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The generalized Hartree-Fock approximation developed in previous papers is here applied to provide
a microscopic and fully quantum-mechanical self-consistent theory of the rotational spectra of deformed
nuclei. Starting from a rotation- and inversion-invariant Hamiltonian, the equations of the method are
derived for the present application, including the effect of pairing correlations. The equations of motion
yield the description of a quasiparticle (hole) self-consistently coupled to a rotator. Within a consistent
approximation, all the usual observables associated with the notion of deformed nuclei —moments of inertia,
collective gyromagnetic ratios, quadrupole moments, and transition probabilitie~an be obtained in
terms of the solutions of these equations, which are developed as a power series in the reciprocal of the mo-

ment of inertia. The zero-order theory is equivalent to the best current theory of nuclear shapes and also
describes, therefore, the quadrupolar properties of the nucleus. The Grst-order solution sufhces for the cal-
culation of the moment of inertia and the collective gyromagnetic ratio. Here again familiar results are ob-
tained in the only case considered in detail, that of a single band with unlimited angular-momentum states
available. The second-order solution is also found and used to study the spectrum of the neighboring odd
nuclei. The main new results of this paper are contained in the formulas for the moment of inertia and de-
coupling parameter for odd-particle or hole-based bands, where the self-consistency requirements yield
terms not hitherto noticed in the case of an odd nucleus.

I. INTRODUCTION

~[UR aim in this paper is the reconstruction of the
foundations for a theory of the spectra of de-

formed nuclei. There has been, in recent years, notable
progress in this area, ' leading for practical purposes to a
reasonable solution of many of the outstanding prob-
lems, such as the moment of inertia and the collective
gyromagnetic ratio (at least for the rare earths and the
actinides). Nevertheless, there remain conceptual ob-
jections to current theories and, as well, problems con-
cerned with the applicability of their concepts to lighter
nuclei' (s-d shell for example), higher order effects of
rotation-particle coupling and rotation-vibration inter-
action, ' etc. Some of these problems will be dealt with in

*Supported in part by the U. S. Atomic Energy Commission.' For recent discussions of theoretical concepts and full refer-
ences to the literature, see the following reviews: V. G. Soloviev,
in Selected Topicsin Nuclear Physics (International Atomic Energy
Agency„Vienna, 1963), p. 233; S. T. 8elyaev, ibid. , p. 291; M.
8aranger, i%62 Cargese Lectures in Theoretical Physics (W. A.
Benjamin, Inc. , New York, 1.963), Chap. V; K. T. Hecht, in
Selected Topics in ¹cclear Spectroscopy (Interscience Publishers,
Inc. , New York, 1964}, p. 51; C. J. Gallagher, ibid. , p.
133; A. M. Lane, Nuclear Theory (%'. A. Benjamin, Inc, New
York, 1964};J. G. Valatin, Lectures in, Theoretical Physics (Inter-
science Publishers, Inc. , New York, 1962}, Vol. IV, p. 1; Vol.
VI, p. 292.

~ C. A. Levinson, Phys. Rev. 132, 2184 (1963);I. Kelson, ibid.
132, 2189 (1963); I. Kelson and C. A. Levinson, ibid. 134, 8269
(1964); W. H. Bassichis, C. A. Levinson, and I. Kelson, ibid. 136,
8300 (1964).

3 A. Faessler, O'. Greiner, and R. K. Sheline, Technical Report
345, Department of Physics and Astronomy, University of
Maryland, 1963 (unpubhshed); Phys. Rev. 135, 8591 {1964);I. M. Pavtichenkov, Nucl. Phys. 55, 225 (1964); S. M. Harris,
Phys. Rev. Letters 13, 663 (1964); V. Radojevic, A. Sobiczewski,
and Z. Szymanski, Nucl. Phys. 38, 607 (1962); Yu. T. Grin andI. M. Pavlichenkov, Zh. Eksperim. i Teor. Fiz. 43, 465 (1962)
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subsequent papers. In this one, we deal largely with the
conceptual ones, deriving from our standpoint many
known results, though we do obtain new results for the
spectra of odd nuclei and point the way toward new
results for other properties of the latter.

The best current theory of rotations' is based on the
self-consistent cranking of a deformed nucleus whose
wave function is determined by the long-range average
quadrupole 6eld and by the pairing interaction. By
cranking, we understand the imposition of an external
field which forces the nucleus to rotate about a given
axis. It is thereby assumed that the inertial parameter
characterizing this constrained, continuously variable
motion is the same as that which determines the actually
observed discrete rotational spectrum. Though plausi-
ble, this has never been demonstrated prior to the
current work. 4

In the previous papers of this series, ' the basic ideas
of the generalized Hartree-Fock approximation (GHFA)
were described in some detail and applied with success
to the characteristic testing grounds of uniform transla-
tional motion and rotations in a plane. In this paper we

/English transl. : Soviet Phys. —JETP 16,333 (1963)j;A. Faessler
and %'. Greiner, Z. Physik 177, 190 (1964); A. Faessler, Nuc).
Phys. 59, 177 (1964); A. Faessler and H. G. Wahsweiler, ibid.
59, 202 (1964); Yu. N. Devyatko, V. V. Lomonsov, and M. G.
Vrin, Zh. Eksperim. i Teor. Fiz. 46, 2070 {1964) t English transl. :
Soviet Phys. —JETP 19, 1396 (1964)j.

'The basic idea was first described in A. K. Kerman and A.
Klein, Phys. Letters 1, 185 (1962). A preliminary report of some
of the contents of the present paper was given in A. Klein and
A. K. Kerman, Proceedings of the Eastern Conference on Theoreti-
cal Physics, University of North Carolina, 1963 (unpublished).' A. K. Kerman and A. Klein, Phys. Rev. 132, 1326 (1963),
referred to as I; A. Klein and A. K. Kerman, Phys. Rev. 138,
81323 (1965).
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extend the theory to the study of axially symmetric
rotations in three dimensions, including pairing correla-
tions. The contents are arranged as follows: Section II
contains a concise self-contained statement of the funda-
mental equations of the theory including pairing. The
physical content of the equations is transparent: In the
simple version of the theory to which we restrict our-
selves they describe a quasihole (particle) coupled self-
consistently to a rotator. The theory is thus a micro-
scopic version of the core-particle coupling model.

The major part of our program consists in obtaining
the solution of the equations as a power series in the
reciprocal of the moment of inertia. The zeroth-order
solution, as derived in Sec. III is equivalent to the best
available theory of nuclear shapes. ' The 6rst- and
second-order solutions are derived in Secs. IV and VI,
respectively, subject to restrictions which have been
studied in the previous paper of this series. It is these
restrictions to a semiclassical limit that lead us back to
familiar results. The moment of inertia of the ground-
state band of an even-even nucleus is obtained in Sec. V.
The energy levels of single-particle bands of the
neighboring odd nuclei are studied in Sec. VI. Here the
formulas for both the moment of inertia and the de-
coupling parameter contain new terms arising from the
self-consistency requirements of the theory. Finally,
Sec.VII contains calculations of some standard formulas
for B(E2) values, requiring a slight extension of the
ideas of the previous text, and of a formula for the
collective gyromagnetic ratio, similar to that for the
moment of inertia. The material of this section is to be
consideredas introductory to a more extensive investiga-
tion of one-particle observables in odd-deformed nuclei.

Kith this paper we have essentially completed the
erst phase of our investigation —the derivation from a
more satisfactory point of veiw of the simplest parts of
the theory of deformed nuclei. In future accounts, we
shall report techniques for avoiding the major practical
limitation of the current work (which is also the essential
assumption for making connection with previous work),
namely, that each rotational band is assumed to extend
without limit. ~ In this way we hope to obtain a theory
applicable also to lighter deformed nuclei.

II. GENERALIZED HARTREE-POCK THEORY
WITH PAIRING INTERACTION

Ke take as our Hamiltonian the general form

Pt(x,)h(x„x,)P(x,)

+- ft(xz)g t(x2) V(xzxg', x3x4)P(x4)P(xg), (2.1)

'The most recent account has been given by M. Baranger,
Proceedings of the Puris Conference oe Eudeer Physics, 1064
(editions du Centre National de la Recherche Scienti6que, Paris,
1964), Vol. I, p. 49.

~ A tentative approach to a generalized theory can be found in
R. Dreizler and A. Klein, Nucl. Phys. (to be published).

where x represents a complete set of coordinates of a
single particle, and

h*(x~,xs) = h(xm, xg),

V(xgx2, x3x4) = —V(xgx2, x4xg)

V(xmxlj x3x4) V (x3x4j xlx2)

(2.2)

In (2.1) one may consider either that h is the kinetic-
energy operator and V is the total interaction or that h

is an appropriate spherical-shell-model Hamiltonian and
V is the residual interaction. We shall beg the question
of making a de6nite choice here, though in the current
state of the art, it is usually the latter or model Hamil-
tonian that is treated. We note simply that in writing
(2.2), we have already made use of the exclusion principle.

