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Generalized Faddeev Integral Equations for Multiparticle Scattering Amplitudes*
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The Faddeev integral equations for nonrelativistic three-body scattering amplitudes are generalized
to apply to the multiparticle-scattering problem. The equations obtained are similar in structure to the
X-body formulation of Weinberg and have the same desirable feature, namely, that 8-function singularities
in the kernel due to disconnected processes have been removed, so that Fredholm theory may be expected
to apply. A possible advantage of the present (Faddeev-type) approach to the E-body problem is that the
potentials do not appear explicitly; they have been formally eliminated in favor of the two-body scattering
amplitudes. In addition to the integral equations for the scattering amplitudes, in all channels, we obtain
integral equations for the wave function and for the effective (or optical) potential. A minimum principle
for the effective potential obtained previously for %=3 is generalized to arbitrary X. To illustrate the
possible utility of these equations for a wider class of problems where potentials are not defined, we have
shown that the Lee model in the three-particle sector can be reformulated in terms of the Faddeev equations,
without introducing field operators.

1. INTRODUCTION

ECENTLY, Weinberg" has shown how multi-
particle scattering theory can be properly

formulated in terms of integral equations with square-
integrable kernels. The attractive feature of this
reformulation is the elimination of 6-function singu-
larities, which are present in the kernel of the ordinary
Lippmann-Schwinger equation, ' and which arise from
disconnected processes (where some of the particles do
not interact). Thus Fredholm theory may be expected
to apply. ' We wish to point out a slight variation of the
Weinberg formulation which has the property that the
integral equations reduce, for the three-body problem,
to the Faddeev equations' and a6ord a natural multi-
particle generalization of these equations. One possible
advantage of this alternative form is that while the
interparticle potentials appear explicitly in the
Weinberg equations they are, in the generalized
Faddeev version, formally eliminated in favor of the
scattering amplitudes for subsystems of particles. This
may be useful in those cases where the potentials are
singular while the scattering amplitudes show smoother
behavior. ' On a more speculative level, the appearance
of scattering amplitudes rather than potentials would
seem to allow a more straightforward generalization to
the relativistic domain where the potential model does
not apply. In an attempt to give this point additional
credence it is shown, in Sec. 2, how the Lee model in the

~ Supported by the National Science Foundation.' S. Weinberg, Phys. Rev. U3, 8232 (1964).
z See also, R. Sugar and R. Blankenbecler, Phys. Rev. 136,

B472 (1964).' B.A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
4It has been shown by W. Hunziker, Phys. Rev. 135, B800

(1964) that the kernel in the Weinberg integral equation is of the
Hilbert-Schmidt type provided the potentials are square-
integrable. Presumably an analogous result, can be obtained for
the generalized Faddeev equations, although we shall not attempt
to do so here. For a treatment of the three-body case see Lovelace,
Ref. 16.

'L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)
t English transl. : Soviet Phys. —JETP 12, 1014 (1961)j.' K. A. Brueckner, Phys. Rev, $7, 1353 {1955}.
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three-body (X-8-8, V-8) sector" may be reformulated
in terms of the Faddeev equations. The A"-body integral
equations are obtained in Sec. 2 and the complete 5
matrix is dehned in Sec. 3 where, in addition, a proof
of the unitarity relation is sketched. In Sec. 4 we obtain
integral equations for the scattering and bound-state
wave functions. Integral equations which determine the
effective potential (and, in particular, the resonance
states in the Feshbach picture') are provided. It is
shown how the effective potential may be calculated
approximately with the aid. of a minimum principle,
which generalizes previous work on the three-body
problem '0 "

2. THE INTEGRAL EQUATIONS

The problem under consideration is de6ned by the
Lippmann-Schwinger equation

T(E)= V+ VGp(E) T(E), (2.1)

where, with E representing the total-kinetic-energy
operator, we have

Go(E) = (E+irj X)-' g 0+. — (2.2)

V=+; V, , (2.3)

the sum running from 1 through E(X—1)/2. Here V;
is the interaction potential between the particles in the
ith pair; we assume that the A (X—1)/2 pairs have
been ordered in some manner. It is our object to rewrite
Eq. (2.1) in a form in which the kernel is connected and
the potentials have been formally eliminated. As a first

7 T. D. Lee, Phys. Rev. 95, 1329 (1954).
g 6. Ka*llen and W. Pauli, Kgl. Danske Videnskab. Selskab,

Mat. Fys. Medd 30, No. 7 (1955).
9 H. Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958); 19, 287 (1962).
'0 L. Rosenberg, Phys. Rev. 138, B1343 (1965).
"Minimum principles closely related to the version given in

Ref. 10 were presented earlier by Sugar and Blankenbeder
(Ref. 2) and by Y. Hahn, T. F. O' Malley, and L. Spruch, Phys.
Rev. 134, B911 (1964). We find it convenient to refer to thy
formalism of Ref. 10 in discussing the X-body generaliz@gjgg,
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step we introduce operators &'&T(E) defined by

"'T=V;+V,GoT, o=1, 2, , E(Ar—1)/2. (2.4)

We may conclude, after suxnming over i and comparing
the result with Eq. (2.1), that

speaking, be viewed as the sum of all multiple scattering
processes which involve an interaction between the
pair j initially and the pair i 6nally. We look for T in

T T++Tc (2.11)

where the disconnected part TD is defined as a diagonal
matrix with elements ('&T(j& =T;5;;. In addition, we

define matrices I and B according to

P; «&T=T.

Our next step is to eliminate the potentials in favor of
the two-body T operators defined as the solutions of (2.12)&oI&o = T,.(1 g, )

B=IGpTD,
(2 6) andT;= V,+VGoT;.

