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We consider a new kind of particle correlation in light nuclei consisting of neutron-proton pairs in T=0
states, which we call isospin pairing. The importance of such a correlation stems from the fact that the n-p
T=0 force is dominant for A &30, especially for X=Z nuclei. It is shown that such an isospin correlation is
coherent and, among other things, can provide the necessary decrease in the ground-state band moment of
inertia of E=Z even-even nuclei. Detailed properties of the variational wave function are discussed. The
possibility of understanding the deformation of light nuclei as a result of competition between T=0 and T= 1

forces is pointed out.

I. INTRODUCTION

HERE is now strong evidence that there is a
marked difference between the heavy nuclei, i.e.,

nuclei in which there is a considerable neutron excess,
and light nuclei with regard to their stability against
deformations. For the heavy nuclei, study of the lom-

lying states has led to an analysis of the two-body
interaction in terms of a short-range pairing compo-
nent, an interaction which in two-particle states has
nonvanishing matrix elements only for total angular
momentum 1=0, and a long-range component, usually
taken as the quadrupole-quadrupole interaction. "

The pairing force favors spherical symmetry, and
resists the tendency of the long-range component to
produce deformation. Near closed shells the pairing
force dominates, which explains the occurrence of large
regions of.nuclei with spherical symmetry. Only when
there are a large number of particles outside of closed
shells does the quadrupole force dominate for these
heavy nuclei and a deformation occur. The stability
against deformation for heavy nuclei in this picture
depends upon the competition of pairing and long-
range forces. ' Using this picture it has thus been possible
to predict, among other things, the transition from the
vibrational region to the mell-known region of defor-
mation in the rare earths. ' '%e would like to emphasize
that in this picture the particles are paired in J=O,
T=1 states. Also, the quadrupole force is usually
treated by an approximation (called the quasiparticle
random-phase approximation)'' such that only T=1
operators are taken into consideration, since protons
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are always coupled to protons and neutrons to
neutrons.

In the light nuclei one does not see extended regions
of spherical nuclei, but there seems to be an extremely
strong tendency towards deformation. Even in the
doubly closed nuclei 0"and Ca~ the first excited states
seem to correspond to deformed nuclei. ' In the quali-
tative picture which we consider here, the strong
tendency of light nuclei towards deformation is essen-
tially to be understood in terms of a competition
between the T=O and T=1 components of the two-
body force. Ke take advantage of the fact that isospin
is a very good quantum number in these nuclei and
that the J=O pairing force only couples particles in
states of isospin T=1. Therefore, for T=O states the
only way the pairing force can be eGective will involve
correlation of quadruples. Hereafter we restrict our-
selves to the E=Z nuclei with T=O ground states.

It should be noted further that for the light nuclei
quite generally, the absence of neutron excess weakens
the effectiveness of the T=1 force compared with the
heavy nuclei. In addition to this, a study of the low-
lying states of odd-odd nuclei shows a gradual change
of relative strengths of the T=O and T=1 residual
forces. For nuclei heavier than Ca~, the T=1 force
predominates (i.e., the ground states are T=1 for the
X=Z nuclei) while for all lighter nuclei (with the
exception of Cl~, mhere the T=O excited state never-
theless is very near to the T= 1 ground state) the T=0
force is predominant. Particularly for nuclei lighter than
A =30 (i.e., for nuclei in the first half of the s-d shell
as well as lighter nuclei), the T=O component is sig-
nificantly larger than the T= 1 component. This
suggests that for these nuclei the pairing force (T= 1,
J=O) will not be as important as the T=O force, and
that the entire treatment of nuclei in this region must
be diGerent from that of heavy nuclei.

There have been numerous eGorts during the last
five years to include the neutron-proton correlation

s S. Gorodetzky et al. , Phys. Letters 1, 14 {1962).E. B.Carter,
G. E. Mitchel, and R. H. Davis, Phys. Rev. 133, B1421 (1963);
133, B1434 (1964).F. Everling, Nucl. Phys. 40, 670 (1963).
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efkcts. One major problem is connected with the fact
that the quadruple correlations must be treated for
J=O pairing. This is a very complicated problem. ~~

On the other hand, if we restrict the force to J=0, T= 1
and look for BCS (Bardeen-Cooper-Schrieifer) solutions
for the X=Z nuclei, '0 the ground state corresponds to
the shell-model solution (the superconducting solution
violates isospin conservation)", so that in the usual
meaning the pairing energy disappears. '

In the present work we completely neglect the T= j
component of the force except for its eGect on the self-
consistent 6eld. One immediate advantage is that we
can neglect quadruple correlations entirely if the cor-
relations can be treated in a linear approximation like
the BCS theory. Our basic objective is to learn whether
there is enough coherency in the T=O part of the n-p
interaction to produce an important particle correlation,
so that the approximation becomes a realistic one.