We shall moreover, make the fundamental assump-
tion that B is invariant under rotations, expressed by
the statements

h(xg, xm) = h(xg~, x2s),

V(xgxs j xsx4) V(xrsxma i x3sx4s) ) (2 3)

[P(x),Hj= a(x,x,)P(x,)

1+- V(xxg x2x3)P (x&)P(x&)P(x2), (2.4a)
2

(Pt(x),IIj= Pt(—xg)h(xg, x)

1+- P'(x2)P'(x, )g (xg) V(xmxg,
. xxg) (2.4b)

2

to study matrix elements of the type

e,(xI)—= (i ~y(x)
~
I), (2.5)

where
~
I) (magnetic quantum number suppressed) is a

member of the ground-state rotational band of an even-
even nucleus with A nucleons and

~
i) is some state of

the A-1 nucleus which can be reached from it with
appreciable amplitude by the destruction of a single
particle. For ~I)= ~0), (2.5) is the field-theoretical
de6nition of the Hartree-Fock single-particle wave
function. From (2.4a) we obtain

Lb;+Z(I)ge;(x, I)

h(x, xg) e;(xgI)+- V(xxg, x2x3)
2

where the subscript R indicates the performance of a
de6nite rotation. We also assume invariance under space
inversion.

We use the equations of motion
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where, in an obvious notation in which lV stands for
the total energy of a state,

WA&I) WA 1—(i) LWA(0) WA —1(i))
+$W~(I) W—~(0)]=$8—'+p j+E(I) (2 7)

and p, the separation energy, has been incorporated in
(2.6) by the replacement h ~ h —p.

To see how to proceed, we note that in the Hartree-
Fock theory (including "superconductivity" or pairing
effects) we would write

&ill'(l)4 (3)4(2) I o)
=-&iles&2) IO&&0ly'(1)y(3) I 0&-&ill(3)1o&&o14'(1)4(2) I o)

+&ily'(1)10&&0ly(3)P(2)lo& (2 8)

We note that if 10) and (01 were Bardeen-Cooper-
Schrieffer (BCS) wave functions (2.8) would be exact;
if 10) and Ii) were Hartree-Fock wave functions, we
would omit the last term which describes pairing. For
the last term of (2.8) one may either go over to a
particle-nonconserving representation or remember that
10) does not always refer to the same nucleus.

As the generalization of (2.8) we shall now write

& 14'(l)4 (3)4 (2) II&

—Z(&f I O(2) II'&&I'IO'(1)O(3)
I »

—&i lg(3) I
I'&&I'I P'(1)0'(2)I)

+&ill'(1) II'&&I'14(3)f(2) II&) (2 9)

Though in contrast to (2.8), we do not (yet) know a set
of wave functions for which (2.9) is exact, it should be
remarked in its justification that (2.8) can be derived
by a physical argument about large matrix elements
which can be immediately generalized to (2.9). The
essential reasoning, but for the minor complication of
pairing, has been described in generous detail in Paper I,
and will not be repeated here. We emphasize, however,
that these expressions cunnoI, be derived by a simple
sum-over-states argument only. Moreover, the develop-
ment to which we here allude has the distinct advantage
that we can write an essentially exact reminder to the
approximation in each case.

Upon substituion of (2.9) into (2.6), we find

$8;+E(I)j+,(xi)

h(x, x')4;(x'I)+ (xI
I
r

I
x'I')0', (x'I')

where

+ (xI
I
5

I
x'I')4;~(x'I'), (2.10)

(*&1&1*7) f'v=( & *Y)'b, vI~1m&'), (2.»)

with

1
(»I~I*'I')= 1'(xx''yy')(yII01y'I') (212)

2

and

(»
I c I

x'I') = (I'
l
4'(x') P(x) I

I&,

(xI
I
~

I
x'I') = (I'

I
g(x') P(x) I I),

(2 13)

(2.14)

h*(x,x')4;*(x'I) (xI'
I
p

I
x—'I)*c,*(x'P)

{xI'Iel x'I)'e, (x'I ). &2.16)

Since from (2.13) and (2.14), we have

(»I pl x'I') =2; +;{xI)+,*(x'I'), (2.17)
(»1~ix'I') =2'+;(»)C;(x'I'), &2.18)

we see that (2.10) and (2.16) constitute a set of closed
equations We emphasize their significance by intro
ducing a matrix notation,

C"*(»)= &~14'(x) I I& (2.15)

Here I' is the generalized Hartree-Fock potential, 6 the
generalized pairing potential, p the generalized single-
particle density, and o. the generalized pair wave
function.

To obtain a closed set of equations, we must find an
equation for the amplitude (2.15). This can be done
starting from (2.4b). Proceeding as before, we find
without difIiculty

L8;+E(I)jC,*(xI)

r 0;(xI) )
0;(xI)=

I

(C,'(xI)I

E(I)Srr fi(x x')+—h(x, x')brr +—(xII P
I
x'I')

(xI I K I
x'I') =

&xI'I ~
I
x'I)*-

(2.19)

arith the aid of (2.19) and (2.20), (2.10) and (2.16) are
equivalent to the equation

g,O,(xI)= (xI
I
X

I
x I')O, (x'I'). (2.»)

Our point of view is that (2.21) is to be solved for the
8;, 0;, given X, but this means that there are two
elements of self-consistency; the potentials I' and 6
defined by (2.11) and (2.12) together with (2.17) and
(2.18) constitute one of these, with nothing new in
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principle, but only an enlarged space. The other element
of self-consistency, which arises because we must pre-
scribe the excitation energies E(I) in order to define the
Hamiltonian H, is obtained from the definition

and from the expression

1
(I I

II!I)= h(x,x')(x'I I, I
xI)+- V(x,x„- x,x,)

& f(x4I I
~[x2I')(x~I'I ~ I

xiI) —(x3I [z[x2I') (x4I'I z[xiI)

+ (xgI[ a [ x4I')(xiII a [
xnI')*), (2.23)

with ~~ referring to the appropriate Pauli matrix. Equa-
tion (2.26) is derived by combining into matrix form
the commutation relations,

4(*)

P (x)
1 Oy= brr b(x x') —

! . (2.27)
0 &)

%e complete this section with a few comments on the
properties of our equations. It can be seen that BC,

Eq. (2.20), is Hermitian and thus for two different
solutions of (2.21) we have

where the terms in curly brackets represent the
factorization' (Q Q~') =0 (2.28)

( )=(I[4'(x)W'(x )4(x)0(x[I)&, (224)

the analog of (2.9). Equations (2.22), (2.23) thus con-
stitute equations for the energy spectrum of interest.

To complete the prescription requires several addi-
tional conditions which specify the number of solutions
0, to be used in the pursuit of self-consistency and the
norm to be assigned to each. There is first the statement
that we are studying a system with .4 particles, i.e.,

2 err' ——(I [ Pt(x)P(x) I
I')= (»'I zz [»)

O, (xI')e;~(xI), (2.25)

and second a completeness condition which can be
written

Q(O;(xI) 0,'(x'I')+(riO;*(xI'))(riO;*(x'I))')

0
= &rz~ &(x x')—, (2.26)

0

6t =Q . Q~ .Q~ .t

Then from (2.21), we can deduce that

(2.29)

L6t,X7=0. (2.30)

Finally, with reference to Eq. (2.26), it should be re-
marked that this equation represents the generalization
of the statement that for the self-consistent well, the
filled plus unfilled states (holes plus particles) together
constitute a complete set. In the present case however
the particles, represented by the "wave functions"
(rzO, *(xI)) do not satisfy the same equations as the
holes, Eq. (2.21), but as one can show, satisfy instead

h (&18;*(xI))= (xI
I
X

I
x I )(r,O,*(x'I')), (2.31)

where

&f, with normalizations ultimately determined by (2.25),
(2.2ti), we define a matrix 6t Lthe same as appears in the
first term of (2.26)7,

ra(I)hzz. h(x —x )+f (x,x')~zz, +(xI!r!x I) (*I'I~Is I)
!(xI!x!xI)=l —(xII ~!x'I )* E(I)&rz &(x x') h*(x,x') brz, —(xI—I

z'I x'I')*j—
= —»(»I &!x'I')*«. (2.32)

In the present theory, where there is no sharp Fermi choosing an excitation spectrum of the form
surface, particles and holes use the same set of labels.

I-'(I) = (4~)-'I(I+ 1)L1+(—) 7 (3 1)
III. ZEROTH APPROXIMATION: THEORY

OF NUCLEAR SHAPES

We turn to the problem of solving Eqs. (2.21) and
(2.31) restricted by the various subsidiary and con-
sistency conditions. %e shall study only the simplest
example of direct physical interest, that in which the
ground-state band of the nucleus behaves like an axially
symmetric rigid rotator. This problem is denned by

appropriate to an even-even nucleus.
We shall concentrate on the solution of Fq. (2.21).1t

is convenient for purposes of illustration to suppose that
the spectrum (3.1) continues to arbitrarily large values
of I. Our theory then describes a "quasiparticle" in
interaction with a rotator, the interaction between the
two being determined self-consistently. Its essential
content is best illustrated by the change of variables
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defined by

0 (xil) = Q O,(xIN&Y~"(a),

help of (3.9) and (3.10), we may thus write

(3.2) +;g„[x,il]=—
&i1 —p I P(x) I

il]

(A I
sc

I
x'8') = P Yu~(&)

TMI'M'

&&(xm Iaclx'I'm') Y '(il'), (3.3)

where Y~r(6) is a normalized spherical harmonic of the
angles defming the unit vector il. According to (3.1) the
summations in (3.2), (3.3) are restricted to even I.This
is most conveniently expressed by replacing the spherical
harmonics by a function symmetrized under inversion

Y~'(6) —+ —,'[Y~'(il)+ Y~'(—A)]
=y Ysr (il)[1+(—1)']=—yilIM] I (3.4)

the square brackets denoting that the symmetrization
has been carried out.

