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The relative importance of exchange electric currents in nuclear beta and gamma transitions is estimated
by using their relation to the Van Vleck potential and to the sum rule for nuclear photoabsorption cross
section. Though the exchange electric currents are not experimentally observable because of the Siegert
theorem, the estimates give us an idea of the difference between a free nucleon and a nucleon inside a nu-
cleus. It is found that the magnitude of the exchange electric current relative to the convection current is
more than 40% at the Fermi surface.

I. INTRODUCTION

HERE has been some controversy" about the
question whether there is a signi6cant difference

between the conserved-vector-current (CVC) theory'
and conventional beta theories. 4 By "conventional
theory" we mean the bare-nucleon coupling theory.
The difference between the conventional and CVC
theories stems mainly from the (m.s ev) coupling with the
same vector coupling constant as in nuclear beta decay.
The existence of the above coupling has been veri6ed by
two kinds of experiments: direct measurement' and
weak magnetism. ' The fact that the magnitude of the
weak magnetism is just what is expected from CVC
theory also implies that it is too small' to be influential
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on the spectra, life times, etc. for the ordinary low-

energy beta transitions.
Another consequence of the CVC theory is the

appearance of the exchange electric current, ' which is
assumed to vanish in the case of the bare-nucleon
coupling theory. For the electromagnetic transitions,
the corresponding exchange electric moments have long
been known to exist, but the magnitude of their con-
tribution has never been studied carefully, probably
because the Siegert theorem implies that the isovector
part cannot be experimentally measured. '' In the
theory of beta decay, the quantity corresponding to the
exchange electric moment had been studied"" long
before the CVC theory was proposed. The magnitude,
however, turned out to be large according to the semi-
empirical estimate due to Ahrens-Feenberg" but very
small according to Pursey. "In this note we try to settle
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this controversy and we con6.rm the previous assertion"
that most probably the correct value lies between these
two estimates.

Since the electromagnetic (isovector part) and CVC
theories are quite analogous, both cases are treated
simultaneously in this note. In Sec. II the essence of
previous works is recapitulated. In Sec. III the origin of
the exchange electric current is discussed on the basis
of the one-boson-exchange model of the nuclear po-
tential. "In Sec. IV the relationship between the transi-
tion operators and the Van Vleck potential&4 (or the
effective mass in the nuclear many-body problem) is
studied. From the simple-model calculation in Sec. IV
and also the sum rule due to Levinger and Bethe" for
the nuclear photoabsorption, we are led to the con-
clusion that the magnitude of the exchange electric
current is 40'P&» or more of that of the convection current.
The origin of disagreement between Pursey's estimate
and ours is also discussed.

II. REVIEW OF EXCHANGE ELECTRIC
MOMENTS

In this section, the so-called Siegert theorem' and its
extension~ to weak interactions are briefly described.

In the case of electromagnetic transitions, the con-
servation law of charge,

divJ(x)+ LH»»&, iJp(x)j=0,

leads us to the identity

(ff J(x) gradU(x)d'xfi)

=(f~ (PiJ»»&(x)pjU(x)d'x~i)

p(Ef E )(f~
Jp(x) U(x)d'x'~ i), (2)

where the electromagnetic vector potential is assumed
to have the form A(x) = VU(x), since we are mainly
interested in the electric transitions in the following. In
Eq. (2) the quantities E; and Ef represent the masses
of the initial and final nuclei, respectively. The nuclear
Hamiltonian is given by HN =T+ V, where T and V are
the kinetic and potential energies, respectively. Now, if
we assume that the nuclear potential V commutes with
Jp(x), then Eq. (2) is clearly consistent with the assump-

tion of "additivity" for the charge and current densities,

A

Jo(x)= Z p(1+rp")ep(x —x'), (3a)

and

J(x)= Q —,'(1+rp&*»)e(y~/Jd') p(x —x;), (3b)

where p(x) represents the Fourier transform of the
Hofstadter form factor for a proton. However, in actual
fact the nuclear potential V does not commute with
Jp(x) because of the presence of exchange forces, so that
we must abandon at least one of Eqs. (3).The Siegert
theorem asserts that it is still a good approximation to
retain Eq. (3a). This will be shown explicitly in the
next section. Therefore, the extent of failure of "addi-
tivity" is given by the magnitude of exchange electric
current, 1'$V,Jp(x)jU(x)d'x.