A variational method is employed with a variational
wave function composed of independent T=O pairs;
i.e., this is a BCS treatment with pairing in isospin
rather than angular momentum. We refer to this as
isospin pairing. The formalism is quite similar to the
J=O pairing, but the physical content is entirely
different. The quasiparticles corresponding to this
isospin pairing are formed by combining protons with
neutron holes and vice versa. Thus the BCS wave
function consists of terms with various numbers of
independent neutron-proton pairs with T=0, JWO, so
that angular momentum is not conserved and the state
has the superhcial appearance of the sum over both
even-even and odd-odd nuclei. The nonconservation
of angular momentum is understood with the inter-
pretation that these states are intrinsic states, i.e., the
generating wave functions for an entire rotational band
from which the rotational states must be projected.
One should remind oneself of the derivation of the
Hartree-Fock-Bogoliubov" equations, where the same
type of picture occurs. These states and the corre-
sponding moments of inertia are derived in Sec. II for
even-even nuclei. In Sec. III we show the consistency
of these wave functions with the fundamental difference
between the even-even and odd-odd nuclei seen in
experiments. Section IV presents a summary and the
conclusion of the paper.

' B.Bremont and J. Valatin, Nucl. Phys. 41, 640 (1963);B.H.
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(William Benjamin, Inc., New York, 1963), Chap. 5.
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expectation value of the T=1 pair operators. If the ground state
is T=O then the expectation value is zero. This does not imply
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II. HAMILTONIAN AND EVEN-EVEN
SOLUTIONS

A. J=1, 2'=0 SpeciScity Force

In terms of the single-particle creation operators
b;I„t for a shell-model particle with spin j and with
z components of spin and isospin b and r (the other
quantum numbers are omitted), the Hamiltonian with
a general two-body residual force can be written as

X(Bu (J'T')B34(J'T')]g-o, r 0& (1)

where Bqzt(JT)=gb, tbzt jar is the tensor operator of
rank J and isospin T, formed by vector coupling the
particle creation operators in J and T, and the e,~, (0'

are the single-particle energies. The Gg p " parameters
are closely related to the two-particle matrix elements
in the J, T states. For example, in the s-d shell, F",
0", and Ne" isotopes provide this information as in
the usual shell-model calculations. "For a single j shell
the parameters are GJq (J even) and Gqo (J odd), and
for the d5~& subshell they are determined by the positions
of the T=O, J=i, 3, 5 and T=i, J=O, 2, 4 levels in
Fi' and by the T= 1, J=0, 2, 4 levels in 0"and Ne"
to the accuracy with which such an extremely simple
model can be used. See Fig. 1.

The Hartree-Fock solution, in which representation
we wish to study the correlations, delnes a basis in
which the single-particle creation operators are given by

with the coefBcients C+&&' determined by the Hartree-
Fock calculation, A being an additional quantum
number introduced to distinguish the di6'erent states
of the same k, assuming axial symmetry of the Hartree-

"I.Talmi, in Selected Topics ie NNclear Spectroscopy (North-
Holland Publishing Company, Amsterdam, 1964), p. 106.
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I xG. 1. Experimental energy levels of O" F" and Ne". Only
the levels ref.evant to the discussion in the text are explicitly
shown. Eo is the assumed unperturbed (dg~~)' level.
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Fock solutions. The creation operators u~k, t then corre-
spond to the states in a deformed field with axial
symmetry. We do not carry out the Hartree-Fock
calculation, but assume that the single-particle states
and resulting energies from such a calculation are given.
Because of the success of the rotational model'4 one
knows that the single-particle states resemble those of
Nilsson. "However, an important modification is the
tendency for the filled levels to be lowered in energy
with respect to the unfilled levels in a Hartree-Fock
calculation, resulting in an eGective gap to the excited
intrinsic levels. This has been observed in medium and
heavy nuclei, "'~ where it is not so systematic, since
other eGects can be as important in renormalizing the
shell-model energies within a shell, and in light nuclei"
where it appears to be an important and systematic
eGect.

