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The general properties of the density matrix of an unstable particle produced in a two-body collision are
analyzed with a view toward deriving useful tests for the spin of the particle. Spin tests are obtained for
production on polarized and on unpolarized targets, and special situations which do not allow for a com-
plete determination of the density matrix are examined. Production of the unstable particle from a spinless
boson incident on a spin-} fermion is discussed in particular, and a special decomposition of the density
matrix for that case appears to be quite useful for formulating tests of spin. Inequalities that must be
satisfied from the elements of the density matrix are expressed in terms of directly measurable quantities

and shown to provide general sets of spin tests.

1. INTRODUCTION

N this paper we present general spin tests for un-
stable particles, which are based on the analysis
of the density matrix of the unstable particle as con-
structed from its decay distributions. We shall discuss
in more detail the properties of the density matrix of a
particle produced from a spinless boson incident on a
spin-} fermion, polarized or unpolarized. For unpolar-
ized initial fermion, invariance under the operation R
(defined as the reflection with respect to the production
plane!) permits a decomposition of the density matrix
into two submatrices, whose ranks must satisfy an upper
limit as a consequence of a general theorem that we give
in Sec. 2. This result generalizes one that had been pre-
viously derived for a particular case.? We present, in
Sec. 3, general tests based on inequalities that must be
satisfied from the density matrix. In particular we dis-
cuss tests that can be applied in cases of incomplete
determination of the density matrix and we show how
a theorem of Peshkin® can be made substantially
stronger if used in conjunction with R invariance. Tests
for production from polarized targets are considered in
Sec. 4. We find a number of constraints for the density
matrix of the unstable particle and some inequalities
for the spin in terms of directly measurable quantities.
In Sec. 5 we briefly discuss the Adair limit. Section 6
contains a general summary of the main results from
the view point of their practical use.

2. PRODUCTION PROCESS
We consider the production process

b+f— F+B, 1)

where b is a spinless boson, f a spin-% fermion, B a boson
of spin 7, and F a fermion of spin ;. We make no assump-
tions about the polarization of the initial fermion. We
represent its polarization state by a density matrix p/.

L A. Bohr, Nucl. Phys. 10, 486 (1959).
2 M. Ademollo and R. Gatto, Phys. Rev. 133, B531 (1964).
3 M. Peshkin, Phys, Rev. 123, 637 (1961).

We call
(Gm,j'u| M | 50)=Bm,(9)

the transition matrix element, at given energy and pro-
duction angle ¢, for production of B+F. The spin
components of B and F are m and u, respectively,
quantized along the normal n to the production plane,
and « is the spin index of the initial fermion. We can
identify the index o with the helicity quantum number
of the initial fermion or, if we choose a different repre-
sentation, with its magnetic quantum number along
the normal n.

In terms of the initial density matrix p, we may
write the final density matrix as

P, = 2 Bruw @ (9)paa ' Bomrw < 1*(3)/
Z an(a)(‘?)l’aa'(/)ﬁmu(al)*O?) . (2)

aa’uym

Invariance under the operation R, reflection through
the production plane, allows one to write for the matrix
elements of M the relation

(mu| M |eshel) = (—1)7m+H~(mp| M| —a, hel),  (3)

which simply states the connection between the transi-
tion amplitudes from the two possible helicity states of
the initial fermion.* Alternatively, if we quantize the
spin of the initial fermion along the normal n, we obtain
the selection rule:

Bmu®=0 unless warpeitmts—r=1 €))

where o is now identified with the spin component of
the initial fermion along n, and ;, 7, are the initial-
and final-state intrinsic parities.

When the initial fermion is unpolarized, its density
matrix is, in the helicity basis,

Paa’(/)z%‘saa' . (5)

When the initial fermion is completely polarized, its
density matrix may be written, when we quantize its

4 M. Peshkin, Phys. Rev. 129, 1864 (1963).
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spin along n, as

)

Paa’ U)z%(lﬂ:”ﬂ)aa’ 1}

where ¢, is the familiar Pauli spin matrix.
A. For an unpolarized initial fermion, Egs. (2) and

(5) give
Prmpym = 2 B @B r (0¥, 6)

The matrix elements 8,,,(* are normalized according to

2 |Bmut|?=1. ™

amp
From Eq. (3) one obtains
Pmu.'n‘n'z%l:l"‘(_ 1)m—ml+“_“l:|ﬁmnﬂ'n'#’* (8)

