pure P-wave,
we would have to conclude that the assignment of non-

"M. A. B.Bbg and V. Singh, Phys. Rev. Letters 13,428 (2964).

In parity-violating decays, the intrinsic spins of baryon
and antibaryon are coupled, to zero (S-wave decays),
and in parity-conserving decays they are coupled to a
resultant spin of one (E-wave decays).

Since the spin —unitary-spin content of the (35) is

(1,8)+ (3,8)+ (3,1), (28)

it follows that the baryon-antibaryon system forms an
octet in both the S- and P-wave parts of H~. Conse-
quently, the observable amplitudes arising from H&

always satisfy the Lee triangle. The spin-zero content
of the (405) is"

(1,1)+(1,8)+ (1,27) (29)

and so the S-wave amplitude from H2 also satishes the
triangle. The P-wave amplitude does not: It includes
(BXB)(la~ and (BXB)&&0~~ with a relative phase oppo-
site from that given in Eq. (26). Therefore, if the Lee
triangle is to be satished, we must set
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In this Appendix we derive the basic result leading to
Eqs. (9) and (10). We also fill in some of the details
which were omitted in the body of the paper.

The components of the baryon octet are denoted by
8„" (where Bq"=0) and those of its charge conjugate
by B„/', where

8„"=—B„". (A1)

From the product of these two octets, the following
unitary multiplets can be formed:

Singlet: (B.8)=8,"B),~. — (A2)

D type octet-: D„"=2')B„~B),"+Bgl'8„"
—-', b,~(B 8)g . (A3)

F type octe~: -F„~= ', $8/8„p -8;8„"j.— (A4)

Decup/et: L10j.p&"= (1+P p) (1—P~")

XEB «Bp" kb "Fp"j— (A5)

Conj ugate decup/et: L10*j p""= (1—P p) (1+P"")
X(B.~Be "+',b.~Fp"j . (A-6)

(Z7) p/et: L27j p&"=-(1+P p) (1+P&")
X(8 rBp" b "Dp"—~b "bp"(8'B)j (A7)

The permutation symmetries of the decuplets and
(27)-piet' are clearly indicated by the way in which the
permutation operators I'

p and I'/'" have been intro-
~ Other arguments against the (35) have been given by S. P.

Rosen and S. Pakvasa, Phys. Rev. Letters 13, 773 (1964). The
one given in the text, however, is the most attractive.

leptonic decays to the 35-fold representation of SU(6)
is incorrect. "
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duced. All of these multiplets are traceless:

Dg" ——Fg"——L10j ), "=L10*).y""=L27j g""=0. (A8)

Equations (13) and (15) in Sec. 2 follow from (AS) and
the permutation symmetries of (A5)—(A7).

Following Okubo, " we introduce a totally anti-
symmetric, traceless tensor

S p""= (1 Pp)—(1 P"")—PB "Bp"+2h I'Dp"

+ ',b."bp-"(8 8)j . (A9)

Adding Eqs. (A5), (A6), (A7), (A9), and using the fact
that all components of S p/'" are identically zero, " we
And

8-"Bp"=4{I10j-p""+(10*j-p""+L27j-p"")
+e~(1 P pPvv)bed

+,'(1+P p-P~")(3b;D "—2b ~Dp")
—(1/24)f5 "bp" 3bp"b "j—(8 8) . (A10)

Equations (9) and (10) in the body of the paper are
special cases of Eq. (A10).

Under charge conjugation

P, /'c—+ B„", (A11)

the components of the decuplets and (27)-piet trans-
form according to

Lloj.,» -Llo*j„„-P, (A12)

L27j-p"" +L2U"'. (A13

"S.Okubo, Progr. Theoret. Phys. (Kyoto} 27, 949 (1962).

The negative sign in (A12) accounts for the fact that,
with derivative coupling in the efI'ective Hamiltonian,
the Hermitian conjugate of L10)2'n. is —L10*jp~ Lsee
Eq. (21), Sec. 3j.

Finally, we note that the properties of the multiplets
under R conjugation can be derived from Eq. (17) and
the definitions in (A2)—(A7).