Under the symmetrized version of the transformation
(3.2),

=(ij p—
I U(8)U '(8)f(x)U(R)U '(6) lil]

= Z»&iI—~ I U(@) I
i~—R'&(i~—It

I 0(Rx) I 01

=P»D y»~'(n)(iJ R'—Iy(»)lo] .(3.11)

By means of the relation'

D „»~'(6)=(—1)» "D„»~(il), (3.12)

and separating positive from negative A, we have
instead

4;J [x6]= g ( )» &(D~»—'(6-)6J E I 4(Rx)—I 0]
X&0

D. »—(il)&i~-R'Ik(Rx)
I o]) (3.13)

Still another useful form of (3.13) follows from the
utilization of the relation

E(I)~ I'/2y (3.5) &i~R lp(Rx) I0]=—(—)'&i~—I lp(R»)10], (3.14)
the differential operator I now acting on the variables
n= (n,P) where a is the azimuthal, P the polar angle. In
terms of these new variables, we notice that the com-
ponents of the wave function 0;[x8]retain an abstract
dednition, for example

+,[xi']=&&ilk(x) Il~&[13' I
@]=&il 4(x) Ill] (3 6)

A general representation of this ampl. itude is obtained
by remarking that the In& are a complete set of states
localized in angle

[@I
@']=4(&& I@'&+&~I

—il'&+
&
—~

I
~'&+

&
—@

I

—@'&)

= -', [b(@—ii')+8(8+8')], (3.7)
and that

I
a&= U(R) I 0), U(R) =expL —i~~]

Xexp[ —ized] e~[—i~.v], (3.8)

U i(R)y(x) U(R) =y(Rx) (3.9)

where 0 de6nes the "intrinsic" coordinate system, the
rotation E taking us from the laboratory system to this
system. The transformation E is here dered by the
set of Euler angles R= R(ii,y) =R(n,P,y).

With U(&ii) =—U[R(&8,0)], and restricting our-
selves henceforth to such transformations, since y is
arbitrary, a consequence of (3.8) is

U '[a~]
I
@]=

I
o]=Z I

I%&Y~r'(0)r'[1+( 1)r]. —

(3.10)

To apply these statements we suppose the comparison
state li) to be specified more closely as lij p&, where—
J, —p are angular-momentum quantum numbers and i
represents the remaining quantum numbers. %ith the

where Rz=R( —6); the proof of (3.14) requires (3.10)
as well as the equation'

D„»~( 8)= (—1)—~D„»~(R) . (3.15)

In place of (3.13) we thus have

+'~.[x,&]= Z (—)» "(D.»'(@)&i~—R I4(Rx) Io"]
X&0

P(Rx)
e;,»[Rx]=&is, —R

I

Pt(Rx)
(3.18)

Equation (3.17) is now substituted into the transform
of (2.21) and due notice is taken of the action of the
operator I',

where J as a differential operator' acts on the function

' Many properties are conveniently summarized in the Appendixof M. A. Preston, Physics of the %Ictus (Addison-Wesley Pub-
lishing Company, Inc., New York, 1962). W'e employ, however,
the definition of D„~~ used by Wigner and Edmonds (as defined
by Preston).

9 J, for example, is a specialization of the customary differential
operator J (~, p, 8, Bp, g~) in that 8„—+ f'E.

+(—) D„» (8)&iJ—Elle(Rrx) I ~], (3.16)

or for the matrix function,

O,g„[x,8]= Q ( )» I'fD„—»~(ii)8~g»[Rx]
K&0

+( )~D„»~(8)8,g»—[Rgx]) = 0;g„[x, —6], (3.17)

as follows by noting (3.15). In (3.17) we have
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(J,E)=1(Jx/(Ic(}

we therefore have the convenient relation

(3.24)

D„x~(n), while j acts on Rx=xe, and we understand
the components of J and j shown in (3.19) to be those
in the intrinsic coordinate system. This means that we

may set j3'—2J3j3———E' when acting on each term in
the sum (3.17). Furthermore, in accordance with the
scheme of approximation discussed in Paper II, we drop
the term j&'+j2' since this leads to a small correction
to the energies independent of the collective coordinates
and of a small order of magnitude for which our method
cannot be guaranteed to be self-consistent. Finally, we
shall restrict our further considerations of this section
to the limit in which we ignore the Coriolis coupling

ac,—= (J j++J+j )/2tt—=J,j;/2tt (3.20)

arising from the last term of (3.10).We shall then show
that in this limit our equations possess self-consistent
solutions of the form (defined only for positive E)
0;zx„(xI]=2 "'(8jK(Rx)(ill JpE)

+8'x(Rix)( ill JpE)—) (3»)
where, as indicated, the single-particle functions are
independent of J and (tl

l
JtiE) is a suitable normalized

version of D„x~(tl) defined below.
Before verifying this assertion it is necessary to in-

vestigate the phase relations which (3.14) implies for
(3.21). To reach (3.21) we assume

8;gxttRx] 2'"(2J+ —1/4x)'t'rt(J E)8;x(Rx),
IvI=1

'
(3.22)

From (3.14) now follows

8jj jj,'LRx]~2—' t'(2J+1/4x)' "rt(J Jt )8j K(Rx)— —
= (—)(—)~2 '"(2J+1/4x)'}2

X rt(J,E)8;x(Rix) . (3.23)
Kith the choice

i~( —)~x~ " which is implied by the previous considera-
tions. This corresponds to a unitary change of basis,
which affects none of the physical results of this paper.

We next show that (3.21) constitutes an approximate
solution of the self-consistent equations. To establish
this assertion, we consider the density and pairing
matrices, Eqs. (2.17), (2.18) associated with the ansatz
(3.21). Thus, utilizing the completeness relation

P(JpE l
tl)(tf'l JpE) = h(n —tt') (3.27)

the last equalities following from (3.25),
(tli ———tf)

(xn
l pl x'tt') =p(Rx Rx') 2[8(tl —t1')+ h(tl —ni')7, (3.30)

(xt1 l
o

l
x'n') = 0 (RXRx')2

l h(n —il')y h(i't —}rti')]. (3.31)

From (2.11) and (2.12), we then find for the self-
consistent potentials,

(xtl l
I'

l
x't1') = I'(Rx,Rx')-,'

l h(a —ti')+ h(tl —tl i')], (3.32)

(HlA l
x'tt', ) =6(Rx,Rx') ~ Lh(tl —n')+ h(n —t'ai')], (3.33)

and the de6nitions

p(Rx, Rx') = ,'Q g-,rr(Rx)P;x*(Rx')
i,X&D

+P,x(Rix)f;x*(Rix') )

= Q P;x(Rx)f;x*(Rx'), (3.28)
iK

o (Rx,Rx') = —,
' Q (P;x(Rx)y;rr(Rx')

i,K&D

+4 ~K(Rlx)4ix(Rix ))

= Q P;x(Rx)y;x(Rx'), (3.29)
i,K

8 x(Rx)=8,x(Rix). (3.25)
I'(x,x') = V(xy; x'y') p(y', y), (3.34)

It remains only to supply the definition

(t1 l JtiE) = (2J+1/4x)'t'D x~(tl) (3.26)

for a single term of (3.17) to assume the form (3.21).
In the definition (3.26) we have dropped a phase factor

1
t} (x,x') =- V(xx'; yy') o(y,y'), (3.35)

where we have used the rotational invariance of the
Hamiltonian. With the definitions

8.x =—h xz+ fJ(J+1) E']/2tt, —
h (x,x')+ I'(x,x') D(x,x')

—~*(x,x') —h'(x, *')—I (x,*)i '

(3.36)

(3.37)

h;xe, xg„Lx,8]= K+}(Rx,Rx') 0;rr g„Px',it]. (3.38)

Eq. (2.21) becomes in this approximation Wee may finally obtain an equation for the intrinsic
function 8;x(x) by noting that (3.38) depends on but a
single arbitrary direction in space which we now choose
as our z axis. Thus we set tf=o, E=1, Ri=R(s.,x,0).
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8$»8$»(x) = X&"(x x')8 »(x'). (3.40)

Before discussing the significance of (3.40) let us
obtain the remaining equations which specify this
approximate theory: (a) Together with any set of solu-
tions 8;»(x) of (3.40), there exists another set ri8j» (x)
with eigenvalues —8;», (ri is the Pauli matrix). These
are the "particle" solutions, which can be obtained
directly from (3.40) or by applying the approximations
of this section to (2.31). Since K&oi is Hermitian, the
solutions 8;~ and v.~8;~* are orthogonal to one another.
(b) The condition that the system contains an average
of A particles, as expressed by Eq. (2.25), becomes

Using standard properties of the representations of the
rotation group, ' we have

O~,»g„[x,8j= [(2J+1)/gxj'i'
&&(8„8, (x)+(—1)~8„, 8;, (x)), (3.39)

and thus finally obtain the equation

section, then to this point we have two important re-
sults: (i) We have derived in a fundamental way, i.e.,
based on an original Hamiltonian invariant under rota-
tions, the existence of a self-consistent deformed well.
(ii) In the same approximation, Eq. (3.36) informs us
that if the even-even nucleus with which we start has a
rotational spectrum, so do the neighboring odd nuclei,
with effectively the same moment of inertia. (The
correction to the moment of inertia due to the odd par-
ticle or hole requires the higher order theory of Sec. VI.)