For the weak interactions'" it has been shown that
the vector part of the weak current J„&r»+(x) should
satisfy the continuity relation similar to Eq. (1),

divJ & "»+(x)+LH»»&
—V., iJp& "»+(x)j=0, (4)

(f~ J&"»+(x) rg ad U(x)d' x~i)

=(f[ Pa~ —V., iJp'v'+(x))U(x)dPx[i)

=i(E~ E;)(f~

Jp&r»+(—x) U(x)d'x~4)

—(f~ f V„i Jp'&+»( x)) U(x) d'x~i) (6).
Analogously to the electromagnetic case, we may assume
the "additivity" only for the weak charge density,
Jp&r»+(x) (not for the weak current density),

provided that validity of the CVC theory is assumed
and a possible small contribution from radiative correc-
tions is neglected. In Eq. (4), V, represents the charge-
dependent parts of HN such as the Coulomb potential
and neutron-proton mass diGerence. Hereafter, let us
rewrite H~ as T+ V+ V., the nuclear potential V being
assumed to be charge-independent. For the lepton 6elds
of electric type which are given by

L(x) =grad U(x),

the following identity is useful:

"J.I. Fujita, Brookhaven National Laboratory Report No.
BNL 837 C-39, 1963 (unpublished), p. 340.~g¹ Hoshizaki, S. Qtsuki, %. Watari, and M. Yonezawa,
Progr. Theoret. Phys. (Kyoto) 27, 1199 (1962); S. Sawada, T.
Ueda, W. Watari, and M. Yonezawa, ibid. 28, 991 (1962);32, 380
(1964): A. Scotti and D. Y. Kong, Phys. Rev. Letters 10, 142
(1963)."H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 82 (1936)."J.S. Levinger and H. A. Bethe, Phys. Rev. 78, 115 (19SO).

Jp&r»+(x) =g&v» Q r~&"p(x—x;),

and the nuclear-potential term J'
t V,iJp' v'+(x) jU(x) d'x

stands for the extent of deviation from "additivity. "
For practical purposes, Eq. (6) is especially usefuP when
we adopt the so-called Ahrens-Feenberg approxima-
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tion" or, equivalently, the isomultiplet approximation
for the term including V,."However, we do not con-
sider this point further in this paper.
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III. ORIGIN OF EXCHANGE ELECTRIC
CURRENT

In order to clarify physical meaning of the exchange
currents, let us first examine the one-pion exchange
process shown in (a) or (a') of Fig. 1.The matrix element
can be written in terms of the function given by

'U...), &'(xl,x2).

FIG. 1. Feynman dia-
grams of the exchanged
electromagnetic and beta
transitions.

+ ~ + ~ 0 ~

= —2(22r) 'g 2(2(~"& X~&2&) d4q d4»

A„(x) [or L„(x)]= a„(K)e "»d K. (Sb)

Xy4&"52(-,"K—q)I'„(q» —
q, —,'K+q)

XQ)S(2«+q)y (2)a&(«)e 44(»—4 »2)e—is(»—S+»2)/2 (Sa)

where the electromagnetic vector potential A„(x) [or
the lepton fields L„(x)]is given in the form

corresponding to the simple one-pion-exchange process,
we can put Eq. (10a) into the following form:

'U. .h& &(xl,x2)

2[U (XlsX2)s ra Xlss+ra X2)s]sf ss(2 (Xl+X2)). (10C)

It should be noted that in the "static limit" tj.= t2, the
term associated with the fourth component A4 in Eq.
(10c) vanishes, to justify the "additivity" for the ex-

change charge density.
For the electric transitions, we have

In the case of a pion being exchanged we have A(x) = VU(x), A4(x) =0. (11a)

r.(2» q, 2»+q) =—2cq.E (»'), (Sc)

where C stands for the unit charge t, or the weak coupling
constant g&v&, and F (K') is the pion electromagnetic
form factor. If the momentum transfer x is su%ciently
small, namely

~

»'
~
&&)42, we have the following relations:

~F(2» —q) = ~«(2»+q) =(q2+t 2) ', (9a)

62 (x2» q) I'„(22—» q, -', «+—
q) A2 (2'»+ q)

2C(8(8q„)6) (—q), (9b)

according to the Ward identity. "Inserting Eq. (9) into
Eq. (Sa) and carrying out the partial integration in q
we obtain

'U. ,h& )(xl,x2).

= —2(22r) 'g»z&'(~"'X~"') d'q

X/2&4)(q2+442) —)/2&»e —stl (»4—*2&(X,—X2)

In the simplest case for the Ei transition, we may put
U(x) simply proportional to s, to get the equation

x,"A(-,'(xl+x2)) = U(x;), (2= I, 2), (11b)

thus we have the important expression for the static
exchange electric moment V, ,),& &(xl,x2) given by

Ve»ch (Xlsx2) a

=2[V&»&(xl,x2), r ('&U(xl)+ra&2&U(x2)], (12)

where V& '(xl, x2) is the static one-pion-exchange po-
tential obtained by putting tl= t2 in Eq. (10b).