(we have dropped the superscript ¢ which is now ob-
viously inessential). From this expression we have for
the density matrix p‘® of the final boson B, when we do
not observe the spin state of the final fermion F,

Pmmt B = %[1-{— (— 1)"‘_”"]

K

Z , Bmuﬁm’u* . (9)

Similarly for the density matrix p¥ of the final fermion,
when the spin state of B is not observed, we have

i
puw P =3[14+(=1)**] L BmBmw*.  (10)
m==)

A density matrix of the form (9) and (10) has the follow-
ing properties:

(1) The only nonzero matrix elements are those with
j—m and j—m’ both even or both odd (we denote
here by j the spin of the observed particle and by ;' the
spin of the other produced particle whose spin is not ob-
served). We can therefore write p as the direct sum of
two submatrices of lower order,

(11)

where p’ contains only the elements of p with j—m and
j—m' both even, and p’’ contains only those with j—m
and j—m’ both odd. The dimensions of p’ and p’’ are
both j+73 if p describes a fermion of spin j. The di-
mensions are j41 and 7, respectively, if p describes a
spin-j boson.

(2) The ranks of p’ and p” are at most 25’41 as we
will show in the next section.

p=p'®p",

B. Let us consider the case of a completely polarized
initial fermion. The final density matrix is

Pmp,m’ &1/2) =ﬁmn(i1/2)6m’u’ ‘i"”*/Z leu(illz) [ 2, (12)

mp

where 43 is the spin component of the initial fermion
along n. From this expression we obtain

Py BEUD =" B, UG, GUD¥/T |5 EUD|2 (13)
K mu
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and

b PN = T B, (1D, DY/ | 8, G 2. (14)
m my

We remark that, from the selection rule (4), we can
again split p into the sum of two submatrices, con-
structed as in A, Eq. (11):

p=p'®p".

3. DENSITY MATRIX FOR PRODUCTION
FROM UNPOLARIZED TARGET

We have seen in the preceding section that, if B and
F are produced on an unpolarized target, their density
matrices can both be split into two submatrices of the
form [see Egs. (9) and (10)]

=T par. (15)

In Eq. (15) B\ are vectors in a space of the same di-
mension as the submatrix. The components of 8 are
the coefficients B.n when the particle observed is the
final boson, or the coefficients 8, when the particle ob-
served is the final fermion F. The following theorem
holds:

Theorem. The necessary and sufficient condition for a
Hermitian matrix g of order # to be of the form

,
p= Z ﬁkﬁkT’
k=1

where By, Bz, - -B-(r<n) are r linearly independent vec-
tors of the n-dimensional space, is that the rank of
be r. The rank of 5 is less than 7 if the vectors 8;- - -8,
are linearly dependent. The proof can be given as
follows:

The condition is necessary. In fact in the n-dimensional
space we can find #—r linearly independent vectors
Y1, Y2,* * *Yn—r Which are all orthogonal to each of the
vectors B, B2 - - Br. It follows that gy;=0 (I=1,2, ---,
n—r). In a basis formed from all the vectors 81, 82- - - Br,
Y1 *Ya-r, the rank of g is evidently 7: since it is in-
variant, it is 7 in any representation.

The condition is sufficient. The matrix 5 can be reduced
to diagonal form: we denote by \,(i=1,2,---,7) the
nonzero (and positive) eigenvalues of 5 and by S the
unitary matrix which diagonalizes 5. We can write

Puwr= Zl Sui\iSs,
which coincides with Eq. (15) if Bux=\1/2S),*.

It follows from this theorem that the rank of p’ and
p” isat most 2j'+1. If 25’41 is less than the dimension
of o’ or p” we have relations among matrix elements
which express the vanishing of the minors of order
greater than 25'4-1.
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For j’=0 we have shown? that the condition that p’
and p”’ be of rank one, and the condition that the trace
of p be non-negative, together provide a set of necessary
and sufficient conditions for a given spin assignment.

We shall now present some tests based on general
inequalities that must be satisfied by the elements of the
density matrix. These tests are in the form of necessary
conditions for a given spin assignment; they can provide
both upper and lower bound for the spin value.