The present approximation, however, contains no
information about the value of the moment of inertia.
(The energy is independent of I.) We remedy this defect
starting in the next section by noting that the solution
given here corresponds to the limit 8 —&~. The next
step is therefore to develop the solution in powers of 8 ',
as will be done for the remainder of this paper.

For the method of studying numerically the equations
derived in this section we refer the reader to Ref. 1.

We append here a useful property of the solutions.
We expand 8;»(Rx) in eigenfunctions of the angular
momentum„

dx p(x,x) . (3.41) 8,»(Rx) =P, c,»'8»'(Rx)

=P c;»'8„'(x)D„»&'(8,) . (3.46)

(c) The sum rule or completeness condition (2.26) takes
the matrix form But we also have from (3.15)

wllere
6t(x,x')+ r(x, x') = 8(x—x') I, (3.42)

8; (R x)=g c; '8 '(x)(—)'+'D»"(I). (3.47)

6t(x,x') =P 8;»(x)8;»'(x'),

V'(x,x') =Q [ri8;»*(x)j[ri8;»*(x')j'. (3.44)

Thus, from (3.25), (3.46), and (3.47), we find

C; »'= (—)'+'C,»'. (3.4S)

It follows that

612=61, 6tv'= v6t, V"= &. (345)

We now consider the significance of the results ob-
tained in this section. In Eq. (3.40) we have a self-
consistent field problem of now conventional type,
including the pairing e6ect. Exactly this equation has
been proposed' and utilized' as the basis for a theory of
nuclear shapes, previous derivations having been based
on a generalized Bogoliubov-Valantin transformation or
related methods. One is, in principle, directed to seek
all possible self-consistent solutions of (3.40) subject to
(3.34), (3.35), (3.41), and (3.42). One then calculates the
ground-state energy from the density and pairing matrix
thus obtained, utilizing for this purpose Eq. (2.23). If
the lowest energy is achieved for a spherical solution
then one's task is complete as far as this problem is
concerned: The moment of inertia vanishes and there is
no rotational spectrum. If one finds on the other hand
that the energy minimum is achieved with a nonspherical
solution, for example, by an axially symmetric solution,
as we have explicitly assumed to be the case in this

IV. FIRST-ORDER SOLUTION FOR AXIALLY
SYMMETRIC NUCLEI

We imagine ourselves to be in the region of the
Periodic Table where the equations of the previous sec-
tion yield an axially symmetric self-consistent field.
Our aim becomes to obtain a suKciently improved
solution to the fundamental equations (2.21), (2.31) and
associated conditions as to permit calculation of the
moment of inertia. We shall also be interested in study-
ing the change in the single-particle energies, since these
can be applied to the interpretation of the spectra of
neighboring odd nuclei.

We suppose that we have in hand a complete set of
solutions of Eq. (3.38) of the form of Eq. (3.21). In
what follows we shall combine the pair of indices (iE)
into a single index E, whose inclusive nature will be
understood. The equation we propose to solve is

(h»+86»z)(O»z "'+&e»~,)
=(~"'+~.+88''-)(O- ..'"'+80»..), (4.1)

the superscript zero referring to solutions proportional
to (3.21) and the zero-order Hamiltonian (3.37), re-
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spectively. %hereas K, is a fixed perturbation, NC arises
from the functional dependence of the self-consistent
potential on the solutions. The most general form of
60~J„other than a change in normalization is

bOirg„Lx, k]= Q ez g„&'&[x,@)Glair~
LQK

and
(Oirgp, OKzp() = 1, (4 3)

where, henceforth dropping the superscript (0), we
have also utilized the fact that (Appendix A)

+Qz O~z~ (0)Lx gjp~az (4 2) (K+hhirz L)GLK = (OL jpy (Xc+8X)OEjp)Az
+(ecz„(X.+m) &Ox'„),

where the function O~gq„ is obtained from O&J.g„by re-
(4.6)

placing in (3.18) ez by ri8 rr . According to (3.42) it
requires both sets of functions utilized in (4.2) to form a
complete set. The omission of the term I.=E in the
first sum is compensated by a change in normalization of +(Oxzi (X.+&X)&ezzy) .
Oxz„, (4 7)

Oir~„i'& ~ A rr'D~ g„(0) . (4.3)

Prom (4.1), (4.2), and (4.3), we obtain easily, using
the orthogonality of different solutions of (3.30),

&&z=(ex', ) (X.+&X)Ozz,)
+(Air~) '(Oir g„,

—(X,+bx)bOir gg (4.4)

Except for the nonlinearity buried in AC and the fact
that there are constraints, we are, of course, simply
doing perturbation theory.

In the sequel, it is of considerable aid to recognize
that the matrix

is of the form

C*+Ii'I*'&'3 C*@l~l '&'j )
—Lxl'

/
6

f
x'RQ* —Lxi4'

[
I'

/

x'kg*i
(4.8)

(xi'~ hX~ x'i4'7= V(xy; x'y') 5 Q Oirg„g'8$0ag„'~'), (4.9)

where
11 "V(12;34)
12 0

V(12; 34)=21
22, 0

0
0

——,
' V*(13 24)

0

0
—~i V(13 24)

0
0

0
0
0

V*(12 34)

(4.10)

Thus by the integration symbol in (4.9) we mean not
only the integral with respect to y and y', but also the
trace over the two-valued associated discrete matrix
indices. The equivalence of (4.8) and (4.9) follows by
straightforward identi6cation of terms and the use of
the completeness relation (2.26).

Turning now to the solution of (4.4), (4.6), and (4.7),
we begin by showing that the first-order contribution
of X, in (4.4) is the now familiar contribution to the odd-
particle energy involving the decoupling parameter. The
contribution coming from two equal cross terms can be
put into the form

=(2ir) ' dl(JpE~R)J, (i4~ Jp —&)(—1)

yields

where
(4.12)

(4.13)

(Sr'—@z)Gzx =(Ozz„) (X.+bX)Oirgg, (4.14)

(~x+ &r)Fzz J=(ex+„(X.+&X)eire„). (4.1&)

From (4.17), it follows that

is the well-lmown decoupling parameter. In contrast to
the usual theory, there will be @n additional 6rst-order
contribution, to be derived below.

We next study the solutions of Eqs. (4.6) and (4.7)
to first order. In this approximation these simplify to

XZ I
I'(—1)' 8 ()j;8;- () (4.») ~L,x~+Gx J.~'= 0, (4.16)

indicating that the GJ.~ de6ne an infinitesmal uni-
by simply doublmg one of the contributions and by tary transformation. It follows from (4.16) that the
utilizing Kqs. (3.15) and (3.48). The further evaluation first-order contribution to bX arises only from the
of (4.11) is straightforward (see Appendix A) and coefficients Pzir~.
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The form of solution of (4.14) and (4.15) is suggested

by the forms of the inhomogeneous terms, the matrix
elements of K.. Sy the means employed in reaching
(4.12), we find, for example,

(Ogg„,X,Oxg„)
= (»)-'(»I-I &-'I »K)(LI J'I K), (4.17)

Equation (4.17) is demonstrated briefly in Appen-
dix A.

The form of (4.17) suggests the solutions

I"zx'= (2&) '(I/ I-I I 'I »-K)(I I f*lK), (4»)

Gzx'= (2s) '(I/ I-l I 'I J/ -K)(I-I g'I K) (4.20)

(I I i'I K)= d*(ris-z(*)'&'i'«(*)

dzSrtj, Sx(z). (4.18)

The manipulations designed to demonstrate the cor-
rectness of (4.19) and (4.20) and to derive from (4.14)
and (4.15) equations for the coefficients (LI f;IK) and
(I.lg;IK) are outlined in Appendix A. The resulting
equations are

(~x+ @z)(I.I f'I K)=(I Ii'I K)+ & ((LK'I V
I
«')(I'I f'I K')+(II'I V

I
KK')(I'I f 'I K')*-&, (4 21)

(@» &z)(I-I—g'I K)=(L Ii'I K)+ & &(«'I V
I
«')(I'I f'I K')+(II'I V

I
«')(I'If 'I K')*&-, (422)

X'L'

with, for example,

(«'I VI«') = sx'(*)sx'(y)V(*y 'y')sx(z')sx (y'). (4.23)

With respect to (4.21) in particular we notice that if we adjoin to it its complex conjugate, the two equations may
be written in the matrix form

where
3/IP;= g, ,

(L lf'IK) q(I. F; K)=

(4.24)

(4.25)

with a similar expression for (I I g; I K), and

(8 +$,)s„—.sx .+(IK'I vIKJ. ') (LX,'I V
I
KK')

(X,K I
m I

I,'K') = (4.26)
(KK'I V

I
II') (~x+gz)Sx—x 4z+(KL IVILK)

The matrix M is the same one that plays a role in the
stability theory of Eq. (3.32), and in the random phase
approximation with pairing.

The solutions of (4.21) enable us to go back to obtain
from (4.4) the full expression for the first-order change
in the single-particle (or rather hole) energy. To (4.12)
we must add the contribution of the second term of
(4.4), i.e., the first-order diagonal effect of NC. The de-
tails are again relegated to Appendix A. The result is

Sh&J(1)= gx 1/ (2//)-1( )J+1/2(I+ )La+So] (4 27)

where a is given by Eq. (4.13) and L(&2)=—S«2(~+)&
etc. ,

sa= —i 2 ((L+HK'I v
I
2I'')(I

I f-I K')

From a phenomenological point of view a+au may be
viewed as the effective decoupling parameter. From a
fundamental point of view, however, this represents a
definite change compared to the usual unified model.