Thus in contrast to the J=O pairing in the heavy
nuclei, the energy gap in the even-even nuclei in the
region being studied here arises systematically both
from renormalization of the single-particle spectrum
and from the correlations. For this reason, one should
be able to make a reasonable estimate of the magnitude
of these correlations without including the consequent
renormalization of the Hartree particles, by using the
results of a Hartree-Fock calculation with a reasonable
two-body interaction. %e therefore assume in the
numerical calculations that the renormalized single-
particle energies e„are diagonal in the ass, t~0) states
and we use the numerical values of Kelson and
Levinson. "However, the particle correlations included
in this paper will smear the Fermi surface, reducing
the diGerence between filled and unfilled levels. There-
fore if one carries out a complete self-consistent calcu-
lation the "single-particle gap" will be reduced and
consequently the correlations which we are calculating
will be enhanced.

In this paper we have further restricted ourselves to
a single j shell for the simplicity in getting numerical
solutions. Henceforth we shall therefore consider
specifically a single j shell in order to calculate the
correlation energy. The entire s-d shell must be used
for the calculation of the moment of inertia, and some
justification for the use of the parameters determined
by the single j shell is given later.

For a single j shell, the states tsas, t~0) become just
b, s,t j 0) (the label j can be omitted). We look for BCS
solutions but with quasiparticles conserving the s com-

"A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat. Fys. Medd. 27, No. 16 (1953)."S.G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 29, No. 16 (1955); B. R. Mottelson and S. G. Nilsson,
ibid. 1, No. 8 (1959)."B.Cohen, Phys. Rev. 130, 227 (1963);B. Cohen et al., Rev.
Mod. Phys. BS, 322 (1963).

»
¹ Freed, thesis, Western Reserve University (unpublished);

B. E. Chi, ¹ Freed, L. S. Kisslinger, and T. Terasawa (to be
published).

' I. Kelson and C. A. Levinson, Phys. Rev. 136, B269 (1964).

Hso=s Q (es, X)2Us,—Vs, ( 1)t~s—'—

—2 (—1)' GoJ Z Cs' —s'o
(2J+1)Us s &o

X Us" Vs"Cs so"~(Us '——Vs,s) (—1)'"-

& (rr s-.trrs. t+otsW-s,), (4)

the C's being Clebsch-Gordan coefficients with the
Condon-Shortley" phase. The solutions are found by
setting H20 ——0 and taking the average number of
particles in the ground state ~%'o) to be the mass number
A for the isotope in question, ('ke~ &~4'o) =A, or
alternatively, by calculating the commutators of b and
bt with H and linearizing with respect to b and bt.

In this subsection we consider the special case in
which only the J=1 component of the force is used
(the 5=1, T=O force is of course the most important
one), i.e., take all the Goy=0 except for Got. Let us
define

~= (Got/~~i (i+1)) 2 U.Vs(—1)' ".

The gap equation, obtained by setting 'H20=0, is

Got(2 j+1)1=
3~j (j+1) s&o L(es $)2+$2+2)1/2

(6)

@ Here we use the phase Vk, = (—)'~'Vk, ', where Vk, ,'= Vk
Note also that for a single j shell, Vs, = (—)'~~'( —}& s(k/[k[)
X

~
Vf„~.The transformation is canonical. Symmetry with respect

to k, —k is assumed in the solutions.
~N. N. Bogoliubov, Nuovo Cimento 7, 794 (1958); J. G.

Palatin, Nuovo Cimento 7, 843 (1958)."E. U. Condon and G. C. H. Shortley, Theory of Atomic Spectra
(The Macmillan Company, New York, 1935).

ponent of isospin and angular momentum"

0fkT ~ kT~kT r kT~—k—T p

Uk, '+ Vk,'= 1. (3)

In the usual way" one can write down the auxiliary
Hamiltonian H'=H —XX, where X us the number
operator and 'A the chemical potential, and H'= Ho+H~~
+Hso+H;„„ in which Ho is independent of quasi-
particle operators. H» is of the form of a single-quasi-
particle energy operator, H&0 creates or destroys two
quasiparticles, and H;„& involves four quasiparticle
operators (in normal form). So long as there exists an
energy gap between the quasiparticle vacuum and the
two-quasiparticle states one can proceed in the usual
manner: neglect H; t, and determine the transformation
(3) such that Hso vanishes. The Hso part of the T=O
component of the auxiliary Hamiltonian (assuming that
the self-consistent held can be approximated by re-
placing e;s, to' by e,s, as described above) is easily seen
to be given by
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Equation (6) is easily derived from Eq. (5) by taking
only 1=1,using Cqoq/i&'=k/I j(j+1)]'/2, and setting