For the higher multipoles E/, we still have Eq. (11a).
According to the mean value theorem, we have

U(xl) —U(x2)=(xl —x2) (&U(x)), „, (13a)

where xo denotes an appropriate position between x~ and
x2. If the variation of U(x) within the range of nuclear
potential is small, we have

(xl—x2) A('2 (xl+x2)) = U(xl) —U(x2), (13b)

X d'Ka„(«)e ' "(»'+»""

If we introduce the function

U» (xl x2) (22r)
—

4g 2(g(1), rg(2))

"J.C. XVard, Phys. Rev. 78, 182 (1950).

(10a) which is the approximate relation corresponding to
Eq. (11b).It is, then, clear that Eq. (12) holds approxi-
mately also for higher E/.

Since Eq. (12) is based on the Ward identity Eq. (9b),
the above discussion can be straightforwardly extended
to the case where the nuclear potential is given by a
superposition of the one-boson-exchange processes,

(10b)
p —p(&)+ p'(p)+. . . (14a)

Thus, corresponding to the sum of the diagrams in
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Fig. 1, the static exchanged electric current is derived, states. From Eq. (16) we obtain

2

V, ,h(x&,x2) =iLV(x&,xz), P &. "&U(x&)].

2x20 .VZ
a(W)dW= — (1+0.8x) .

M
(15a)

This is just the relation which we wanted to prove in the
nonrelativistic limit.

Our next task is to estimate the magnitude of the
commutator LV, P; &~ ~"&z;] in a nucleus. Here we
would like to point out that a closely related subject has
been already investigated thoroughly; the sum rule for
the nuclear photoabsorption cross section of the
electric dipole type. The best known form is due to
Levinger-Bethe, "

i[V, Q; ~&'&r;]

=ix P V(r, ;)(g&'& —g&'&)(r;—r,)P;,~. (17)
(4)

The efFective single-body operator M,«") is defined by
the expression,

where

M &
0& —Q. ~&ou&o (19a)

(18)

Let us assume that the initial and final states are ex-
pressed by the Slater determinants. Since the exchange
term may be neglected" in the first approximation, the
eHective operator M,«(" is given by

0.015A (1+0.4) MeV. (15b)

For the case E=Z and the Serber force x=-,', we have
the value

X ((&bz(rz), V(ram)(r~ —rz)P~z P&(r&)+(r2)))„„.z. (19b)

One can easily see that the commutator I V, g ra "&z;]
with which we are concerned just gives the second term
of the right-hand side of Eq. (15a) or Eq. (15b). Since
this term depends on the assumed nuclear model, several
authors'~ have demonstrated that the coe%cient might
possibly be bigger than 0.8. However, Eq. (15) seems to
be the best since it is consistent with experimental
knowledge" (see Fig. 2 in Ref. 18) and also with the
dispersion relation argument. "The Levinger-Bethe sum
rule apparently suggests that the magnitude of the con-
tribution of exchange electric currents is 40%%u&& of that
of the convection currents. This statement is more
carefully studied in the next section.

IV. EFFECTIVE SINGLE-BODY EXCHANGE
ELECTRIC MOMENTS

The exchange electric moment iLV, Q;~"&r~] is a
two-body operator. If we average one of the two co-
ordinates over a closed Fermi sphere, the corresponding
effective single-body form can be obtained. Let us
assume that the nuclear potential has the form

where 0= (-,')&rr, 'A represents the nuclear volume. Then
we obtain

(A —1)
u&')= x&—it', ) d'rfd'p V& &e " ' "', &21&

QQ„

where fl„=x4&rpr'A, pr being the Fermi momentum. In
calculating Eq. (21) we may carry out the integration
with respect to r over the in6nite volume if the range of
potential V(r) is much smaller than the nuclear radius
Now Eq. (21) can be expressed in a simple form in terms
of the so-called Van Vleck potential" C(p&) as follows:

u&'& = —V„P(P&), (22a)

d»pz d'r V(r)e"~~&"&' (22b)

For simplicity, the one-particle wave functions are
assumed to have the form

V= —Q V(r;i)(1 x+xP;;~), — (16) I nmt&nz

where I'~ stands for the Majorana space-exchange
operator. In Eq. (16) we omitted the spin-orbit inter-
actions, because their contribution is already known to
be small" and sensitively depends on the individual