%'e shall return in Sec. VI to the problem of obtaining
solutions of (4.4)—(4.6) to higher order. As we know from
the study of the corresponding problem in two dimen-
sions, however, and as we shall see again, the solutions
of (4.21) together with the renormalization coeflicient
A ~g of the zero-order solution —tobe derivedimminently—su%ce to determine the moment of inertia 8' of the
even nucleus with which we started. This calculation
will be carried out in the next section. For the remainder
of this section we shall obtain to first order the conse-
quences of the remaining conditions of the theory.

In the present case we do not have to study the equa-
tion for the "particle" excitation, Eq. (2.31) separately.
The solution of (2.31) to first order is simply briQxq„~
XLx,@j=ri(BO/rz„(x, @j) and is therefore determined
by the same coeKcients G&z and Fl.z, first appearing
in Eq. (4.2). Concerning Eq. (2.25), the condition for
the average number of particles, there is no change to
first order from its expression by Eq. (3.41). There re-
mains to be determined only the consequences of
the completeness condition or sum rule (T means
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transposed):

Q & Olrr„Lx, A)01rr„tLx', 8')

+,o. ~,„*Ix,@'j.,O-,„'Lx',@j&

=-:~(.-*)C~(~-~')+~(~+&')j &429)

The consequences of (4.29) to second order in 8 ' are de-
duced in Appendix B. For immediate purposes, i.e.,
for the calculation of the next section we need the fol-
lowing results: In 6rst order we 6nd

(43o)

&LI f'IK) = &Klf-'IL&. (4.»)
Of these conditions, we already know that (4.30) is
compatible with the equations of motion, since it is in
fact equivalent to Eq. (4.16). To establish the com-
patibility of (4.31) with (4.21) requires the recognition

(432)

and that a number of equalities obtain among the matrix
elements of the potential-energy matrix V. We require,
for instance, that

(KL'IV ILE')=(LK'IVIKL'),

(IL'
I
V

I
KK') = (KK'

I
V

I
LL'),

(4.33)

which in turn follow from the identity

(Tl)1V(T1)l= (Tl)2V (Tl)1. (4.34)

—(») 'KZz &l(Klf+IL) I'—l(Klf-IL) I'

+ l(Klg+IL) I'—l(Klg-IL) I'), &4.35&

where we have utilized (4.19) and (4.20).

V. CALCULATION OF THE MOMENT
OF INERTIA

In this section we utilize the results of the previous
sections for the evaluation of (I I

H
I I), Eq. (2.23). It is

convenient to utilize an alternative version of this ex-
pression, namely,

We also quote here some second-order "diagonal" re-
sults. We obtain the normalization condition

l~~'I'=1 —Zz (IIr«'I'+ IG«'I'&

= 1—(2&)'I J(I+1)—E']

xP& I &Kif;IL) I'+ l(Klg, lL) I')

1 1
&I IIIII&= «dx' & I-,'&»I &y+&+-.'y) I*'I')(x'I'I 61

I xI)j+- dx h(x x)+ dxdy V(*y; *—y)
2 4

1
dxdx' Z&(» I

~ I*'I')'(*'II I»') —(»'I ~ I*'I)*(*'I'I~i»)) . (5.1)
4 7t

The new quantities in (5.1) are
h(x, x')

(xI
I g I

x'I') = br 1
0

(5.2)

(xI
I

&
I
x I )= br '

dy V*(xy; x'y)
(5.3)

where

and

In fact

(xI
I

I'
I
x'I') (xI I

6
I
x'I')

&»lvlx'I')= = V&*y'x'y')(y'Il 6tlyI') i-&»'I&lx'I)' (»Ihl "I')

(»lr1I x I )= dydy'v*(*y;*'y')(y'I
I
T lyI'),

(y'Ii lyI')= 2 4 ..'(y'I)~ .„(yI').

& (xIlr Ix'I') (»l~lx'I')l
(xIIN. !x'I')= Q Orrr (xI)Orrr '(xI) —

!
&—(*I'I !x'I) (»!,IxI)&

(5.4)

(5.5)

(5.6)

(5.7)

In terms of the quantities defined in &5.2)—(5.4), the equation of motion (2.21) may be written

(5 g)
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The advantage of the form (5.1) is that the first term
is as simple to treat as in the absence of pairing, the
second and third terms are, of course, constants, and
the last term, as we now argue, can be dropped. We are
interested in that portion of it proportional to I(I+1):
The coeKcient must be zero since the term itself vanishes
upon summation over I.Our assertion can, of course, be
verified by direct calculation. It can also be verified
that this term does not destroy the self-consistency.

%'e therefore write

Here we have introduced a concise notation as follows:

(A I c'I It) = (A I f'I It),

(5.12)(A lc;IE)=(A lg;IE),

according as OA J„&o) is a particle or a hole solution. The
form (5.11) with (5.12) which follows from (4.2), (4.3),
(4.19), (4.20), (4.20), and (4.35) contains only the nor-
malization correction to second order. As for the latter,
we have dropped a piece which does not contribute to
the present calculation. Other second-order terms (such
as computed in the next section), proportional to
OA J„&o), A /E, also do not contribute, as will be made
evident below. We notice in connection with (5.12) that
(4.21) and (4.22) and their complex conjugates may be
written in a combined matrix form

&)IHI»= J««'Pl))3&))I))I))'&t))'I)I, ())I
where

(5.13)

with suitably enlarged defi»tions of BR and g.
UtBizing now the solution (5.11), we substitute in

(5.9) and (5.10) the sum

(5.14)(R= (R&"+(R&'&y(R'"'y(R&"',

(8 I
II

I
8') = tr-', (n+X)(8'I 6tl 8)

+-', tr„V(8'I 6tl 8")(@"
I 6t la)

+8(ill —@')[-', trh+i~ tri, V) (5..10)

To obtain R to the required accuracy it suffices to write

O~»Jy[x, @)= (1—(2a)—'-'[J(J+1)—IC')

&& E~ I (A I c'I &) I
') o»~."'[x,n)

+ P Ogg„&'&[x,d](2S) '
AWK, E

X(A Ic IE)(JpA I J;IJpK). (5.11) where

(. I
"'I ' ')=lC ( —')+ (+ '))Z ( *) '( *'),

(xnI IR&'&
I
x'n') = p (Oi,~ [x@]O»~ '[xVi']Fz»~+0»~ [x 8]OZ~„"[x',8')Fz»~'),

I,X&O,J,y,

(x&
I
6t'"'I x'n') = P (—)(2a) '[J(J+1)—&']o»~."'[x,@]O»~'[x',&'] I (A I c*lIt) I'

A, X&Q, Jp

(5.15)

(5.16)

(5.17)

(x,kl (A~2)& lx', n') =
K,A, A'&O, J,fs

e)i J))[x)~)O)i)J)) [x )~ )CA» C)i)» (5.18)

In (5.18) C~» =Fz»~ or Gi, » according as A =I, A =I., respectively. According to (5.16) only the Fz»~ occur
in (R~"

We now utilize (5.15)—(5.18) for the evaluation of (5.9). The zero-order energy, independent of the state of
rotation, is

W = [h(x,x')+—r(x,x'))p(x', x)+- A(x,x')ot(x'x) =tr[(h+ir)p+ilkot],
2

(5.19)

(2&) '(IVIII J-'II') Z h»h»~[(A lc'IIt)+(A Ic-;I&)*)=0 (5.20)
K,A&0

the usual expression associated with the theory of the self-consistent field with pairing. The first-order contribu-
tion, from R"',

thus vanishes doubly, both because of the matrix element in front and because of an orthogonality integral which
yields the factor 8»~. For the latter reason also the second-order terms omitted from the solution (5.11) do not
contribute to the moment of inertia calculation.

For the physically interesting second-order terms, we find first as the contribution from tR&"& and (R&"', Eqs.
(5.17) and (5.18),

—(2&) 'I(I+» E (~»—b~) l(A tc'I&) I'= —(2&) 'I(I+1) 2 (~»+@z)l(Alf'IIt)l'
K, A&O K,L&0

(5.21)

the final result following from (4.30) and because Bz= —hz. . There is finally the action of Eq. (5.16) in the second
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term of (5.10). Here we find after some calculation of the type exemplified in Appendix A, the contribution

(2&) 'lI(I+ 1) 2 2 ((I I f-;I &)(I'I f;IIt')(ItIt'I ~ILL')+(I
I f, l

&)*(I'If'I E.")(LE-'I I!&I')
KI&0 K'L'

+(I I f, I
It )(I-'I f; I

It ')'(&I'I ~
I
I&')+(I

I f; I
&)'(I'I f-*I&')*(LL'I~

I
&It' )) .

For the sum of (5.21) and (5.22), we find

(5.23)
Kl.&o K'I '

Thus, utilizing Eq. (5.13), we find

K,I,&o
(5.24)

where x refers to soothe component orthogonal to the
axis of symmetry. This is the self-consistent cranking
result derived several times previously. " If we ignore
the self-consistency aspect, we obtain the cranking-
model formula with pairing,

I(I-I A. IIt) I'
y~

K, L)0 gK+ bg,
(5.25)

LThe positive value of (5.25) is not in doubt since Bx
and hz as hole energies are negative. $ Equation (5.25)
is known to yield good agreement with experiment. "

Before leaving this subject, we wish to emphasize
once again that the derivation of this section is valid
only under the assumption that we can ignore terms of
order (j)/d, relative to those of order J/d, where (j)
is an average of the component of angular momentum
of a single particle normal to the G.gure axis, and J is a
similar component of the collective angular momentum.
This assumption is more plausible if rephrased to assert
that we can lend credence to small terms in the energy if
and only if they have a characteristic dependence on
the collective coordinates.