(2.13)
In fact we assert that if the ("T satisfy the set of
equations with Go=Gol. If we rewrite Eq. (2.7) in terms of

('&Tc= ('&T—T; we get
&'&T= T,+T Go+ &'&T, o=1, 2,

.,1V(X—1)/2, (2.7)
&'& Tc= T Go Q T;+T,Go P &'& Tc. (2.7')

Tc 8+ IG&&Tc (2.14)

then T, determined from Eq. (2.5) will satisfy the
I.ippmann-Schwinger equation. "This is easily verified The integral equation for the matrix T is then seen

by writing Eq. (2.7) as to be

' T= V&+ VboT~+ (V~+ VPoT~)Go P &'&T

—V,+.V,Go(T,.+T,Go P &i&T+P &i&T)

= V;+ V,GpT,

since it gives rise to Eq. (2.7') upon summation over all
columns, for the ith row. According to Eqs. (2.11) and
(2.13) we also have

Tc= IGp T. (2.15)
(2.8) In a similar way, starting with Eqs. (2.9), we obtain

in agreement with Eqs. (2.4). Clearly, we could also
have obtained the set of equations where

(2.16)

T&"= T~+Q T&»GoT; (2.9) T&o=g &i&T&o (2.17)

with T=P; T«&. For %=3, Eqs. (2.7) are just the
Paddeev equations. ' However, for Zf &3 this form is no
longer satisfactory since the disconnected processes
have not all been separated out. Consequently, the
kernel contains 8-function singularities which prevent
it from being square-integrable, and additional partial
summations must be introduced. '"

Before discussing the general case it will be convenient
to cast the three-body problem into a form which
facilitates generalization to higher X. In addition, the
new form has some practical advantages which will
become apparent. Ke seek an integral equation to
determine the matrix operator T, with elements ("T(j&,
such that

3
&oT—g &oT&i& o=1 2 3

j 1
(2.10)

satisfies Eqs. (2.7). The elements &'&T&'& may, roughly

~ No attempt is made to show a one-to-one correspondence
between solutions of the Lippmann-Schwinger equation and the
generalized Faddeev equation. Indeed, solutions of the Lippmann-
Schwinger equation will not be unique (see Ref. 5).

»'Of course, Eqs. (2.7) will still be useful, as they stand, in a
wide variety of circumstances. Indeed, an elaborate theory of
multiple scattering processes, based on equations formally equiva-
lent to Eqs. (2.7), has been developed and applied by K. M.
Watson. In particular, see the second of Eqs. (26) in K. M.
Watson, Phys. Rev. 103, 489 (1956).

The dagger in Eq. (2.16) implies that the matrix ad-
joint, as well as the operator adjoint of each element,
is to be taken; the (—) symbol instructs us to allow
the energy to approach the real axis from below rather
than from above. In writing Eq. (2.16) in the form
shown we have used the reciprocity relation T;t( & =T,,
which implies, furthermore, that

B=TDGpIt( —&.

Thus, Eq. (2.16) may be written as

Tc= II+TcooIt&—&.

(2.18)

(2.19)

Tt(—& —T (2.21)

Equations (2.15), (2.16), and (2.20) have the nice
feature that initial- and final-state interactions are
displayed explicitly. We will see below that the E-body
equations can be cast in precisely the same form.

In order to illustrate the application of the above
formalism to a simple case suppose that each of the
two-body scattering operators have momentum-space

Equations (2.14) and (2.16) lead to the representation

T =B+IGpTGpI —. (2.20)

It is seen that the three-body reciprocity relation takes
the form
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matrix elements (in the two-body center-of-mass

system) of the separable form

~'(k, k', E)=g'(k)[5'(E)/(E+2*)]g'(k'), (2 22)

where 5;(E) contains the branch cut demanded by
unitarity, and 5,(—2;)=1, with g;(k) chosen so that
the residue at the bound-state pole at E=—e; is given
correctly. We then write, for (2j,k} some permutation
of (1, 2, 3},

(yi, y2, y2I "'T""(E)
I
yi', y2', y2')

5,(E—k,2/2/, )=g;(k;2) h,/(k;, k/; E)
E—k,2/2/2;+ 2,

5, (E—k;"/2/2/}
X g;(k,'')&(Q, y;—Z; y ), (2.23)

E—k;"/2/;+. ,
'

where
O' Pj+PI

k;=@,, —
-~i ~j+~k-

m, (m, +m„)
(2.24}

m, +m, +m2

k, 2=/i, 2[y,/m, —y2/m2]; /i, v, =m,m„/(m, +my) .(2.25)

The matrix element h;; can be identiled with the
continuation o6 the energy shell of the amplitude for
scattering in which the pair j is bound initially and the
pair i is bound 6nally. This identification follows from
the rule, derived in Sec. 3, for obtaining the bound-state
scattering amplitudes by taking the residues at the
poles in the two-body initial- and 6nal-state inter-
actions. "We introduce a representation similar to that
of Eq. (2.23) for matrix elements of the Born term 8,
with h replaced by b where, for i/ j,

g;(k +[m;/(m/+m2)]k, )g,(—k;—[m;/(m, +m„)]k )
b;, (k, ,k; E)=

E (k )'/—2m,—(k,+k )2/2m2 k2/2—m;

and b/ 0 for——2= j. Then Eq. (2.14) simplifies to

2 52(E—k'/2/22)
h;;(k;,k; E)=b;;(I,,k; E)+P dkb, .(l;,l; E) h„, (k,k, ; E).

E k'/2/22+ 22—

(2.26)

(2,27)

Thus the scattering problem has reduced, with the
assumption of Eq. (2.22), to a multichannel two-body
problem [with an effective potential b and a propagator
modified by the factor 5(E)]which can be easily solved
numerically. If the two-body T matrix is written as a
sum of terms of the type shown in Eq. (2.22), taking
into account a number of bound states and resonances,
the approximation retains this simplifying feature. The
only additional complexity introduced is that the
number of coupled equations to be solved is increased.