The density matrix p is a Hermitian non-negative
definite matrix. From a theorem of matrix algebra® we
learn that the necessary and sufficient condition for p
to be non-negative definite is that all the principal
minors of p have non-negative determinants. Any minor
on the diagonal (that is, any minor of p whose diagonal
elements are diagonal elements of p) can be reduced to
a principal minor by a unitary transformation. We thus
have the redundant condition that all minors on the
diagonal have non-negative determinant (in particular,
all diagonal matrix elements of p must be non-negative,
as is physically obvious).

The condition that the rank of p be at most equal to
the number of pure states 7 contributing to the statisti-
cal mixture described by p (an obvious generalization of
our preceding discussion), together with the normaliza-
tion of p to unit trace, provides upper limits to the de-
terminants of the minors on the diagonal.

Let us denote by p™ a minor of order # of p, situated
on the diagonal. We obtain, from the above conditions,
the set of inequalities:

0<det[p™]<(1/n)* for n<r,
det[p™]=0 n>r.

In fact, by reducing p™ to diagonal form, det[p] is
given by the product of the » eigenvalues of p™, The
sum of eigenvalues being fixed (Tr[p™]<1), the maxi-
mum of their product is reached when they are all equal,
and therefore

det[p™]<[(1/#n) Trp™]*< (1/n)".
One can also easily derive the following inequalities:
(1/r)™1<Tr[p™]<1 (m integer). an

The proof of this relation is similar to the preceding
proof. On reducing p to diagonal form, Tr[p™] is given
by the sum of the mth powers of the nonzero eigenvalues
of p, which are at most 7. Since the sum of the eigen-
values is normalized to unity, the minimum of Tr[p™]

is obtained when the nonzero eigenvalues are equal to
1/r and therefore

Trlpm]27(1/r)m=(1/n)"",

whereas the maximum is obtained when one eigenvalue
is unity and the others are zero.

(16)

® R. Bellman, Introduction to Matrix Analysis, (McGraw-Hill
Book Co., New York, 1960), p. 74.
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The inequalities (17) can provide an upper value for
the spin j of the unstable particle from its decay dis-
tribution. For example: suppose the angular distribu-
tion is isotropic; the density matrix p is in general
(274+1)! times the unit matrix and (17) implies
(27+41)<r. This is an intuitive result; in fact the iso-
tropic distribution implies that the decaying mixture is
completely unpolarized and it is described by an in-
coherent mixture of 241 pure states. Such a mixture
cannot be realized if the available number of pure states
is less than 2j4-1.

When p is expressible as in Eq. (11), in the form of a
direct sum of p’ and p”/, the limitations (16) and (17)
apply separately to p’ and p”. In this case 7 is the num-
ber of pure states when the initial fermion is in a given
helicity state. (For the total density matrix p the rank
is twice as large.)

To use such tests a complete knowledge of the density
matrix is, in general, required. Unfortunately such a
complete knowledge of the density matrix is not always
obtainable. Furthermore, the test functions, i.e., the
determinants and the traces appearing in the inequali-
ties, are generally nonlinear functions of the experimen-
tal averages. The tests must then be applied to events
with identical production kinematics. The only test
functions linear in the experimental averages are the
diagonal elements of p, which satisfy the limitations®

0<pr<1 (18)

[a special case of (16) for n=17. Linear test functions
(as opposed to nonlinear test functions) can be averaged
over the production kinematics and must still satisfy
their original inequalities. The test can thus be per-
formed on a large sample of events.

To see better how these tests are applicable in prac-
tice, let us expand the density matrix p in terms of ir-
reducible tensor operators according to

25 L
p=2. 2 o(LM)T ™,

L= M=1I,

(19)

where T 1M are tensor operators, whose matrix elements
are given, as usual, by

(Gul T2 | ju'y= L/ H(Gw', LM | ju),

[L=(2L+1)12]. (20)
They satisfy

T M= (—1)MT™, (21)
Tr(ToMT M) =0L08mp. (21")

The coefficients p(L,M) satisfy the relations
p(L,M)=Tr(pTL™"), (22)
p(0,0)= 7", (22)
p(LM)*=(—1)p(L, —M). (22")

They are related to the “moments” of the angular dis-
tributions of the decay products. Precisely, for a two-

8T. D. Lee and C. N. Yang, Phys. Rev. 109, 1755 (1959).
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body decay, we have

I(ay‘P): Z G(L)M) YLM(0,¢) ’
LM (23)

a’(LyM) = C(],L)p(L,M) )
where I(9,¢) is the final angular distribution and the
coefficients C(4,L) depend on the particular decay proc-

ess. For example, in the following three cases, we have
(where jP denotes a particle of spin j and parity P):

(1) j2— 0-40~; P=(—1)7 (see Ref. 3),
C(3,L)= (4m)~"12j(40,LO| jO).