~I.K =—&I.K )

CQX =~LK
(6.2)

and 8~———BL,. Here QC&"' signifies the second-order
change in the self-consistent single-particle Hamil-
tonian arising from the jirst-order coe%cients, b3C&22&

the corresponding change depending on the second-
order coefficients. Thus, as written, the entire right-
hand side of (6.1) represents the driving term, which we
proceed to evaluate.

Under the assumption A W
I

—,I, we obtain, utilizing
the definition

C,x'&'& = (2s) '(JI A
I J,

I Jl -&)(A
I
c;

I
I:), (6.3)

and precisely the same techniques of evaluation as in
Sec. IV and Appendix A,

VI. SECOND-ORDER SOLUTION: SELF-
CONSISTENT SINGLE-PARTICLE ENERGIES

We return to the job begun in Sec. IV, and carry the
solution of Kqs. (4.6) and (4.7) to second order. Ac-

cording to Eq. (4.4), this is necessary to obtain the
single-particle energies to second order. From (4.6) and
(4.7), the equations to be solved are

(Sx—hp)Cgx &" (OA J—pb'3t'-'"'Ox~p)

= —b &xz"'C~x~"'+ (e~J„~Boxed~"')

+(Ogz„,b~"'&Oxz, "')+(e~z~,&~'"'ox'~), (6 1)

where we have adopted the concise notation of the pre-
vious section, with

where

(Ozz„,K.bOxz„&")=(2d)—'(JpA
I
I J;IJpE) p (A II, IA')(A'Ic, IIt),

A'QK, A

(ezz„b~"'bOxz "')=(2d) '(JyA
I J Z; I

JyIC) Q (A Ik;IA')(A'I lIc),t
A'QK, A.

(A I&'IA')= 2 ((A&"IV I
A'I")(I."If IE-")+(AI-"IV

I
AX")(I."If- IIt")'),

Kf/L I r

(6.4)

(6.5)

(6.6)

(8».6&""ex~.)=(2&) '(J~A
I I-'I-~l»IC)( 2 (AA" I~IItA')(A" lc- IIt')*(A'lc*lIC')

K(A' A

—b-", Zx (It~&'I~l&IC')b~, )r Zz LI(&'If*IL)I'+ I(&'Ig'lL) I']), (6.&)
'OA. B. Migdal, Zh. Eksperim. i Teor. Fiz. 37, 249 (1959) IEnglish transl. : Soviet Phys. —JETP 10, 176 (1960)); S. T.

Belyaev, Zh. Eksperim. i Teor. Fiz. 40, 672 (1961) /English transl. : Soviet Phys. —JETP 13, 470 (1961)j; D. J. Thouless,
Nucl. Phys. 21, 225 (1960); 22, 78 (1961); R. E. Prange, ibid. 22, 283 (1961);A. Katz and J. F. Blatt, ibid. 23, 612 (1961);D. J.
Thouless and J. Valatin, ibid. 31, 211 (1962); R. E. Peierls and D. J. Thouless, ibid. 38, 154 (1962)."For numerical evaluation see J. GriS.n and M. Rich, Phys. Rev. 118, 850 (1960); S. G. Nilsson and O. Prior, Kgl. Danske
Videnskab. Selskab, Mat. Fys. Medd. 32, No. 16 {19|I).
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C~x""= (2S) '(J& ~
I
~ &~-I ~& K)L(~ I ~v

I
K)+~ ,'»-, )r (Kil d''I K)] (6.8)

where Kz is any energy level having jd ——K, and therefore including, but not exclusively, the level K. We shalj

return below to the case A =
~ P .

With the assumption that neither 2 nor K=
~ 2 ~, and in view of (6.4) to (6.7), Eq. (6.1) is satisfied by the

assumption

and we then find for (A
~
c;;~ E), (K'i ~d,

~
K), the equations

(bz —h~)(~ I(';( K)—2 f(~K'( ~i K~')(~'I(:*;(K')+(~~'i AL IKE')(~'( ~-;-'( K')*)
X'A'

2 (~ I(7*+&~)l~')(~'lc IK)+(~~"I~IK~')(~" l~;(&) IK')*(&'~~;")~K'), (6.9)
A'gE', A

(gx+ &xi)(K&I d'I K) 2 —f (K(K'I ~
I
KKi')(Ki'I d'I K')+ 2 (K&K&'I ~

I
KK')(Ki'I d'I K'))

E',X1' K'X1'

= —& (K K'I~IKK')Ll(K'ff'IL) I'+ I(K'Ig'IL) I'] (6 10)
LE'

the eGect of the second term has so far been omitted.
After some calculation the result, not surprisingly, is to
alter the first term of the right-hand side of (6.1) to

L&ig ~(1) &&g (1)]C~xzo) (6.12)

In the event that either /K f

=-', or /A [
=-'„we re-

quire supplementary considerations. In the former case,
the first term on the right-hand side of (6.1) must be
taken into account whereas in the latter case there are
additional contributions to (6.4) and (6.5). These come
about as follows: In the decomposition

&)O)rJ "'= Q Og g„&~ &r &"+Ops„(-"g&r &", (6.11)
A'QA

During the course of the demonstration it is important
to recognize such relationships as

(Kl i'I-K) =-(Kfi'I -K), (6.13)

(6.14)(K~q, ~

—K)=0.
The form (6.12) suggests the addition to (6.8) of the
term

&(2) —(2s)—&L)gx~( )
&) g~~(1)]

X(Z~~IZ;I~&K)(~l~;&'&1K). (6.i5)

The equation of motion (6.1) will continue to be satis-
fied if for ~K~ or ~A

~

=-'„ in addition to Eqs. (6.9),
(6.10) the equation

(gx—b~)(~ I(:;"'IK) = —(~ I
~*'"IK)—2 f(~(~K') I ~) (~K)~')(~'[~'"') K')

X'A'

+(&(~&')
(
&

~

(&K)K')(~'
~
(.""'

(
K')') Lb'(K')/f '(K)] (6.16)

is true. The derivation of (6.16) is only marginally dif-

ferent from that of the previous equations of motion of
this section, depending, for instance, on the recognition
that we can write Pcf. Eq. (4.27)]

aux, & &=( )(Z&K)Z, &Z, K—)S,(K), (6.i7)—
where

b;(A) =&&);(A)= w( —)'('(2s)-((ay+i)u~), (6.18)

the minus (plus) sign pertaining to the case that A is a
hole (particle) state. The subscript "2"on u~ is meant
to describe a particular ja= 2 state. In consequence of
(6.17), the first term of (6.15) is of the form

derivation of (6.15) proceeds in close analogy with that
of previous equations for the 6rst- and second-order
coeScients. Let us note that the ratios b;(K')/b;(K)
appearing in (6.16) may or may not be 1 depending
upon whether or not E' refers to the same j3———,

' level
as does K Lanalogous to the need for an extension of
notation in Eqs. (6.7), (6.8), and (6.10)].An essential
proviso must be entered with respect to (6.19), however.
Since E=-'„we necessarily have A =~2. In contrast to
Cg~ ('), therefore, bC~~ (') does not contribute to the
energy calculation given below.

It is therefore possible to express the second-order
contribution 8hz&") to the single-hole energy in terms
of the coeff)cients defined by (6.9) and (6.10). The

With the help of Eq. (3.15) at appropriate junctures, the

bC~x'&'&-( —) (J&W ) S;Z,
~
y& —K) value of the expression

X(A ~(:;(2)~E)b;(E). (6.19)
hh)rJ "=(OKJ (3C +8K&i&)bOirg &'&)

+(exz (b~""+b~"")O&re„), (6.20)
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is rendered most concisely if Eqs. (6.9) and (6.10) are and
rewritten in the forms (@K+@K )(Kx I 4 I

K)—= (Kx I
m*

I
K), (6 22)

(6» @A)(A I ~', I K)—= (A I &;; I K), (6.21) thus defining the right-hand sides. We then have

~@».'"=(») '(Ji-KI J ;J ,-I JI-K)L(Klk;, IK)+(KI~;IK)g;,-;]
= (2&) 'CJ(J+1)—K']&(K

I C&+-+&-+]IK)+2'(K 1 ~'IK)l

+(2d) 'K[(KICK+ —k +)IK)+(Kf Cm+ —m ]IK)]. (6.23)

Physically, it is more meaningful to rewrite (6.23) as

where

(2) —gg (2)+gh (2) (6.24)

a@ "'= (2~)-'( —K(K—1)C(K I~+-IK)+(KI ~+IK)]—K(K+ 1)C(K I ~-+IK)+(KI ~-IK)]& (6 25)

is a change in the intrinsic energy, whereas,

bhJ t"=(2d) 'J(J+1)
XC(Kik+ +k +IK)+P;(Elm, IK)] (6.26)

can be interpreted in accordance with the equation

conditions on the coeKcients defined in Eq. (6.15).
These are obtained by equating to zero the right-hand
sides of (B15) and (316), applying the resulting condi-
tions to the relevant part of (6.15), and remembering
that particle and hole energies di6er in sign. Ke thus
obtain the conditions

8»z= h» —CJ(J+1)/2d]+bh»g (6.27)

as an increment in the moment of inertia 8 ~ 8' —bd~,
of the band based on the hole state

I K):

(I I f'"'IK) —(K I
f-'"' I ~)=o

(I, fg, IK)-(Klg, II.)*=0.
(6.32)

(6.33)

g~ = ', C(Kfu+ +I-+IK}++,(EI~';IK)]. (6.28)

In the cranking limit, Eq. (6.28) reduces to a result given
by Belyaev. "In general, however, it contains a number
of additional terms arising from the self-consistency and
constitutes a new result.