It has been noted that potentials which are separable
in momentum space lead to T matrices of the type
shown in Eq. (2.22), with a consequent simplification
of the three-body equ, ations 'mis Now an energy
dependent e6ective potential of the form

2 (k,k'; E)= [go2/(2~)'][1'(k)l'(k')/(E —E"'}] (2.2g)

which arises from the simplest type of resonance

"After arriving at this rule we noticed a remark by Lovelace
(see Ref. 16) to the efkct that Faddeev {in a work not available
to us) has proposed the same rule. %e give the E-body generaliza-
tion in Sec. 3.

'4A. N. Mitra, Nucl. Phys. 32, 529 (1962). The Faddeev
equations were not used here.

'b R. D. Amado, Phys. Rev. 132, 485 (1963). Amado's results
were obtained using 6eld-theoretic methods, and extend beyond
the model of pure potential scattering. These more general results
can nevertheless be obtained directly from the Faddeev equations,
as we show below."C. Lovelace, in Strong Interactions and High Energy Physics,
edited by R. G. Moorhouse (Plenum Press, Inc. , New York,
1964); Phys. Rev. 135, 81225 (1964)."L.Rosenberg, Phys. Rev. 134, 3937 {1964)."L.Rosenberg, Phys. Rev. 135, 3715 (1964).

approximation, is in the above-mentioned class. It
may be of some interest to observe that it is possible to
reformulate the Lee model, in the E-8 and V-8 sectors,
in terms of the two-body potential, Eq. (2.28), and the
three-body Faddeev equations. Thus, the scattering
amplitude associated with this potential is

/(k, k', E)= [g(P/(22r)'[u((u2) u(co2 )/(2co22a) 2.)'/2]

g
2 ~

d/d(~2 ~2)1/2222(~)- —i
X E—E(0)

kr' „E—or

where we have taken

col/; =k +p

(2.29)

(2.30)

I'(k) =N(co2)/(2a&2)'".

%e now assume that a solution E~ of

(2.31)

g22
~

d4/(~2 ~2)1/2222(~)
Ev —E(&)+ (2.32)

4' p, Er//r Q)

exists with Ev(/2. Then Eq. (2.29) can be written as

f (k,k'; E)= [g2/(22r) 2][1/(2a)22') 2.)'"]
X[I(~2)5(E)~(~')/(E—Ev)], (2 33)

with

[5(E)]-'=1—
gl

(E Er)
(22r)2 ~

/f~ (~2 ~2) I/2222 (~)
(2.34)

(Ev co)'(E /d)— —



LEONARD ROSE NB ERG

(a} (b} ~

(c}

Here g'=—Zgo' with

oo

go
Z=1—Z

(2m)'

d~ (~2 ~2)& /2N2 (~)
(2.35)

(Ev—co)'

Equation (2.33) is just the fit'-&I& scattering amplitude in
the I.ee model. Proceeding to the E-8-8 sector, and
taking the 8 particles to be identical bosons, we And

that the appropriate sum, h=h»»+h»2, of direct and
exchange amplitudes satisfies a single-channel version
of Eq. (2.27). Specifically, with

b (k k'; E)= [g2/(2&r)3][1/(2(g&2&d &,
, )&~2)

X [~(~a)&(&de )/(E —
&0&,

—~&, )), (2.36)

the Faddeev equations reduce to

h(k, k', E)= b(k, k'; E)+ dk"b (k,k"; E)

X[5(E cv&,")/(E —
cv&," Er—))h(k"—,k', E). (2.37)

The amplitude h, which would correspond to bound-
state scattering in a potential model (Z=0""),is now
identified with the V-8 amplitude in this generalized
model. In fact, Eq. (2.37) is equivalent to the Kallen-
Pauli' integral equation for the state vector and has
recently been solved directly in closed form. ' %'e wish
to emphasize what seems to us to be the significant
point of this exercise, namely, that T-matrix integral
equations which do not involve the potential explicitly
may be useful even when the potential picture breaks
down. """To explore the utility of this approach in

"M.T. Vaughn, R. Aaron, and R. D. Amado, Phys. Rev. 124,
1258 (1961).

'0 C. M. Sommerheld, Bull. Am. Phys. Soc. 10, 61 (1965);T. L.
Trueman, Phys. Rev. 137, 81566 (1965). These solutions are
equivalent to the earlier results, obtained with diBerent tech-
niques, by R. D. Amado, Phys. Rev. 122, 696 (1961); R. P.
Kenschaft and R. D. Amado, J. Math. Phys. 5, 1340 (1964).

(e}

F»G. 1.Diagrams (a), (b), and (c) contribute to the disconnected
part of the four-body amplitude, and (d) and (e) show leading con-
tributions to the connected part. The portions of diagrams (d) and
(e) which lie to the left of the vertical dashed lines contribute to
the "almost connected" amplitude de6ned by Eq. (2.42). The
circles denote T operators for two- and three-particle systems.

describing strongly interacting particles it is necessary
to obtain the g-body generalization of the Faddeev
equations and this we now proceed to do.