» K. Pkamoto, Phys. Rev. 116, 428 (1959);J. W. Clark, Can.
J. Phys. 39, 385 (1961); K. Okamoto and K. Hasegawa, Progr.
Theoret. Phys. (Kyoto) 2S, 137 (1962); T. P. Wang and J. W.
Clark, Bull. Am. Phys. Soc. 10, 71 {1965)."J.H. Carver and D. C. Peaslee, Phys. Rev. 120, 2155 {1960)."M. Gell-Mann, M. L. Goldberger, and W. E. Yhirring, Phys.
Rev. 95, 1612 (1954).

* V(r) = Vp, r(b
=0, r&b, (23a)

It is well known that the existence of Majorana ex-
change forces leads to the velocity-dependent average
potential, namely the Van Vleck potential, and it is one
of the most important causes of the di6'erence between
the mass of an isolated nucleon and the e6'ective mass of
a nucleon in a nucleus.

For the purpose of illustration, let us calculate Kq.
(22) by assuming the square-well potential, from which
the original sum rule" in Eq. (15) was derived, namely
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where
triplet range

depth

singlet range

depth

b=1.8 F,
Vp = 1.50(—,

' pr') (1/Mb')

b=2.5 F,
Vp=0.95(xpx')(1/Mb') .

(23b)
R 0.5

1 sin(pq —p»)b sin(p~+p»)b

2pi px p» —pi+ p»
(24b)

The numerical results are obtained by inserting Eq. (23)
into Eq. (24). In Fig. 2 the ratio E of the effective ex-
change electric current u('& to the convection current
pr/M is shown for the cases of rp= 1.2, 1.37, and 1.5 and
x=~. In Ref. 15, the values r0=1.37 and 1.5 were
adopted and the factors (1+0.91x) and (1+0.80x) were
obtained in the sum rule. The latter value is usually
quoted in references. Figure 2 shows that the nucleons
having the momenta approximately equal to p» are
responsible for the above factors. Therefore we can
conclude that the ratio of the exchange to convection
currents is 40 jo or more insofar as the momenta close
to p» play an important part.

It is straightforward to extend the above argument on
F1 to higher multipoles El Instead of Eq.. (17) we use

[V, P, ~"&(x;+iy;)'j

=x P V(r;;)(~&'~ —~&'&)

In this model Eq. (21) can be easily integrated analyti-
cally and we obtain

(47»)'Vp sinp~b sinp»b
C'(p&) = (»I —1) QQ„pub

' sinp»r cosp~r
dr, (24a)

and
(4pr)'Vp sinp&bsinp»b sinpFbcosp&bn"'= (A —1) PlQQ„Pp3b Pl

I

PF

P

I

RPF

Pro. 2. The ratio R of "effective exchange electric current"
to the convection current which was calculated in Sec. IV by
assuming the square-mell potential and the Fermi-gas model with
a sphere of radius re'/'with r0= 1.2, 1.37, and 1.5 F.In the 6gure,
the Serber force x= —,' is assumed.

be written in a compact form i[V, P; ~"'U~(x;)j for
general electric I-pole (El) transitions, in the non-
relativistic limit. If we use only the simplest diagrams
in Fig. 1, the one-pion exchange, we obtain the ex-
change electric current i[V' ', P;~&"U~(x;)j which
clearly differs greatly from the total commutator'0
i[V, g, ~"'U((x,)j.

A simple estimate of the above commutator can be
obtained by looking at the I evinger-Bethe sum rule;
the latter suggests that the E1 transition amplitude in
a nucleus is enhanced by about 4(Fgq. In order to ascer-
tain this point, we derived in Sec. IV the expression for
the effective single-body operator from the two-body
operator [V, P, ~"&r~j. The ratio R of the exchange to
convection currents turned out to be consistent with the
I.evinger-Bethe sum rule at the Fermi surface p= p&.

The whole content of this note can be more clearly
seen by introducing the idea of "effective mass" 3E*.
As is well known, an average potential inside a nucleus
becomes velocity-dependent in the presence of exchange
forces; the so-called Van Vleck potential is given by

V = C (p) = —Vp+-,' V"y'-.