(2) j2— 1=40; (see Ref. 7),
C(j,L) = (—1)7*1(4m)~12(2j+1)L
XX T.To* (10,00 LO)W (455 1L),  (25)

175

withl=1'= jfor P=(—1)and = jF1 for P=(—1)*,
(3) j— %40 (without parity conservation) (see Ref. 2),

C(4,L)=—gr(4m)~"1*(j3,L0| j}), (26)

gr=1 foreven L,

(24)

where

gr=ca forodd L.

From the preceding relations we can see that, from

L s
p(LO)=— 2 puulju,LO] jus) ,

J p=d
the conditions (18), as can easily be seen, give

|(L,0)| <(2/)Max| (L0l i) (27)

We shall now extend our discussion to situations in
which the density matrix cannot be determined com-
pletely. The determination of the density matrix cannot
be complete, for instance, in a two-body parity-
conserving decay, if only the final angular distribution is
observed. This is always the case for a boson decaying
into two spinless bosons. We shall make use in our
discussion of some results of Peshkin.?

It is convenient to split p into the even-L part p, and
the odd-L part p, according to (19). It is easy to see
that, while p, can be determined in any case, p, cannot
be determined from Eq. (23) if parity is conserved in
the decay process. In fact, the averages (VM) and the
coefficients C(j,L) will vanish for odd L, since partial
waves of different parity cannot interfere.

It is also easy to see that p, and p, are, respectively,
even and odd under the operation of time reversal (as
defined by Edmonds for angular momentum states).

T| juy=(=1D)"*j—ul . (28)

7 M. Ademollo, R. Gatto and G. Preparata, Phys. Rev. Letters
12, 462 (1964).

8 A. R. Edmonds, Angular Momentum in Quantum M echanics
(Princeton University Press, Princeton, New Jersey, 1957), p. 29.
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From (20) we have

TT MT-1=(—1)L+MT M (29)

and from (19), (22), and (29) we get
To, I =pe, (30)
Tp,T7'=—p,. (31)

Since p is a non-negative definite matrix, also 7p7!
=p,—p, must be non-negative; therefore p, has also the
same property. The test of non-negativeness of p. can
be used in place of the tests on the whole p matrix, de-
scribed at the beginning of this section, whenever p,
cannot be determined. We have no significant limita-
tion on the rank of p., but we still have the condition
Trp.=1. In fact p, is traceless, as a consequence of
(31). In analogy with Eq. (16) we thus have the
inequalities

OS det[ﬁo(")]s (n)_" (n= 11 Y ‘N) ) (32)

where p,(™ denotes any minor on the principal diagonal
of order # of p, and N=2j+1 is the dimension of p..

It is possible to obtain an upper limit for Tr[p™] in
terms of the eigenvalues of p, only, which we call u;. For
m=2 we have, because of (30) and (31)

Tr[p?]=Tr[p2]+Tr[ps]. (33)

Peshkin? was able to derive an upper limit for Tr[p,%]
in terms of the eigenvalues ;. This is possible because of
the condition that both p.+p, and p,—p, must be non-
negative. The limitations are the following:

N
Tr[p*1< 2 (uait-p2i-1)?

i=1

foreven N, (34)

(N-1)

E}
Tr{p*]< X (ueitpei1)*+pn® forodd N, (3¢4)
i=1

where the p; are taken in decreasing order of magnitude
and N=2441 is the dimension of p.

This result can be extended to m>2 but the expres-
sions become rather complicated.

The inequalities (34) and (34) can be replaced by the
weaker inequality

Tr[p?]1<2 Trlp.2]. (35)
From (19), (21"), (23), and (17) we obtain
ZLC(]',L)‘2 % [(Y*)|2>1/2r. (36)

Inequalities of this kind have been also considered by
Eberhard and Good.?

As an example, let us consider the production of a
boson B in reaction (1), assuming that F has spin 2 and
its polarization is observed. Therefore in (36), r=2.
Suppose further that Pp=(—1)7 and that the decay

9 P. Eberhard and M. L. Good, Phys. Rev. 120, 1442 (1960).
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angular distribution is found to contain only L=0,2.
From Eq. (24) we find that, if 3~ | (¥2*)|?is less than
1/(56X4r), the spin § must be 1; if this quantity is less
than 9/(80X4) the spin can only be 1 or 2.