The problem of generalizing the Faddeev equations
resolves itself into a determination of the matrix
operators I and I introduced above. For the sake of
orientation we first consider the case %=4. In Figs.
1(a)—(c) we have pictured the three types of discon-
nected contributions to the four-body amplitude. Types
(a) and (b) have already been de6ned in our discussion
of the three-body problem. For example, a diagram of
type (b) will arise as the sum of a subclass of terms in
the iterative solution of Eqs. (2.7) in which the inter-
actions involving one of the four particles do not
appear. These terms may be summed formally by
solving a set of equations which reduce to the three-
body equations already considered after the momentum-
conserving 5 function for the noninteracting particle
has been factored out. Diagrams of type (c) are new and
we must give a rule for calculating them. Consider all
the ways one can partition the system 5 into two sub-
systems 5» and 52 such that each subsystem contains
two particles. For each partition we define an amplitude
T(Si, 5~) as the solution of a set of integral equations
obtained from Eqs. (2.7) by dropping the interactions
between those pairs of particles which have one member
of the pair in 5» and the other member in 52, the two
systems are disconnected. Now T(Si, S2) itself contains
disconnected diagrams, of the type shown in Fig. 1(a).
When these are subtracted ofF we obtain an amplitude
Tc(5&,' 52) which is connected, relative to the particular
partition, in the sense that only the factorizable 8 func-
tion associated with conservation of the momentum of
the total system S and of each subsystem 5» and S2
appear in the matrix element of the kernel. %hen these
5 functions are factored out the resulting integral
equation for T (Si,.Sq) is of the proper type and we
may consider these amplitudes to be well defined. '
More explicitly, suppose 5» consists of the pair 1 and 52
consists of the pair 2. Then T(Si,.52) =&'&T(5&,. 52)
+&'&T(Si, S2) with

"&T(5&jSp) Ti+T&GO&'&T(Si, 52),
"T(Si,Sm) = T2+T2GO&'&T(5&, S2). (2.38)

The proper integral equations for Tc(5&,. 52) are
obtained by replacing &'&T(Si, 5~) with

"T(Si', Sg) = "Tc(5&,Sg)+T, , i = 1) 2, (2.39)

in Eqs. (2.38). Clearly, there are three such connected
amplitudes, corresponding to the three diferent ways
of pairing oG the four particles, which make up the
class of diagrams of Fig. 1(c). There are four different
three-body connected amplitudes [Fig. 1(b)) which
also arise from partitions of the system 5 into two
subsystems (with three pa, rticles in one subsystem and
one particle in the other subsystem) and six diferent
two-body amplitudes [Fig. 1(a)] arising from a parti-
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tion of 5 into three disconnected subsystems. The sum

of these 13 amplitudes is denoted by To (S). Note that
the use of the cornered parts of the amplitudes of
Figs. 1(b) and (c) is required in order to avoid over-

counting contributions of the type shown in Fig. 1(a).
A quite similar cluster-decomposition analysis can

be made for the S-body amplitude provided we have
6rst solved the (E 1)-bod—y problem. Let us assume

this has been done and argue inductively. %e write the
S-body amplitude as

T(S)= To(S)+To(S), (2.40)

where, as in the four-body case just discussed, To(S)
can be written as a sum of amplitudes describing inter-
actions within disconnected subsystems. To avoid over-
counting, the sum is expressed in terms of the connected
parts of these amplitudes. In an obvious generalization
of the notation introduced above for X=4 the expanded
form of Eq. (2.40) becomes

The sum is over all distinct partitions of the system 5
into subsystems Si such that each contains at least one
particle. For each partition the amplitude is de6ned
such that particles within Si interact with each other,
but not with particles in other subsystems. The term
with m= 1 is just To(S), and we have omitted the term
m=E since this diagram contributes to the 5 matrix
but clearly not to the T matrix.

One class of contributions to TD(S) which is impor-
tant in the following analysis is the set of "almost
connected" amplitudes. Thus, we let the index k denote
the pair of particles i and j and define

integral equation will contain a set of disconnected
terms belonging to To(S). In fact it is easy to see that
each one of these terms can be Uniquely associated with
an identical term in the multiple-scattering expansion
of one of the amplitudes T (S~, S2, . , S„) of Eq.
(2.41).That is, the validity of the cluster-decomposition
formula for TD(S) is verified in the sense that it leads
to the correct multiple-scattering expansion. Pre-
sumably this result could be obtained without resorting
to multiple-scattering expansions.

Now suppose we have gone out sufliciently far in the
sequence of transformations such that terms belonging
to the almost connected amplitudes I(~) appear in the
inhomogeneous part. Then the replacement, Eq. (2.43),
is to be made for a particular term only if it adds to the
representation of T~(S) in the inhornogeneous part.
Otherwise that term is to be left alone; it contributes
to the connected part of the amplitude. In this way we
arrive at the representation

(') Tc(S)=P„(')I(~)(S)G,(~)T(S) (2 44)

At any stage in the sequence, of course, ("I(~) will be
represented by a finite number of terms in its multiple-
scattering expansion. We shall assume that Eq. (2.44),
as well as Eq. (2.41), is rigorously valid. By combining
Eqs. (2.44) and (2.40) we obtain an integral equation
of the form shown in Eq. (2.14), as well as the repre-
sentations, Eqs. (2.16) and (2.19), where now the
matrices have dimension X(E 1)/2. Ac—cording to our
inductive argument the amplitudes Tc(S&, S2, , S )
are to be determined by integral equations similar in
form to Eq. (2.14) for Tc(S) itself, with interactions
between particles in diferent subsystems dropped. The
basic input is the set of two-body amplitudes Ti de6ned
by Eq. (2.6).

I = P T [S(i);S(j)$,
S(i),S(j)

(2.42) 3. CONSTRUCTION OF THE UNITARY
S-MATRIX

where the sum is over all distinct partitions of 5 into
two subsystems, such that particle i belongs to one
subsystem and particle j to the other. Contributions
to Tc(S) arise when a process described by I(') is
followed by an interaction between particles i and j.
For example, Figs. 1(d) and (e) show leading contribu-
tions to the four-body connected amplitude. The
"almost connected" amplitude is pictured to the left of
the vertical dashed line.