As the last formal topic of this section, we consider
the conditions which follow in second order from the
sum rule in Appendix D, the consistency of these with
the equations of this section, and any simplications re-
sulting therefrom. The relevant equations are (815)
and (816) which imply, respectively, in a notation
which again distinguishes particle- and hole-matrix
elements,

(Kif';IL)-(r. if-, 'IK)

=-Z&(Klf'lL')(I lg;IL')'
—(Klg'll-')'(I if- IL')) (6 29)

(Klg' ll-)+(L lg--'IK)'

We can verify the compatibility of (6.29) and (6.30)
with (6.9), of (6.31) with (6.10), and of (6.32) and (6.33)
with (6.16). It is a matter of forming the proper linear
combinations and utilizing the sum rule conditions and
their antecedents, Eqs. (4.30) and (4.31).We omit the
algebra. It is worth recording one additional equation,
however, which is a form taken by (6.9) after utilization
of (6.30):

(h» —h~)(A I c;,IK)

=g(A l(j;+k;)IA')(A'fc, lK)
A'

+ Z {(AK'IVIKI,')(K'If-, ll.")*(I-'If,iz")
K'L'L"

—(AK'I VIKI-')(&' If-~II-")(I'If'lL")'

+(AK'I V
I
KL')(K'I g; I

I")*(I'
I f'I I")

+(AK'I VI «')(K'If-
I
I-")*(I-'Ig*lL"))

+ P ((AK'IVIKI')(L'I f;;IK')
E'A'

and

= —Z{(Klg'lL')(I lg- IL')*
L'

+(Klf, lL')'(J. lf-;I J-')}, (6.30)

+(AI'I Vf KK')(I
I f;,IK')*) . (6.34)

VII. OTHER OBSERVABLES

(Kaid'I K) (Kid'I Kg) =0. (6.31)

These are conditions on the coefficients of Eq. (6.8),
relating them to first-order coeScients. There are also

~ S. T. Belyaev, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 31, No. 22 (2959).

In this section, we indicate with a few examples how
observables other than the nuclear energies may be com-
puted with the results obtained for the one-particle
density matrix. The material of this section is only
illustrative and introductory and will be developed
more fully in later work.
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A. Electric-Quadrupole Moments and
Quadrupole Transitions

We first show how our zero-order results are equival-
ent, for electrical quadrupole e8ects, to those of the
unified model. "As the simplest possible quantity, we
consider the reduced E2 transition probability for a
transition within the ground-state band of an even-
even nucleus.

B(E2;I +I')=(—PI+1)-' Q i(I'M'f Sly iIM)i',

where we have used the results and definitions

dR D~.lr '"(R)D„'(R)D~x'(R)

= (2I'+1) '(IMkm
i
IkI'M')(IKkm'i IkI'K'), (7.6)

Qo ——(16x/5) ""-r'l'0~'&(8@)-', (1+r3)p(x, x) . (7.7)

where, using an isospin notation,

SR =e |Pt(x)-', (1+r )r'Y "'(8d)g(x). (7.2)

Equation (7.5) yields directly the well-known result"

5
B(E2:I~ I') = emp02l (I020l I2I'0)

l

2 (7 g)
16m

The calculation thus depends on the structure of"

(I'M'l Pt(x)P(x) l
IM &

=(xIMl plxI'M')

ddt'(8
l
IMO)(I'M'0

I
d') &x&

I p I
xrl')

dA (d i
IMO) (I'M'0

i 6)p(RX,RX)

dR(RIIMO)(I'M'OIR) p(RX RX) (7 3)

utilizing Eq. (3.22) for the lowest order density matrix.
The last step of (7.3) involves simply a renormalization
of factors, (RiIMO)=(2x) '"(AiIMO), and the subse-
quent extension of the integral to include the third
Euler angle y. Writing EX=X' and with the help of
the transformation

V„~»(8d )=P V„~»(8'd ')D„„.&»(R), (7.4)

we can now write

(I'M'l m,.lIM)

dR(I'M'Ol R)D„,(R)(Rl IMO)

Xe r'7'o&'&(8d)-', (1+r )p(x,x)

=L(2I+ 1)/(2I'+1) O'I'(IM, 2m
l I2; I'M')

) 1/2

X(I0,20
l
I2; I'0)

l
ego, (7.5)

&6)
"For reviews, see C. J. Gallagher {Ref. 1); A. K. Kerman,

Endear Reuctioes (Interscience Publishers, Inc. , ¹wYork,
1959), Vol. 1, p. 427; S. A. Moszkowski, in Hendbuch der I'hysik,
edited by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. 39,
p. 411.

'4 In this section we ignore symmetrization requirements, since
they do not affect any of the results to be obtained.

We next consider the corresponding expression for
the neighboring odd nucleus (one nucleon added),
B(E2:JE~ J'E). Basically we require the density
matrix for the 3+1 particle system

(xJpEi p'""'I xJ'u'K)= &I'p'Kid—'(x)4(x)
I JpE&, (7 9)

not previously computed in this paper. We here require
an accuracy comparable to (7.3). Writing

(xJpK i p&
"+'~

i
xI'p'E)

=2-&I'p'Klu'(x) ll&&sly(x) I JpK&, (7.10)

the problem is to ascertain which intermediate states
contribute. One must, of course, include the ground-
state rotational band,

Q(J' Kpif"(x) iIMO&&IMOif(x)
i
JpK&

dodd'& J'p'K
i
P'(x)

i d&

X&8'iP(x) i JpK&P(diIMO)(IMOid')

dR dg(Rx)dg*(Rx)(Ri JpE)(J'p'KiR), (7,]1)

where we have used completeness and the unsym-
metrized zeroth approximation

&Rig(x) i JpE& dg(Rx)(Bi JpE)—, (7.12)

as well as a 6nal change in normalization.
Equation (7.11) is clearly the contribution from the

odd particle. To obtain the core contribution, we must
assume that to everyone of the A bands which can be
reached by destroying a particle in the ground-state
band of the even-even nucleus, there is a corresponding
excited band of the latter which is a hole-particle ex-
cited-state band, with the particle corresponding to the
state of Eq. (7.11). We thus enter as the additional
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contribution tocon r
'

7.10)

K I.)—(rr&I, K I.i—y(x) i
JeAE &J&(I' 'Kinet(x)irm, K r.—

d b m ans alrea yd utilizedmatrix. We find y mthe density matrix.

dx(IIO
i
Pr(x) r&0$(x) i

IIOILAIL

d@dri'( J' ri' Kf ri')(ri
i
JeKd =-(»)-' 2 & & R)J,(RirrO)dR(IIOiR)D, „& (

E—I.ig(x) inX(@'Kipt(xt ) irr&I, I&. I.)(—m, —'e K)

(7.21), one obtainslar integral inFor the angular
'

4 c;iK)+(3 ii&„i K)(K A c,iK)~).x {(KI,.I ~)(.4 I.,

dR &"&(Rx,Rx)(Ri JpK)( '&&'J'», 'IC'
i R),P

7.3 . In reach-w

t

10 I1II I mir—e I1IO)

IIO)=%2 '&'I8;,
the o

artie e-le-hole inte

where W re

ignore the p

that
2 '&2&~=~2 '&2(& *~A p),

write (ignoring symme ri

6K =(rfiIM, K—I,)gr, (Rx .

.11 and 7.13), we now have or8 virtue of (7.11) andBy vir

(7.23)

lly obtain

(7.24)P=ggRI ~

L (L If.IK)+")I, 7.25)' &((gR=&

I'e'K iy (x)y(x)J&K)

r)(J, KiR), (7.15dEP &~+»(Rx,Rx)(R
i I,

it matr&x of ( )

X Ir—
0

th t'1 t

'
el . Remembering

nswer (7.13), t e es is

=~1, respective y.

bvious answ

fers to m=

Ulg

0

(I

where

Rx)ir. (7.i6)= &"&(Rx,Rx)+iong( x&"+'&(Rx,Rx) =pP

iOIl 0e e
'

alo with the denvat fletely strict analogy witBy comp
(7.8), we then fm

B(E2;JK —+ J'E)

.r 02i(JK20i J2J'K)i, (7.17)
16&r

romagnetic Ratio

the magnetic mmoment in an exciteWe calculate t e
'

m t in
state of the ground-state an

7.7, but with respect
1 d h

ed by Eq.
article.'t 7.16), which inc uto the density

ces toc the well-knownit this too reducI the cranking limit,
result. "

KNOWLEDGMENT

ish to thanL. Celenza wishA. Klein and
for cpuh 1 f 1 discussions.

APPENDIX A

(4.5), w

x OKg„'pxrf jOKg„x,r&dndx "Kg„x,r&j (A1)(OKzp, OKJp) x Kzp

the normaliza-1 . We have from theiven by (3.21 . ewith OKgp giv
tion chosen in

dp do
i (n, oi J&iK '=1sing dP (A2)

e of the details ofrovide some 0h Appendix we pInt is
tecah calculations repor

estu yEq.