2U/„Vk, ( 1)—'/' '= (—1)' "kh/Eg, (7a)

Ua '—Va '= (e/, X—)/E/„ (7b)

2 Vg,'= 1—(eg—X)/Eg,

2Ua'=1+ (~i—l~)/Ea, (8)

with the phases of V», suitably chosen. The parameters
X and 6 are determined from the gap Eq. (6) and the
number equation (0'o

I
XI+0) =A

j+-,' —-', (a —a.)=p, (~, X)/E„— (9)

where A 0 is the number of protons plus neutrons in the
filled levels (not included in the calculation).

Equations (6) and (9) are of familiar form and the
ground state is the quasiparticle vs,cuum ai, l+0)=0.
However, the pairing has been done in k and v so that
the ground state admixes many angular momenta, and
is interpreted as an intrinsic state for the ground-state
band with K=O and T=O. It should be stressed that
the violation of angular-momentum conservation is not
an extra assumption, but rather an essential part of
the picture. Since the main component of the force
leading to spherical symmetry, the J=O, T=1 com-
ponent, is not present, the system will be deformed and
the calculation is being carried out in the intrinsic
space. The rotational levels can be projected out in the
usual way.

In the numerical calculation for Mg" the force
strength Goi is fitted to F' (see I'ig. 1) assuming that
the 1+ ground state is lowered in energy by the residual
force by about 6 Mev. The energy levels are taken as
(&i/2 'E3/2 65/2) = (0,3.8,8.7). With these parameters the
gap parameter 6=0.655 and X=5.648.

The moments of inertia can be calculated by the
cranking method with the Hartree-Pock solutions and
energies ~„and e,. Kith uncorrelated states the moment
of inertia is given by"

e =unoccupied
0 ~occupied

(10)

The tendency for the occupied states to be reduced in
energy by the residual interaction increases the energy
di6erence between occupied and unoccupied levels, and
from Eq. (10) one can see that this single-particle gap
will reduce the moment of inertia. Kelson and Levinson
have found the reduction compared to Nilsson levels
in this region to be about a factor of two. However,
even neglecting corrections to the cranking modeP and

~ D. R. Inglis, Phys. Rev. 96, 1059 {1954);9i, 1%1 (1955).~ D. J. Thouless and J. G. Valatin, Nucl. Phys. 31, 211 (1962}.

E~—L(~i. lb)2+$2+2)1/2 (7c)

The probabilities of occupation, V»,', and nonoccu-
pation, U», ', are obtained from

neglecting the contributions from the core, both of
which increase the moment of inertia, they find that
Ii'/28=0. 17, compared with the experimental value of
0.22.

The pairing correlations reduce the moment of
inertia. '4 This can be seen from the cranking formula
with pairing correlations, "which is

IOlj II')I'
(U~l Va I

—Ui
I
V~l)'. (ll)

k'&0;ail i E/+E/, i

Calculations in the heavy deformed nuclei have demon-
strated25 that the e6ects of the usual J=O pairing are
large and that the results are in good agreement with
experimental data.

In order to compare the results for the moment of
inertia of the J=1, T=O calculation with the results
of Kelson and Levinson to test the e8ects of this new
correlation, one must include all the states which they
have used."Here we shall present the justifications
for applying our single-j-shell results to the case of
several j shells. Firstly, the modifi. cation of the self-
consistent field by the correlations is not expected to
be large (especially for high-lying levels). Secondly,
from the Kelson-Levinson results for the energies and
wave functions for Mg'4 one sees that the three E levels
which are predominantly ds/2 are among the lowest lying
levels. The only other low-lying level is predominantly
s~~2 and thus is not mixed with ds~~ levels by the present
correlation with the J=1 force above, except for the
implicit interaction included in the self-consistent field.
(This is not so for a general force, but the mixing should
still be small. ) One can therefore get a fairly accurate
estimate of the quasiparticle energies of the other levels
(not included in our calculation) by using the values
of X and 6 calculated from the d5/2 subshell. The proba-
bility of occupation of all the levels can thus be obtained
from Eq. (7). Since the force strengths were obtained
by considering only the ds~& levels, the results in the
calculation with several j levels will be more or less
unchanged to the extent that only a renormalization
is involved. Taking b =0.655 and X=5.648, using the
Hartree-Pock energies and wave functions of Ref. 18
and calculating the U's by Eq. (7) one finds that
h'/2l =0.223. Thus in this simple calculation the
moment of inertia is reduced by the correct amount.