To verify the cluster-decomposition formula, Kq.
(2.41), and to deduce the proper integral equation for
Tc(S) we study the form of an iterative solution of
.Eq. (2.7). That is, we consider a sequence of trans-
formations obtained from the repeated replacement

G= Gp+G pTGp, (3.1)

from which all the elements T p of the center-of-mass
T matrix may be obtained using

Momentum-space matrix elements of the operator
T(S) provide the amplitudes for scattering between
initial and 6nal states in which none of the particles are
bound. To obtain the complete S matrix we must define
the operators which describe bound-state scattering,
i.e., scattering in which groups of particles are bound. in
initial and 6nal states. One way of proceeding would be
to construct the full Green's function

(*)T +T;+TGOQ ("T— (2.43)
T p(k. ,kp, E)= (C.,t H —EjC)))

+(/a E~,G(E)Pa Ejep) . (—3.2)—
on the right-hand side of the integral equation. At each
stage in this sequence the inhomogeneous part of the

Here H is the Hamiltonian of the system and C is the
"plane wave" describing the free relative motion of the
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4'p 4.p+G(H E——)4 p, —

which may be written in the form

4'p = lim i»G (E+i)&)4p,

(3.5)

(3 6)

with G given by Eq. (3.1). Consequently, the ampli-
tudes T p may be computed once the operators &'&T&»

(introduced in Sec. 2) are known; no further integral
equations need be solved and the potentials are not
involved explicitly. The unitarity relations satisfied by
the T p can be derived directly from the identity

0= (4' (+& LH —E$4'p(+&)

(yp(+) t H Ej4& (+))~ (3 7)

The right-hand side may be reduced to a surface integral
using the hyperspace generalization of Green's theorem.
The methods of Ref. 17 allow us to evaluate these
surface terms. %e are then led to the relations

T p(k, kp) —Tp *(kp,k )=—2&rig,

XT,.*(k„k.)T,p(k„kp)k(E. —E), (3 8)

where g „is a sum over al/ possible intermediate states.
It should be emphasized that had we used the usual

"E. Gerjuoy, Phys. Rev. 109, 1806 {1958);Ann. Phys. {N.Y.)
5, 58 {1958).

& M. Qell-Mann and M. L. Goldberger, Phys. Rev. 91, 398
(&95S).

'

bound subsystems in channel 0.. Specifica, lly, we have

4,(t),r )=X (y ) exp(ik r.), (3.3)

where X (y ) is the product of bound-state wa.ve func-
tions. %'e use the center-of-mass hyperspace coordinates
de6ned previously. " In particular, h =k k is the
hyperspace momentum vector conjugate to r, and
related to the total energy through

E= —e.+ (I&'/2m. )k '. (3.4)

The mass parameter m is chosen, for each channel 0, ,
such that the transformation to hyperspace coordi-
nates" has unit Jacobian; e is the sum of the binding
energies of the subsystems. %hen identical particles
are present the physical amplitudes are obtained by
taking the appropriate linear combinations of the T p,

in the usual way.
Ke observe that an alternative procedure for obtain-

ing the amplitudes T p can be devised which does not
involve the potentials explicitly and is therefore more
in keeping with the spirit of the present approach.
Thus, let %y&+& represent a solution of the Schrodinger
equation corresponding to an incoming "plane w'ave"

in channel P. Then the amplitude of the outgoing
scattered. wave in channel 0,, appropriately normalized,
gives us the (on-shell) scattering amplitude T p(+) of
interest '~" Now 0 p may be constructed from~

form of the Lippmann-Schwinger equation, ' rather than
Eq. (2.14), the asymptotic form of the wave function
0'p would not show outgoing waves in all possible exit
channels and the unitarity relation would not have been
obtained in the complete form displayed in Eq. (3.8).
From Eq. (3.8) it follows that the S matrix, with
elements

G&=(E K V;+ir&]—' —j=O, 1, 2, 3, (3.10)

with Vo=—0. The relation

lilnzgG, 4,=4;5;;, i,j=0, 1, 2, 3, (3.11)

then follows directly from the eigenfunction expansion
of G; and the observation that for i/ j G,C; is not
singular in the limit so that there is no contribution. '
With i= j=0 Eq. (3.6) leads, in conjunction with
Eqs. (3.1) and (3.11), to

'4=40+GoT4'o.

For TWO we use Eq. (2.9) to write

(3.12)

GOTGo=Go Za P'~+2 T")GOT.&GO. (3.13)

%e may replace GOTI, GO
——GI, —G0 by Gk since the

neglected term Go does not contribute in the limit. %e
then have

4', =4,+Q GOT('&4, , (3.14)

which, in view of Eq. (3.12), holds for i =0, 1, 2, 3.
As mentioned above, we can study the asymptotic

form of 0'; in various regions of con6guration space to
identify the scattering amplitudes. Consider 6rst the
contribution coming from the region where all three
interparticle distances tend to infinity (exit channel
j=0). In the notation of Ref. 17 we have, with r
denoting the hyperspace position vector in the center-
of-mass system,

(r) Go(E) (
r') = (2m/k')C(k, p)r»'H~&, ")(k (

r—r' [)
: (2m/k')C(k &(&)r

—(~') &'(2/k&r)'I'

Xexp{i/kr —~(p+ 1)&rf} exp( —ikr r') (3.15)

S p=h p
—2&rQ(E —Ep)l)(K —Kp)T p (3.9)

(K is the total momentum) is guaranteed to be unitary,
as is easily demonstrated.