Then the effective mass M* is defined as

p'/2M*= p'/2M+-' V"y' (26b)

The calculation in Sec. IV for the E1 transition ampli-
tude is symbol. ically expressed as follows:

&&((x'+iy~)' —(»+iy )')P" (25a)

1 1
u+ L V,irl= — n+ ~'" p= p. (2»)

3f M M*

=. 2 V(~*»)( '*' —"')((*'— )+ (y*—y~))

&(l(x;+iy~)' 'P,,»» (25b).
At the step from Eq. (25a) to Eq. (25b), the fact needed
was that V(r) is of sufliciently short range, as noted in
Sec. III. Then the rest of the calculation goes through
precisely in the same way as in the case of E1.Thus the
ratio R in Fig. 2 can be applied to general higher
multipoles of El type.

V. CONCLUSIONS AND DISCUSSIONS

In Sec. III we proved that the electromagnetic and
weak exchange electric currents as shown in Fig. 1 can

The ratio R of the exchange to convection currents is
now given by

8=M V"= (M/M*) —1. (27b)

Figure 2 shows that E&0 4 at p =p, for rp& 1 5. On the
other hand, the sum rule for the photoabsorption cross

~ Qur argument in this paper cannot be applied to the magnetic
multipoles because, in that case, we have A(x) or L(x) =curlV(x).
Most recent review of exchange magnetic moments is given by
H. Miyazawa, J. Phys. Soc. Japan (Tokyo) 19, 1764 (1964).
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section is obtained in a similar way:

o (I'1)dlV =2s'a([(p/M)+ [V, ir])oo

=2x'a(-'4) [(1/M)+ V"]= (w'uA/2M*) . (28)

Therefore, if we assume that M* is a constant inde-
pendent of momentum, an effective mass M* appears
both in the E1 transition amplitude Eq. (27a) and the
E1 sum rule Eq. (28). In this approximation the
I.evinger-Bethe sum rule corresponds to M*=M/1 4, .
and the same M* applies to the enhancement of J'1
transition by the factor (1+8)= 1.4.

This value, E—0.4, looks reasonable as can be seen
from the following considerations:

(a) The relation M~= M/1. 4 is consistent with the
effective mass M*'= 0.4-0.6 of the theory of the nuclear
matter. ""It is not clear though, whether the quantity
M~' is equal to M* in Eq. (26b) because the decrease
of eGective mass inside a nucleus is due to various
causes "

(b) The I.evinger-Bethe sum rule, from which the
value E.=0.4 is suggested, is probably a good repre-
sentation of our experimental knowledge. ""In actual
nuclear transitions the nucleons with monenta px=pp
play the most important part, although the precise
average value of p~ should depend on the individual
transition.

(c) The model assumed in Sec. IV is certainly quite
unrealistic, but the general features of Fig. 2 seem to be
more or less independent of the shape of the nuclear
potential. As seen from Eq. (22a), our effective exchange
current is only a derivative of the Van Vleck potential,
which has been discussed in detail in Ref. 14. Of course
it is possible to estimate numerically the commutator
i[V, Q s&"r;] for more realistic potential and wave
functions, but we preferred not to do so because in

practical problems we do not use this quantity at all if
we make use of the Siegert theorems or its extension to
weak interactions. '

It is interesting to note that our value of 40%%uo is about
3 times smaller than that of Ahrens and Feenberg but
has the same sign as the latter semiempirical estimate.
The reason why the Ahrens-Feenberg value is an over-
estimate has been discussed by Blin.-Stoyle. ' On the
other hand, our estimate is much larger than Pursey's.
The origin of disagreement between Pursey's estimate
and ours lies in the following facts. Pursey expressed
the Majorana exchange operator as PP'—(P and P'
are the spin and isospin exchange operators, respec-
tively), so that the exchange term which Pursey
neglected just corresponds to the direct term which we
treated in this note, as is clearly seen from the identity

P~P~(1 PM@ P~) —PM(1 PllrPaP~)

Therefore, Pursey's result should be added to our esti-
mate. It should also be remembered that the state-
dependent e6ect due to spin-orbit forces was omitted
from our consideration. Moreover, as mentioned in
Sec. IV, there remains some possibility that our value
of 40% is an underestimate because we neglected
correlations among nucleons.

If we assume that the numerical result, 40%, is
exactly correct, we are led to the following equality for
the beta transitions:

(fl Ã~ Vc, ~' 2—,", &z~(';)rg"']
I f)cvc

{[( + )] (' ' s ))conventional &

(29a)

using here the notation of Ref. 7. As a special case of
Eq. (29a), we obtain

(29b)

~'K. A. Brueckner, The 3faey-Body Problem (John Wiley R
Sons, Inc. , Neer York, 1958), p. 47.~ The application of 3f~' to the case of Ei beta transitions
has been independently proposed by R. M. Spector (private
communication).
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