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Short-Range Correlations in Nuclear Matter*
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It is shown that a wave function which is a simple product of two-particle correlation functions gives a
smaller short-range three-body correlation energy (calculated as the ground-state expectation value of the
kinetic energy and short-range part of the interactions) than the approximate Faddeev wave function used
in the recent work of Bethe. Thus for a plausible nucleon-nucleon interaction, the short-range three-body
correlations contribute less than 1 MeV per particle to the energy of nuclear matter.

1. INTRODUCTION

HERE is still some question concerning the
magnitude of short-range three-body correlations

in nuclear matter and in particular their contribution to
the binding energy. According to the approximation
used by Bethe, Brandow, and Petscheck (BBP),'
such correlations would contribute to the order of +5
to 10 MeV (per particle) to the energy. ' However, the
BBP approximation includes only a part of the impor-
tant short-range correlation diagrams, mainly the one
indicated in Fig. 1(a). Recently Bethe has pointed out
that it is also necessary to include three-hole diagrams
of higher order, e.g. , the one shown in Fig. 1(b). Indeed
in order to accurately evaluate the terms proportional
to (density)' in the low-density expansion of the energy
(per particle) it is, in principle, necessary to solve the
three-body problem exactly. ' LSimilarly, in order to
evaluate the terms proportional to p, we must solve the
two-body problem. For example, in the low-density
limit, we obtain the well-known result E/A O(pa)
where u is the zero-energy scattering length of the two-
body interaction. j While the three-body problem is
analytically soluble only for very special potentials,
Faddeev' has developed a very powerful method for
treating this problem.

In this paper let us consider a greatly simplihed
three-body problem. %e split the assumed two-body
interaction into short- and long-range parts u8 and
vl, the dividing line being made so that eq alone gives

zero scattering length. ' The short-range potential
contains a repulsion with an attraction outside. As has
been shown previously, it does not give any energy
shift for a pair of zero relative momentum. Also it
follows from the above remarks that with eg alone the
term proportional to p in the energy expansion vanishes.
However, v8 gives a "wound" in the two-particle wave
functions as illustrated in Fig. 2. The wound disappears
outside the potential. The difference function r(p f)—
is roughly proportional to sin(-,'mr/c); thus the momenta
contained in this function are of order -', m/c for a core
radius c 0.4 F. On the other hand, the Fermi mo-
mentum at normal density is only about 1.35 F '.
Thus for the purpose of treating short-range correla-
tions, it is a good approximation to keep only the lowest
term of the power-series expansion in kpc. (Of course,
the remaining long-range part of the potential mixes in
low-momentum components into the wave function
and here the low-density expansion fails. However, a
conventional perturbation expansion in powers of vl.
converges quite rapidly for reasonable potentials. ' In
the present note we consider only the e6'ect of vz and
neglect entirely all effect due to v~ including the dis-
persion correction, which is of the form shown in Fig.
1(a), and which involves both ms and mr, . We will also,
following Bethe, assume that v8 depends only on inter-
particle spacing and is independent of spin and isospin.
Under these conditions it follows from the work of
Rajaraman' that direct and exchange terms add. Each
diagram in which all three particles have diferent o-,
and r, quantum numbers is then the same as it would be

FIG. 1. Two of the infinite series of
{a)

Goldstone graphs which contribute to
the three-body correlation energy; (a)
third-order graph involving self-energy
insertion, (b) a fourth-order graph
containing three hole lines.
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FIG. 2. (a) The unperturbed and
correlated two-body wave func-
tions p and P for zero relative
energy and zero scattering length;
(b) the corresponding difference
function r (p —f).
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if the particles obeyed Bose statistics. Thus the three-
body problem considered here is essentially the problem
of three zero-momentum bosons interacting via two-
body zero-scattering-length potentials.