We conclude this section with some remarks about
consequences of R invariance. We can split p into p’
and p”’ according to Eq. (11). However, some care is
needed for extending the preceding results. We must dis-
tinguish between integer j and half-integer j. For
integer 7, Egs. (30) and (31) hold for even-L and odd-L
parts of p’ and p” separately. For half-integer j we have

Tp/T'=p.", 37
Tp,/ T 1=—p,". 37)

We see that p,” and p.”” can be transformed into each
other: they must thus have the same eigenvalues and

Tr[pJ=Tr[o."]=13. (38)

On the other hand, p,’ and p,”” have opposite eigenvalues
and in general

Tt[ps J= —Tr[po"]5O0.

For j an integer the non-negativity condition for p.’
and p,” gives rise to conditions similar to (32), where N
is the relevant dimension. For 7 a half-integer, because
of (38) we have

0<det[p,/™]<(2n)™, 1<a<j+3  (39)

and similarly for p,’. In particular for the diagonal
matrix elements we have

(p)ix<7%. (40)

Let us now consider the limitations (34) and (34').
For integer j we can apply to p’ and p”’ separately the
same argument we have used for p. Since the rank of p’
and p'’ is at most 7, we have, instead of (17), for m=2:

Tr[p'7]> (1/7)(Trp.)?, (41)
Tr[p"*]2 (1/7)(Trp")?. (41)

Furthermore, for each of Tr[p’?] and Tr[p"'?] there are
limitations analogous to (34) and (34’) in terms of the
eigenvalues of p, and p.”, respectively. The relations we
obtain in this way are of course stronger than (34) and
(34’) as applied to the whole matrix p. In fact, (i) in
Tr[p?], expressed as the sum of Tr[p’?] and Tr[p"’%],
the u; are not altogether in decreasing order of magni-
tude, and (ii) in the sum of the right-hand sides of (41)
and (41") we have Tr[p.,/ 2]+ Tr[p,/2]>3.

For half-integer ;j the Peshkin argument does not
hold for p’ and p”’ because p,” and p,” are not anti-
symmetric in a basis in which p, is diagonal. In this case,
since the eigenvalues of p, always occur in pairs, we ob-
tain from (34)

Tr[p*]<4 Tr[p./2]=4 Tr[p."]. 42)

ADEMOLLO, GATTO, AND PREPARATA

4. DENSITY MATRIX FROM
POLARIZED TARGET

In Sec. 2 we have derived the general form of the
density matrix of a particle produced in a two-body re-
action on a polarized target. From Egs. (13) and (14) we
see that such a density matrix can still be decomposed
into a direct sum of two lower order submatrices in the
the same way as for unpolarized targets. The implica-
tions that follow from this property are therefore valid
also in this case. There are however further special re-
sults that we shall derive here.

A. Let us begin our discussion with the case of a
spin-j fermion produced in a reaction (1) together with
a spinless boson. The density matrix (14) becomes in
the usual symbols

pFUD =o'  if g=(—1)H12 (r=mm,),

=p" if g=(—1)F12 (43)

and similarly

pF—UD=p1/D  f = (—1)F1/2,

it ope(—pytn, )

=pC1n”

In the notation of the preceding section we may write in
a compact way

b =a(— 1)itirp,

[w=r(_1>j_”2: V=%) _%:l (45)
b (=1,

This is a set of (j+43)? relations of a linear type which
may be usefully taken into account to test a given spin
assignment for the fermion F. Furthermore p’ and p”/,
whenever different from zero, must have rank one. This
condition gives a number of additional relations among
the matrix elements of p.

We may apply an argument due to Peshkin!® on the
maximum complexity of the angular distribution of
decay products. For the Clebsch-Gordan coefficient
(j1,240| ju), we use the simple expression

(71,2701 ju)
BT 2j+1 [@))1T

1/2
= (—1)# :
[(41'-1-1)!] (G+mi(G—w)!

We can then write for the multipole coefficients p(24,0)
the expression

(46)

I (= 1)
p2i0=|—| eI = )
(45)! ERCEINLEEIN]

From (43) and (44) it is easily seen that the sum on the

right-hand side cannot vanish. Actually we may set a
lower bound

[p(27,0)| = [(44) 1T12(25) . (48)
This maximum-complexity test has the attractive

10 M. Peshkin, Phys. Rev. 133, B428 (1964).
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feature that it is linear and may be averaged over all
events at all production angles (in particular over a
certain range of angles).