To put the above rule for calculating the amplitudes
T p in more specific form we consider the three-body
case in greater detail. It will then be possible to give a
concise prescription for treating the general case. Let
C;~„~, j=1, 2, 3 be the "plane wave" in which the pair
j is bound in a state denoted by the index n; Co repre-
sents the state in which all three particles are free. %e
also define
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with
To, (c0,

——v'pp;),

q .—P T(J)

(3.16)

(3.17)

The amplitude for the inverse reaction can be obtained

from the reciprocity relation2' which in general form is"

2'»-' '(—
l&&&

—k-) = 2'-(&"'(1&-,l&s) (3 1g)

with p=4inthecase at hand and p=3e —5 in the general

case where there are n noninteracting systems, n&2.
The total kinetic energy is E= (&)&'/2m)k', where m is

the scaling parameter de6ned below Eq. (3.4). The
normalization factor C(k,p) guarantees the unit source

condition for Gp." From an examination of the ampli-

tude of the scattered wave we may infer that

than two, as above) is directly obtained with the aid

of Kq. (3.15). Passing to the limit r, —& ~, with &(&,(~,
we immediately obtain the Born contribution

f&;,= (C;,V,4;) . (3.23)

The representation given in Eq. (3.22), along with the
eigenvalue equation

If one makes use of the Schrodinger equation for the
bound-state wave function X;(„~ the Born term can be

put in a form which has no explicit dependence on the
potential V, Lsee Eq. (2.26)j.To obtain the remainder
of the amplitude we use Kqs. (2.15) and (3.21) to write

GO+ ('&T("'cC;=G,VGOQ p '(T&'" &4, . (3.24)

Ke infer that V;p= V p;~( &, so that

g;0=+ (i)T' (3.19)

GpV4;=4, (3.25)

(we actually require the adjoint of this equation) which

is valid on the energy shell, enables us to deduce the
result

where the terms not explicitly included do not con-

tribute to the scattering into exit channel j. Consider
erst the term

GpT,4;=G,V,4;, ~&j, (3.21)

which is the Born contribution to the rearrangement
amplitude. %e require the representation

where S„ indicates a sum over discrete states and an
integration over continuum states, and r; is the distance
between the center of mass of the pair j and the third
particle. The generalization of Eq. (3.22) to the case
where there are e noninteracting subsystems (rather

'3We take this opportunity to point out a misprint in A.
Sommerfeld, I'cranial Digereetial Eggatioes (Academic Press Inc.,
New York, 1949). Equation (2f) on page 227 should read

O,=2(~)(~»/ /r p+1
2

Unfortunately, this error was carried over to Eq. (A10) of Ref. 17.
The corrected value of the normaHzation constant is

C(k,p) = (4i}-~(k/2~)»,
which should replace Eq. {A1.1) of Ref. 17,

using Eq. (2.21). Accordingly, we will only concern

ourselves with entrance channels i=1, 2, or 3 in the

following.
%e now examine the form of 4; in the asymptotic

region where the relative position vector lo; for the
particles in the pair j is of finite length. Owing to the

r—'~' depend. ence of the outgoing wave in channel 0 we

may neglect the overlap of this channel and consider

only the contribution from exit channel j, with j= 1, 2,
or 3. We therefore write Eq. (3.14) as

e =& +GO(2' (1—~ )+p "'2'""+ )4" (3 20)

2'&'=f&f*+(@'~ r 2 2 "'T"'3C") (3.26)

for the rearrangement amplitude. %ith b;, de6ned to be
zero for the remaining elements of the T matrix, Eq.
(3.26) gives the complete set of transition amplitudes.

It is possible to state the above prescription for
obtaining the T matrix in a more concise but equivalent
manner which holds as well for the general case where
N is arbitrary. Consider the connected part of the
E-body scattering operator in the representation given
by Eq. (2.20). The connected part of the on-shell
T-matrix element for the case where none of the
particles are bound in initial or anal states is obtained
by taking a matrix element of this form with respect
to states in momentum space corresponding to the
energy E. (The general rule for continuing the 2'-matrix
elements off the energy shell is quite simple and will be
stated below. ) Now suppose we are interested in the
amplitude for scattering into an exit channel, denoted
by the subscript e, in which subsystems S~, S2, ~ ~ ~, S
are bound with total eigen-energy —P &" e;(„&———e .
In accordance with Eq. (3.4) we express the total
energy in the 6nal state as

E s+ (h=k ~)'/2m, (3.27)

where s is the total internal energy of the m subsystems
and which takes on the value —e in the 6nal state
under consideration. Let us recall that I(S), as given
by Eq. (2.42), is a. sum of amplitudes each of which
is to be evaluated in the same manner as Tc(S) itself,
and will therefore have a representation similar in form
to that shown in Eq. (2.15). Clearly this process of
decomposition may be carried out to a stage where a
class of terms in the expansion of I(S) contain as their
left-hand factor the operator Tc(S&, Su ', , S )
corresponding to the Gnal-state interaction which can
lead to the exit channel 0. of interest. In fact, this class



8 224 LEONARD ROSENB ERG

of terms will contribute to the residue of a pole at
s = —

& in the momentum-space representation of
Tc(S), due to intermediate states in the scattering
process described. by Tc(S& ', S2, .-,S„),with energy

where S denotes a particular partition of the system S
into subsystems. If G(S ) represents the Green's
function obtained from G(S) by dropping interactions
between disconnected subsystems we have

E'= —e +(kk ')'/2m . (3.28) 4 = limi»G(S )4

The existence of the pole may be deduced by comparing
Eqs. (3.27) and (3.28) and noting that from momentum
conservation the matrix element of Tc(S) vanishes
unless k '=k f. The rule for obtaining the T-matrix
element for scattering into exit channel e may now be
stated. . We take the residue at the pole at s =—~ in
the momentum-space matrix element of Tc(S) As.
usual, the residue at a bound-state pole factorizes Las
exemplified by Eq. (2.22) for the two-body amplitude).
The left-hand factor arises from the ket, and the
right-hand factor arises from the bra, in the dyadic
representation of the Green's function. Our rule is to
discard the left-hand factor, leaving us with the physical
amplitude, constrained by the conservation condition

E= —e +(kk r)'/2m . (3.29)

To continue the amplitude off the energy shell we simply
drop this condition. If one or more subsystems are
bound in entrance channel P we proceed in a similar
fashion. We write

= limf»GpT (S )Gp4 (4.2)

where in going from the first form of Eq. (4.2) to the
second form we have used the appropriate version of
Eq. (3.1) and. have dropped terms which vanish in the
limit. Thus we have the representation

with
4.=g, &'&4.