&i
= (IIO

i (&&0)., i IIO),

the usual operator,where p,~ is t e u

4'(x)e-&t(x),(em op=

(7.18)

(7.19)

and from Eq. (3.42)

dxi8K(x) i'=1. (A3)

s as soon as we noticethen follows as s
cross terms p pro ortiona

The result Eq. 4.5)
'shin of the(7.20) the shin5 )+-'(1—r,)g„S„, vani g

&r 0 x). (A4)—ri J&iK)8Ki(x)8K(R(rr, rr, x .dxdff(JI&&K jd)( rf J&i—
. Prior, Ref. 1 .11."S.G. Nilsson and 0. ', 1 .

', (1+r, )(f„+g„-Pm= g

hased sphericald fers to the app p
'

ro riately p aseshr r eall

pcomponents o
Int ep
ing cocontribution requi
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Here it is the integral over x that vanishes as one sees
by utilizing Eq. (3.25).

As a result of the choice of phase in Eq. (3.26), we
have

where one utilizes (3.15) and the definition

I RK)= 8(srj&(x) = 8a(R(sr p,0)x) .

With the help of (3.48) we then find

(A7)

d@(JpKI 8)J~(BIJpK&1)=(SKIJg
I
JiiE&1) ((RL)l j*l(RK))=—(—LI j'I —E)=(LI j-*IK) (Ag)

= [(JWK)(JaE+1)]'i'. (A5)
Similarly,

We turn then to the derivation of (4.21) and (4.22).
In this connection some prior remarks concerning the
derivation of (4.17) will be helpful. Most straight-
forwardly the result of the calculation in (4.17) is

(O&& ~ O&J' ) = (4&)-'((J~L
I I-'I J~K)(L

I j*lK)
+(I/l L

I
J,

l Jp——K)((RL) I j;l(RK))}, (A6)

(Jp LI I;IJ—p —K)= (JpLI J;
I
JpK) . (A9)

From (Ag) and (A9), it follows that the two terms of
(C7) are equal.

We turn now to the derivation of (4.21).To illustrate
the basic technique involved we consider the quantity

bsci(xri, x'8') = dydy' V(xy; x'y') Q Oiz, [y'&]Ox', 'Cy8i'g&i'
Ii, Ic&o;J,pc

1
dydy' V(xy; *'y') 2 C(& I JpL)(J+K I &')8i(y'@)8~'(y&')

2 X,I&O; JIs

+(—it
I
Ji L)(J~K

I
&')8~(Riy')8~'(Ri'y)+(~ ~ —@(&'~—&')](JL

I
I-*IJK)(L

I f'IK). (A10)

With the aid of the invariance property [(3.21) and (3.25)],

we find

(Or.z„8~aD~s„)= 2
I,'Z')O, JI

Oxgp[x, R]= 0~a~ [x @]

d8'dxdx'dydy'Ozz„'Cx, @]V(xy; x'y')

(A11)

&& (& I
I'~'L') (I'~'K'I &)8~ (y'@8~'(y&') O~~.[x' @'](JL'II-'I JK') (L'

I f'I K')

From the completeness relation

P(JL'I J;IJK')(nI J&L')(J,I 'Ie')= J,(a)b(g —g), (A13)

and after integration by parts, ignoring the contributions in which the collective angular-momentum operatorJ;is converted by its operation on the single-particle functions 8 into j;, rve obtain

(Or, z„,bBCiOz g„)= 2
L, 'K'&o

er, g„t[x,8]V(xy; x'y')8L, (Ry')8''i(Ry) J;(8)O~g„(x'A)(L'I f; I
K')

= 2 ((JLII 'I JK)(LK'I VIKL')(L'lf-'IK')
L'K'&O

If we suppose that Ccf. Eq. (A8)]
+(I—LI J-'I I—K)(LC«']I VIKCRL'])(L'lf'IE')}. (A14)

(L'If'IK') =(CRL']
I f-'lL«']) = —(—L'I f-*I—K'),

and remember Eq. (3.25), we find with the help of (A9)

(Ozz„,bX&Oirz„)= Q (JI.
I J;IJK)(LK'I VIEI')(I'I f;IK').

all L'E'

(A15)

(A16)

This result accounts for part of the right-hand side of (4.21), and the remainder can be derived in a similar manner.
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We consider next the derivation of (4.28). As a representative piece, we study [cf. (A14)]

(e~~ 8&&o~~.) = 8~,~ &{(I&R
I
—@~-'(@(~l»A)([RR]lt'I I'I &I')(I'I f'I A')

+(&& R'[ &)~ (&)(—@
I
~~R')(R'R'I l'I [«]L')(I'I f'IR'))

=8~.~ 2(—)'+'(~
&

—
2 I~-'I~~i)([RHA" I

V
I sl')(I'If'I &')

+8~.a 2( )'(~—1 k I
~—

I ~& k)8&'&
V I (Rk)L')(I'I f*l A")

= (—)'+&8,, Z(Z„—k I Z, I S„k)[([RHR'I V
I
kL')(I'I f, I

If.")

—(4R'f I'& [R2]L')(RL't f'(RI&-')], (A17)
where the sum is over E', L') 0. Ke now note that

(lR'I v I [R2)L')=([Rs][«']l
l'I [R'k][RL'])= ([Rk], —A"

I
v

I 2
—I-') (Alg)

where we have used Eq. (3.25) in the form

as well as the equation
8 (Rx)=8 (x),

8 (R'x)= —8 (x),

(A19)

(A20)

which follows from the same considerations as yield (3.43). It follows straightforwardly now that

where ba is given by (4.28).
(O», 8XO» )= —(—)'+~(28)-&8~ &(Z+-,')8a, (A21)

APPENDIX B

We deduce the consequences of the completeness relations or sum rule in the form given in Eq. (4.29). In general,
this involves some complication beyond zero order owing to the intertwining of variables. These complications
are only apparent, however, to the order of accuracy for which equations of motion and supplementary conditions
are compatible.

%e write

Olrg [x 8]=A&r O&rg„&'&[x,n]+ P O~zg„&'&[x,h]Gzz +Q OLg "'[x&]Fez (B1)

To exploit (4.29), we also require the relations

which in turn yield

r&O&rg &'&"[x &4]=(—)~+&—~Ogg „'[x,n],

r &0gg, „"'[x,6]= ( )& O&r g„—' [x,R—], (B3)

The proof of (B2) depends on the statements
+Zz( )'oZ ~, ."'[x&4]G«—' ) (B4)—

J
(&4) ( )p KD J(&4) ( )

—J+p+KD J( &&)

8&r(R&x) = 8 &r(Rx), IC)0,

8 rr(R&x) = —8'(Rx), R') 0,

(B5)

(B6)

(B7)

The consequence of the sum rule (4.29) to zero order is already known [Eq. (3.42)] to be the completeness rela-
tion for the set of functions {8&r(x),r~8&r~(x)) To obtain more .generally the consequences of the sum rule we
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write it out with the aid of (81) and (84)

—2' [b(8—8')+ b(tf —21')]ii(x—x')

= p ~A« ~'[O«f„[x 21]O»f '[x' fl']+Ogf [x fl']0gf "[x'8])

+ p [[G»L"+GL»f]OLf„[x,fl]O«f„[x',fl']+ ( )»—L[GKLf'+GL«f]O gf„[x,ff,']OLf„'[x',ff]

+FLK OLj,[x,&]O»f '[x'@'7+FLK"o»f.[x,ff]oL»'[x'22']

+( )+—FLK Ogf [x,n']OLf„2[x'21]+( )+—Ff» OLJ [x,n']Ogf„'[x', 21])

+ Q [GLK'GKK f'[OLf [x ff]O»f„'[x'ft']+( )~—»'( ) —»O-gf„[x,ff ]OLf„'[x f~]]
JfsLKK'

+F fF f*[O [x n]0gf '[x'@']+( )+«'( —)»+"'O»—f [x )4']OLf "[x' 21]]

+GLK. FKK '[OLf„[x,ff]Ogf„'[x'8']+ ( )'(—)'O—»f„[x,fl']OLf„[xYz]]

+FLK G»» '[OLf„[x,ff]O«f„2[x'fl']+( )L+»'(—)» «'O—gf„[x,ff']OLf„2[x',8]]}. (88)

%e shall satisfy this relation order by order by means of the expansions

6 J 6 J(l)+g J(2)+. . .

~LKJ =FLKJ(j)+~LKJ(2)+. . .

f
A»f [2= 1—/(2»f(" f'+

(89)

(810)

(811)

For the first-order coeKcients we then find
J(l)+6 J(l)* P

F J(l) I; J(1)

(812)

(813)

For the normalization change (diagonal second-order contribution) we find, remembering (811)

~~»'"'I'=Z[(G»K '"'~ -'+
~

F»» ""~'-), (814)

which is further evaluated in Eq. (4.35) of the text. In addition F«f'-) is undetermined and may be set to zero.
Finally, for the ofI'-diagonal second-order terms we obtain

GLK""+G«L'"'+Z{GLK '"'G»» '"'"+F '"'F ""'}=0
K'

F z(2) F f(2)+Q F,f(1)G,J(()* F,f (1)G z(1)+—0
A. '

(815)

The verification of Eqs. (812)—(816) utilizes the same procedures and approximations as needed in the work
of Sec. IV.