$12 f o gales ~ (2)

p is the unperturbed. wave function. Apart from a
normalization factor, @=1 for zero momentum and we
shall use this value from now on. Clearly no g;; can occur
twice in succession without a diferent interaction line
intervening. Faddeev' defines a three-body wave func-
tion P('& which includes, besides the unperturbed wave
function, all diagrams in which the last interaction line
involves particle i Thus. for p"', for example, it is gls
or g13. Suppose it is g12. Then the preceding interaction
line must be either gls or gss (or no interaction at all).
This describes precisely the wave function f(3) in our
notation. Thus Faddeev's equations can be written as

P(l) —1 o
—lg f(3)—o

—lg

and two others which can be obtained from Eq. (3)
by cyclic permuts, tion of the indices. Once the f(o are
obtained, the complete wave function is given by

9"'—4)+ (tt '"—4)+ (4 "'—(s) = 2(4 —4) (4)

Z. THE APPROXIMATE FADDEEV WAVE
FUN CTIOÃ

In the three-body problem', there are three pairs of
interacting particles, namely 12, 13, and 23. Interactions
can occur between any pair, any number of times.
However, in the reaction matrix formalism we define,
say g12, which sums all ~12 occurring in immediate
succession i.e.

gls= &12 3)12& &12+112& 3'12~ &12+ ' ' (1)

where e is an appropriate energy denominator. Thus
the two-body wave function can be written as i/i = (1—))(0))/(1+23) (0)). (10)

For a hard co-re potential ))(0)= 1 and. OAF vanishes as
expected. Using a wave function of essentially the
form' of Eq. (9) and a two-body potential of the form
proposed by Kong, ' Bethe estimates a three-body
correlation energy of only 0.6 MeV/nucleon at normal
density (k2~1.35 F '). Wong's potential has a rather
small core e 0.30 F. Even with a larger core radius of
c 0.4 F, Bethe's estimate would give only about 1
MeV/nucleon for the three-body correlation energy.
In any case, the short-range three-body correlation
energy is quite small compared with other sources of
error or uncertainties, e.g., the parameters of the two-
body interaction.

3. THE PRODUCT VIVE FUNCTION

While the AF wave function may be quite accurate
for describing short-range correlations, we propose a
slightly diGerent wave function which is simpler and
may be even more accurate, namely a simple product
wave function

solved explicitly. Thus we obt;tin

4 "'= (1—S)2) (1—naa)Q"
where

Q (1 'g12$13 )112/23 )l'l3'gas+ 2'$12)713)123) ~ (g)

Using Eq. (4) we obtain the complete wave function

= (1—'gas) (1—'/la) (1 'gss)Q y (9)

where AF stands for "approximate Faddeev. " This
wave function clearly has the right qualitative physical
behavior, i..e. , if particle i is far away from j and k,
then g;;= g;I, =O and the wave function reduces to the
two-particle correlation function. On the other hand,
if all particles are at the same point, then all g are equal
L=s)(0)j and

4'"= fasfaafss,All diagrams in which the last interaction is g;, are
included in both iP"' and iP"'. This is the origin of the
factor 2 on the right-hand side of Eq. (4).

The terms e 'g,; are of course integral operators;
thus we have three coupled integral equations w ich
must, in general, be solved numerically. Since this is a
dificult task, it is reasonable to look for approximate
solutions. One very plausible approximation is to replace
the e 'g;; by a simple function of the interparticle
coordinates:

where

12 1 $12 ~

(14)P~ f'(o)
(5) whileo 'g;;= n(r';) = V'l=-l f3—

(12)
The physical assumption underlying Eq. (11) is that
the two-particle correlations act independently. Thus

PAP —PpQAF (13)
Clearly i/a' has the correct behavior in the limits
r;;, r;I, ~ and r;= r; = ri, . In the latter case,

This procedure is exact for the two-body problem and
thus it should. be satisfactory also for the three-body
problem. With the above approximation, the Faddeev
equations become

p(1}—1 3)asti, (3)—3)asgr(2) (6)

etc. The three linear algebraic equations (6) can be

P'~ if(0) (15)
i.e. , as f(0) ~0, the product wave function goes to
zero faster than does the AF wave function.