&'&4 = lim i»G0$ "&T (S )$Gp4

(4.3)

If only one pair is bound in entrance channel o, , with
the other particles noninteracting, the sum in Eq. (4.3)
reduces to a single term, with index corresponding to
the bound pair. For all other channels we obtain
coupled, homogeneous, integral equations for the t')4

by noting that T (S ) satisfies an integral equation of
the form shown in Eq. (2.14). When combined with
Eq. (4.4) we obtain the set of equations

E=sp+ (kk»')'/2m», (3.30) ('&I)I =G0 py (&&1(&&(S ){&&@ (4 5)

and take the residue at the pole at sp= —ep, discarding
the right-hand factor of the residue. It is easily seen
that for X=3 this rule leads to Eq. (3.26) for the
T-matrix. Note that our earlier identihcation of the
k;, of Eq. (2.23) with the bound-state scattering ampli-
tudes is now justi6ed. For X&3 the validity of the
above rule may be veri6ed by formulating the X-body
generalization of the arguments which led to Eq. (3.26).
Since this is straightforward, but notationally cumber-
some, we omit further details here.

4. INTEGRAL EQUATIONS FOR THE
'WAVE FUNCTION AND FOR THE

EFFECTIVE POTENTIAL

While all physically relevant information concerning
the scattering can be obtained, in principle, from the
T operator de6ned in Sec. 2 it is sometimes useful to
have an integral equation for the scattering wave
function. For example, such an integral equation
facilitates the construction of an effective potential, as
discussed below. As a 6rst step we derive an integral
equation for the unperturbed wave in channel o.,
denoted, as above, by 4 . (Of course no integral equa-
tion is required for entrance channel n=0 where none
of the particles interact. ) For notational convenience
we write the cluster-decomposition formula for T (S)
[see Eq. (2.41)] in the abbreviated form

which determine C . The integral equation for the
scattering wave function 4' is now constructed by
writing, for 0./0, '4

=Q,. ('&+ (4.6)

Then, by successive applications of Eqs. (3.6), (3.],),
(2.40), (4.1), (4.4), and (2.15), we obtain

w@ = ('@ +Go P ('&l(~& (S) (&,& (4 7)

The discrete X-body bound states satisfy the homo-
geneous version of Eq. (4.7), namely,

( &g =Ga py ('&I(&:&(S) (k&g (4.8)

which is of course of the same form as Eq. (4.5).
As an application of this formalism we complete a

derivation, initiated earlier, of a minimum principle for
the effective (or optical) potential. "The earlier discus-
sion was incomplete in the sense that the projection
operator formalism of Feshbach' was employed, and
these projection operators have not been explicitly
constructed for the general case. However, for the
three-body problem the formal results were turned into
a practical minimum principle, of the Rayleigh-Ritz
type, with the aid of the Faddeev representation of the
wave function. This representation enabled us to
replace the effects of the projection operators by simple
orthogonality constraints on the trial function. It is

'4 The derivation for af ——0 proceeds along slightly different lines
and can be constructed, as in Ref. 5 for %=3, without difBculty.
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now possible to obtain the S-body generalization of
the minimum principle with the aid of the generalized
Faddeev equations. Recall that a knowledge of the
effective potential is essentially equivalent to a solution
of the scattering problem involving two-body reactions
of the type 3+8—+C+D, since the reaction matrix
can be obtained from the effective potential matrix by
numerical solution of a set of coupled two-body
Lippmann-Schwinger equations Lsimilar in form to
Eqs. (2.27)7.

Consider a set of two-body channels denoted col-
lectively by I'; all other channels belong to the set Q,
say. To each channel in P space there corresponds a
particular partition of the system S into two sub-

systems; these are the subsystems which are bound in
the asymptotic region. %e now introduce the de-
composition

&'(Si Si)=&""(Si;Si)+&'«'(Si Si), (49)

where T & ) consists of the pole contributions arising
from the discrete bound states associated with the
set I'. In analogy with Eq. (2.42) we define an operator
I&@) by

I (S)= g T (S(i);S(j)). (4.10)
S(i),S(j')

Thus the wave function, which in intermediate stages
of the scattering process describes propagation only in
states belonging to Q space, is defined as the solution
of Eq. (4.7) with I replaced by Io. Upon summation
over the index i the solution takes the form + i(o)=@ +Qp+p (o) (4.17)

here. %e define the Green's function

Go(SP) =Go+GOTo(SP)GO. (4.13)

It is a simple matter to rewrite Eq. (4.11) in terms of
the G&(Sp), rather than the Gal(P)(O). The equation
then takes the form

)p (o)=@ +pp gp (o) (4.14)

where 4'p &~) is the contribution to the wave function
generated by the operator G(&) (SP), with p labelling the
particular partition of the system into subsystems. Now
G(&) (SP) may be represented by the hyperspace
generalization of Eq. (3.22), with contributions from
states in P space omitted in the summation over discrete
states. This implies the representation

+p-("=S.'"Xp(.)(ep)f(rp) (413)

the superscript (Q) on the generalized sum S„indicating
that only states in Q space are included. The function

f(rP) vanishes ss rP-+ ~; the specific form of the
function needn't concern us here. Let Xp(„)& ),
n= 1, 2, , Ep&~), be one of the bound-state functions
belonging to P space, and to the partition P. The
essential constraint on the function 4 &@) may be
formulated by the condition

(XP(„)(~),%'P (&))=0, m=1, 2, , NP(p), (4.16)

and this is the meaning we shall give to the statement
that 0 &~)—4 has no projection onto P-space. The
trial function + ~&q) is then to be constructed in the form

o =C' +Go&i P( )(o)j( + (o)
~ (4.11) with the constraint

It is noted that solutions of the homogeneous form of
the integral equation for 0' provide the discrete states
which, in the Feshbach picture, give rise to resonances
in the scattering. We thus have a well-defined dynamical
scheme for describing these resonances directly.