The self-consistent Hartree-Fock-3ogoliubov-type
calculation will change the result in two ways: The
single-particle gap will be reduced if the particle cor-
relations are included as discussed above, tending to
increase the moment of inertia, while the correlations

~A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat. Fys. Medd. 30, No. 1 (1955}.

~3 J. J. GrifBn and M. Rich, Phys. Rev. Letters 3, 1342 (1959}
and Phys. Rev. 118, 850 {1960}.S. G. Nilsson and O. Prior, Kgl.
Danske Videnskab. Selskab, Mat. Fys. Medd. 32, No. 16 (1961}.

26 We use the energies and suave functions given in Table II,
p. 8273 of Ref. 18. Mg~ corresponds to the case 8&/&=1, 83/3 1
in that table.
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cussed), the value of P/2d found here seems very
satisfactory.

The results are not qualitatively diGerent from the
T=O, J=1 force, which further con&ms that the
correlations found in this work are important qualita-
tively and not very dependent on the exact nature of
the force.

E312
0

+I/2

I'zo. 2. Solutions to the gap and number equations for even-even
and for odd-odd nuclei. Curve (a) is a schematic plot of 6 versus X
from the gap equation (6}.Curves (b) and (c) are schematic plots
of b, versus X from the number equation {9)for even-even and
odd-odd nuclei, respectively. The smallest quasiparticle energies
in the even-even and odd-odd nuclei are E~' and E&-' corre-
sponding to Mg~ and Na~, respectively.

included in this work will be enhanced, reducing the
moment of inertia. Only by carrying out the complete
calculation can one be sure of the 6nal value, but the
new energy gap which appears in this work is important
and corresponds to a correlation which must be in-
cluded. Detailed. Hartree-Fock-Bogoliubov —type calcu-
lations with isospin correlation are now in progress.

B. 8 Force

Calculations have also been carried out with a 5 force,
i.e. , a Hamiltonian of the form (1) in which two of the
energy splittings in P 0' and N'8 are used to 6t one
of the T=O and one of the T=1 force parameters, while
the ratios are determined by the 8 force. Only the T=O
force is included in the calculation, for which the force
parameter ratios are found to be IGDil: IGoSI: IGosl
= 10.4:8.9:17.5 sting the ground state in F'8 as before.
The calculation is carried out in precisely the same
manner as with the J=1 force, the change from (4),
(5), (6), and (7) being that the functional dependence
of the gap parameter on the state is now no longer
known. Thus Eq. (7c) deaning the quasiparticle energies
is replaced by

and the gap equation now reads

where Cg, y, o»~ denotes a Clebsch-Gordan coefBcient.
The solution of this equation with Eq. (8) gives X=6.07,
351~=1.75, 53~~= —1.51, and h~~~ ——0.01. The moment
of inertia calculated. from this solution in the same
manner as described in Sec. ILA is h~/28=0. 26. In
view of the eGects which tend to increase the moment
of inertia from the present estimate (as already dis-

XH. ODD-ODD NUCLEI

Since the BCS solution for isospin pairing does not
conserve the number of T=O pairs, the wave function
for an even-even nucleus contains components with an
odd number of neutrons and protons and vice versa.
Super6cia0y it would seem that the states of actual
even-even and odd-odd nuclei are being mixed, which
would be bad, since empirically the energy spectra are
quite diBerent. In discussing this problem we shall use
Fig. 2, which shows a schematic plot of 6 versus X as
given by the gap equation [curve (a)], and plots of 6
versus P from Eq. (9) for even-even [curve (b)] and odd-
odd [fauve (c)] nuclei. The intersection of curves (a)
and (b) gives the (X,h) solution for an even-even nucleus,
and the intersection of curves (a) and (c) gives it for an
odd-odd nucleus.

The essential point is that the gap between the ground
states and the excited intrinsic states in the even-even
nuclei arise both from the T=O force and from the
single-particle gap in the Hartree solutions, and more-
over, the gap parameters d~ are much smaller than
those which one would expect in this mass region from
a simple continuation of the results for heavy nuclei.
This leads to solutions for the even-even nuclei in
which the Fermi level X is approximately half way
between the almost-6lled Nilsson state and the almost-
empty Nilsson state (k= $ and k= ss for Mg~), so that
one maintains very large quasiparticle excitation ener-
gies E in spite of a small gap parameter d ~. Thus the
ground state of the even-even nucleus is the quasi-
particle vacuum, with the excited two-quasiparticle
states well removed.