' Bethe uses an improved treatment of the energy denominators.
His calculations are, however done directly with p(», p(2), and g (3)
and not with g "&.

9 C. W. Kong, Nucl. Phys. 56, 213 (1964).
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4. THREE-BODY CORRELATION ENERGY
VGTH PRODUCT WAVE PVNCTION

While neither P" nor far is an exact solution of the
general three-body problem, it is useful to compare these
two wave functions to see which is more accurate.

The short-range three-body correlation energy may
be estimated using the variational expression

This result coincides with the lowest term in the cluster
expansion of Iwamoto and Yamada, 'o Lwhen we assume
that the two-particle correlations satisfy Eq. (18)$.
If the f are functions of interparticle spacings alone,
the integral over angles can be done very simply and. we
obtain

R= &0 IIII'&/&flf&

where H is the assumed three-body Hamiltonian.

(16)
f'(r„)

o o ~~~ ~gl ~~a ~~3

X &raa rq —rl )r—aadrqsdradr3. (25a)
H = —(it'/2') ( V'P+ VP+ & ')

+os(ru)+rs(rra)+os(raa) (17.)

The more accurate the three-body wave function, the
lower should be the energy expectation value. In this
section we calculate the latter using a product wave
function. As before, we assume that f;; is the exact
solution of the two-body Schrodinger equation:

(0'/m) V'; f,,=s (r;;)f;;. (18)

It is readily veri6ed that the energy of a triplet is given
by

V, (fraa) W, (fraa) f,Pd'rA'rrd'rs. (19)

The quantity 0 denotes the normalization volume and,

For our calculations, we chose a correlation function
of the form

f=0,
= (r c)/(d c)—, —
=1,

r&c
c&r&d
d&r,

(25b)

which is a reasonably good approximation to the correct
correlation function.

In the limit that d~ c, i.e., if f is a step function, the
integration in Eq. (24) is trivial and we find

Ip"=3% c . (26)

For d&c, it is still convenient to express the integral
I~ in terms of Ip; thus

I~=Io"R(a),

d=c(1+a).

&&I4&=f1'I I+o(II ') "j (2o)
where

Note that the energy includes both kinetic and. poten-
tial contributions. Some of the kinetic-energy terms
involve an integral over (Vzfra)a. Consequently, if f
is a step function, then the kinetic and potential energies
are both infinite; however, the sum of Eq. (19) is
6nite. For a many-particle system, S&&1, the number of
interacting triplets is given by ~¹q.Here y d.enotes the
fraction of triplets in which all three particles have
different cr, and v, quantum numbers. For a total 5, T
degeneracy g, we have

s=(1-g ')(1-2g '). (21)

Thus for nuclear matter, g= 4 and y= g. (A boson gas
corresponds to g= ~ and p=1, while for liquid He'
or a neutron gas g= 2 and q =0; i.e., for the latter, it is
not possible to form triplets of the kind discussed here. )
Since g depends only on interparticle spacings and not
the absolute coordinates we can keep one of the co-
ordinates 6xed, and integrate erst over the other two.
The integral over the remaining coordinate, say r~,
is done last and gives a factor 0. Ke obtain

(28)

The ratio E. can be evaluated analytically and it has
a simple form if a&1, (d~(2c), namely

8 23 16 1
R (a) = 1+ a+ a—'+ —a'+ —c'—

3 9 15 6

The function E was also calculated numerically, and
it is found that an excellent approximation valid at
least up to &=10 is

Rp(a) = (1+0.65a)4. (30)

Substituting into Eq. (22) we obtain the short-range
three-body correlation energy h of nuclear matter
(per particle):

kp4
ho'= = kr' (0.35c+0.65d)4.