The effective potential is essentially the scattering
operator modified such that propagation in intermediate
states belonging to the set P has been projected out.
When the channels in Q space are closed the effective
potential has the momentum space representation'0

(XP( )'"),)PP i(N)=0, n=1, 2, , NP(~). (4.18)

Now the spectrum of the Hamiltonian in the space of
functions with no projection onto P space has a con-
tinuum threshold E. determined by the opening of
Q-space channels. For scattering energy E(E, applica-
tion of the Rayleigh-Ritz principle leads directly to the
minimum principle for the effective potential. The
Feshbach projection-operator formalism has been
eliminated entirely in favor of the orthogonality
conditions shown in Eq. (4.18).

The minimum principle is contained in the statement
that the error in V p which is made by the replacement
of N (~) and 4'p~@) with trial functions 4' ~&&) and
4 p&&@), respectively, is the matrix element of a negative
operator. (When resonances exist below the scattering
energy E the above formulation of the minimum
principle must be modified slightly. ") There still re-
mains the question of how to choose the trial functions
0 &'@) such that intermediate states in P space are
projected out. The answer is obtained by generalizing
the argument given for %=3, and we only sketch it

5. DISCUSSION

One feature of the generalized Faddeev equations
presented here which differs from previous formulations
of multiparticle-scattering theory'' is the absence of
any explicit dependence on the potentials. This feature
may provide a significant advantage in dealing with a
more general class of scattering problems generated,
e.g. , by the assumption that all particles are in some
sense to be considered as composites of other particles. "

"G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394
(&at).
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An example of this increased. Qexibility was provided
in Sec. 2 where the scattering of a 8 particle by a V
particle was calculated as bound-state scattering even
though the V particle is not a bound X-g state in the
usual potential-theoretic sense. Another example has
been given previously in a discussion of peripheral x —E
collisions using the Faddeev equations with the nucleon
treated as a bound pion-nucleon state. ""Lovelace"
has treated, x-E scattering in the static model in the
same spirit. In this more general class of problems we
can envision the ca1culation of (X-es)-body scattering
by deduction from the g-body amplitude, i.e., by taking
residues at the initial- and 6nal-state interaction poles
as described in Sec. 3. At the same time the X-body

"L.Rosenberg, Phys. Rev. 131, 874 (1963).

amplitude is to be built up by induction on the lower
order amplitudes as described in Sec. 2. It is tempting
to speculate that requirements of self-consistency may
be sufhcient to determine the dynamics completely. "
This wouM require, in order that the calculation be
Gnite, that the self-consistent solutions for the lower
order amplitudes be insensitive to an increase in X for

sufficiently large X. The integral equations presented
here, or rather their relativistic counterpart, " would

provide a unitary framework for a detailed examination
of this idea.

~' Speculations along these lines have been advanced previously
in Ref. 16.

~' A relativistic extension of the three-body Faddeev equations
has been given by V. A. Alessandrini and R. L. Omnes, Phys. Rev.
139, 3167 (1965).
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The Buctuation-dissipation theorem is applied to the study of the pair correlation functions of the system
containing charged partides which is not invariant under spatial translation. The results are expressed in
terms of the longitudinal response functions and involve correlation functions which depend only on screened
short-range Coulomb interactions So. In the case of the electron gas, the density-density correlation function
ls

S(rr';~) = Q (r—R) —K(rR";~)v (R"R)jSO(RR';~) t 8 (R'—r') —v (R'R"')E(R"Y;—co)j,
where K is the response function of the electron density to an external potential field, and K its conjugate;
v represents the Coulomb interaction; and the repeated spatial coordinates are integrated over the volume.
It is shown that this expression implies the principle of superposition of dressed particles (the bare particles
plus their associated screening clouds); for the calculations of the correlation functions, the dressed particles
may be superposed without further consideration of the long-range parts of Coulomb interactions. Similar
reductions are carried out for the various correlation functions in the electron-ion system, and the super-
position principle is confirmed. A possible extension of the results to a nonequilibrium stationary system is
suggested and discussed. The interrelationship among various longitudinal response functions, which is
characteristic of the inhomogeneous system, is discussed and clarified. Simplifications arising from the
homogeneity and discussions from diagrammatic considerations are given in Appendices.

I. INTRODUCTIOÃ

'HE purpose of the present paper is the theoretical
study of the pair correlation functions of a system

containing charged particles which is not invariant
under spatial translations. Ke derive the density-
density correlation functions expressed in terms of the
correlation functions with screened Coulomb inter-
actions and the longitudinal response functions. The
results are rigorous for a system in thermodynamic
equilibrium; the arguments are extended to provide an
appropriate treatment of certain nonequilibrium sta-
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Agency under Contract No. ARPA SD—131.

)Permanent address: Department of Nuclear Engineering,
University of Tokyo, Tokyo, Japan.

tionary systems. In the course of the investigation, we
clarify the interrelationship among the various longi-
tudinal response functions, which is characteristic of
the inhomogeneous system.

For the study of the properties of a many-particle
system in thermodynamic equilibrium, the fluctuation-
dissipation theorem is used to provide a rigorous link
between the pair correlation functions and the linear
response functions. ' The theorem relates the canonically
or grand-canonically averaged commutator and anti-
commutator of any pair of Hermitian operators; the

' H. B. Callen and T. A. %'elton, Phys. Rev. 83, 34 (1951);
R. Kubo, J. Phys. Soc. Japan 12, 570 (1957};L. P. KadanoB and
P. C. Martin, Ann. Phys. {N. Y.) 24, 419 (1963); and some
others.