The picture for odd-odd nuclei is quite different, for
in that case the Fermi level is always quite close to one
of these well separated levels, say Eo. Then the quasi-
particle vacuum I%'0) and the two-quasiparticle states
a~,to~,t IC 0) are almost degenerate in energy. Thus the
odd-odd terms that are added into the wave function
of the even-even nucleus have no resemblance at all to
the corresponding terms from the actual odd-odd nuclei;
and these odd-odd terms have in fact the essential
properties involved in the treatment of the even-even
nucleus. Thus the even-even and, odd-odd contami-
nation is not a serious problem.

Of course, since there is no gap between the quasi-
particle vacuum and the excited states for the real
odd-odd nuclei, one must include the quasiparticle
interaction terms in order to say anything about the
ordering of the states arising from the quasiparticle
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vacuum and the various states of good angular mo-
mentum which arise from the ax,tax, t~%'0) two-quasi-
particle states. However, the interesting regularity
which one observes in the odd-odd isotopes F'8, Na~,
and AP', namely that the ground states are 1+, 3+,
and 5+, respectively, would correspond to that ex-
pected from a simple coupling rule, since Eo corresponds
to —,', „and ~, respectively, in those three isotopes.
Detailed calculations for these odd-odd isotopes are
being carried out.

IV. SUMMARY AND CONCLUSIONS

In this paper the existence of a new kind of particle
correlation in light nuclei has been suggested by the
calculation of a finite gap due to the T=O force. The
correlation consists of pairing of a neutron and a proton
in isospin zero state (and consequently nonzero angular-
momentum state) which we have called isospin pairing
in contrast to ordinary pairing in the angular mo-
mentum zero state.

In the present work, only E=Z nuclei with T=O
ground states have been considered, so that T=i
independent pairs cannot exist in the ground state.
Consequently, the T=1 force (in particular the J=O
pairing force) can be effective only through quadruple
correlation. Furthermore, from a survey of experi-
mental level spectrum data we have pointed out that
the T=O force is stronger than T=i force in light
nuclei, especially in nuclei of A &30. We have therefore
neglected the T= i force altogether.

The T=O force is treated taking only the isospin
pairing correlation into account. The basic objective
has been to learn if there is enough coherence in the
T=O part of the e-p interaction to produce an im-
portant particle correlation. Therefore, the further
approximation of a single j shell has been used and the
eBect of the self-consistent Geld is approximately taken
care of by taking the single-particle energies determined
by a Hartree-Fock calculation. Both of these approxi-
mations in fact tend to hinder the correlation eGects
we are searching for. First1y, as shown by Kelson and
Levinson, the Hartree-Fock calculation already pro-

duces an energy gap between the occupied and un-

occupied levels, so that taking their results electively
minimizes the gap due to isospin pairing. Secondly, by
taking a single j shell (d 5~2 subshell for Mg'4 calculation)
the degeneracy is decreased, which further tends to
lower the gap. However, the calculations become very
simple with these two assumptions and the results also
should be more convincing.

The mathematical method for the simple case we

have treated is very similar to the BCS method with
angular-momentum pairing. Kith a Bogoliubov trans-
formation conserving the z component of angular mo-
mentum and isospin (assuming axial syrnxnetry) one
finds a Gnite energy gap both for a constant J= i, T=0
specificity force and for a 8 function T=O force. We
believe that this calculation conclusively demonstrates
the existence of isospin correlation.

To compare our results with the Hartree-Fock
calculation" we have computed the moment of inertia
of the ground-state band of Mg~. This calculation is
crude because for this one needs to know the quasi-
particle energies and occupation probabilities of the
other k levels which have not been included in the
present calculation, but with a reasonable approxi-
mation we obtain an improvement in the moment of
inertia, bringing the calculated moment of inertia into
agreement with the experimental result.

In conclusion, we would like to remark that a com-
plete self-consistent calculation of the Hartree-Fock-
Bogoliubov type is necessary to demonstrate how the
deformations arise simultaneously with the isospin
pairing. Such calculations are now in progress. In the
treatment of the heavier nuclei the T=i part of the
force will begin to play a more and more important role.
It is our conjecture that in contrast to the heavy nuclei,
where it is the competition between short-range and
long-range parts of the T= i component of the force
which determines the tendency toward deformation,
in the light nuclei it is the competition between the T=0
and T= 1 components of the force which determines
the tendency toward deformation or spherical
symmetry.