A 2m Sg'
(31)

For W'ong's potential, a plausible choice of parameters
(22) to be chosen is c=0.3 F, d=0.9 F. Since the correlation

function of Eq. (25a) has a discontinuous derivative at
( ) the separation distance, the latter must be slightly

smaller than the usual separation distance 1.1 F in
order to 've a best fit to the exact sho

Er/A = (h'/m)$q p'I|',

p =A/Q = (2/3x') k r'
where

is the particle density, and
gl rt range correla

&&(fry) ' &3(fra )frs d'rrd rs (24) M F. Iwamoto and M. Yamada, progr. Thoorot. ph&a &gyoro)
19, 345 (1957).
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TABLE I. Various contributions to three-body correlation energy
expressed in units of the energy de6ned by Kq. (31).

d/c

1
1.S
2
3
6

I&/Io&

1.00
1.01
1.01
0.99
0.99

/Iof I2 /Ior I F/Io"

1.42
1.22
1.11
0.97
0.93

0.21
0.20
0.21
0.23
0.24

1.63
1.42
1.32
1.20
1.17

tion function. " At normal density, we obtain 8 0.4
MeV which is fairly close to the value 0.6 MeV for
the three-body correlation energy obtained by Bethe' '
using his improved approximate Faddeev v ave func-
tion, and a different method of calculation.

6. VAMATIONAL METHOD

The form of the energy expectation value of Eq. (16)
for a more general three-body wave function of the
form

(32a,)Q(r12 r13 r2i)

can be obtained without much difficulty, provided we

assume f and Q -+ 1 at large interparticle spacing.
We obtain, instead of Eq. (24),

IAF —I AF+I AF (32b)

1=0
V~(f2') V, (f,')f,PQ2darg'r, (33a)

I AF

=0
fi'f /f22(v&Q)'d'r2d'r3 (33b)

All cross terms involving Vf VQ vanish. For the prod-
uct wave function, Q=1 and I&"r=0.However, for any
other wave function, the integrand in Fq. (33b) is
positive definite and thus I2 must be positive. In addi-
tion, for the AF wave function we have Q) 1 every-
where. Thus the integrand in Eq. (33a) must be every-

u See Ref. 6, p. 76.

where larger in magnitude than for the product wave

function. Presumably then IPF should be also larger,
though this is not necessarily the case, since the in-

tegrand can be either positive or negative.
A numerical evaluation shows, in fact, that IPF is

larger than I& only for &&1. However, the total IAF

including both I&AF and IIAF is appreciably larger than
I& for the whole range of values considered. Table I
shows the various contributions to the three-body
energy in units of the energy defined by Eq. (31).

It is clear that the approximate Faddeev wave func-
tion gives a substantially larger trial energy than the
product wave function and thus it is presumably less
accurate. This conclusion has been verified only for a
correlation function of the form of Eq. (25b) but we see
no reason why it should not hold in general.

Of course it cannot be concluded from the above
argonent that the product wave function gives the
lowest possible variational energy. Note that Bethe
uses an improvement over the simple AF wave function
which implies a better treatment of the energy
denominator. It is not inconceivable that this improved
wave function might give a lower trial energy than the
simple product wave function. However, this wave
function, 1ike the simple AF wave function, implies a Q
function which is larger than the product wave func-
tion when several particles are closer together. In
contrast, more detailed calculations now in progress in
collaboration with G. Thomas indicate that in some
cases an even lower energy can be obtained assuming a
Q function which is less than unity when several par-
ticles are close together.

In any case the results of this paper support Bethe's
conclusion that the short-range three-body correla-
tion energy is quite small in nuclear matter and that
it can be safely neglected in most nuclear structure
calculations.

ACKNOWLEDGMENTS

The author is greatly indebted to Dr. Benjamin Day,
Professor Hans Bethe, and Professor Gerry Brown for
helpful discussions and criticism.