A lower bound to the spin value of F may be provided
by using a limitation given in a work by Shapiro.!! We
can define

TAI2(g)—[1/2(f)
P'=
1(0)

j
=02 (=1)7#p®, [w=m(—1)717] (49)
w=—i
where T@E2(0)=3",.,| Bmu*1/? |2, as we see from Eq.
(14). The expression (49) may be cast in the form
P=w Z P(LyO)A(L;O)1
oddL

where A(L,0)= (L/)Y u(—1)7#(ju,L0| ju). As is clear
from Eq. (23) and (26), p(L,0) is a quantity which may
be deduced from the observation of the two-body decay
of F produced from an unpolarized target; thus we may,
by measuring P’, test (50) for a given spin assignment.
Shapiro has shown that a lower bound for the spin is

provided by
|2jP—wP’|<(2j-1), (S1)

where P is the polarization of F measured in the decay

(30)
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from an unpolarized target. We can also define
I(UZ)P(I/?)_I(-l/2)P(—-1I2)
B 1(6)
=0 2 p(L0)A(L0), (52)

evenL

A'(L,0)=3(—=1)7*#(u/ 7)(ju,LO| ju).

where

This relation again provides a test for spin assignment
if we measure the polarization of F in the two cases of
target polarization and observe the angular distribution
in the decay of F from an unpolarized target. The limita-
tions on D, slightly different from those obtained by
Shapiro, are listed below (with the usual meaning of
symbols):

j=%, |eD—32<(4/9[1+2P*—(9/5)P*],  (33)
j=%, [eD—3|*<(64/150)
X[2+3P7—(15/7)P*], (53))

I

j=3%, |eD—%|*<(20/49)[3+4P"*=(7/3)P*]. (53")

B. We now consider the case of a spin-j boson pro-
duced in reaction (1) together with a spin-} fermion.
From Eq. (13) we have

p’mm,(B,illZ) =ﬁm,:hllz(i”z)ﬁm',i1/2(i”2)*/2 [ﬂm,ilﬂ(illz) I 2if r= (-— 1)1"
m

=3m’¥1/2<i1/2>3m,,;1/2&1/2)*/2 Iﬁm,:{:x/z(i”” [ 2 if = (_ 1)r'+1 ,
m

(54)

P”mm’ (B,%1/2) =Bm,?:l/z(i”z)ﬁm“}:lﬂ(il12)*/2 lﬁmﬂ:”z(ill?) [ 2 if = (-— 1)7"
m

=:8m,:|;1/2(i1,2)Bm’.;|:1/2(i_1]2)*/2 lﬁm'il/z(ilﬂ) I 2 if #x= (— 1)7+1 ,
m

and we immediately see that both p’ and p’’ are of rank
one. They must satisfy the constraints that we have
examined in the preceding section, Eq. (16), for r=1.

Another piece of information on the spin of B may be
obtained by observing the produced fermion. We de-
fine the measurable quantity

R=[I0D(g)PAID—[UD(G)PUDT/I(B), (55)
determined from experiment by measuring the polariza-

tion of the outgoing spin-} fermion for spin-up target
PA? and spin-down target P12, We have

(=1)'zR—1/(2j+1)= i >

> 2; L even

p(L,0)A(L,0), (56)

where A(L,0)= (L/ /)X m(—1)*"(jm,L0| jm)and p(L,0)
are the multipole parameters of the density matrix of
B for production from unpolarized target. We note that
(55) has the same structure as (52). A possibly useful

1 G. Shapiro, Phys. Rev. 134, B1393 (1964).

(54)

limitation, which can be deduced from (55) is
? r2j(+1)-35P*?
— <], @
2j+1 Jj+1
where P is the vector polarization of the boson produced
from an unpolarized target.
It is to be noted that in Eq. (56) the sum must be
extended on even L. The result can be used also when,

owing to parity conservation, one can obtain p(L,M)
from experiment only for even L.

(—=1)wR—

5. ADAIR’S LIMIT

Let us finally consider Adair’s limit!? of forward and
backward production.

A. We consider first the case of a fermion F produced
in reaction (1), together with a spinless boson. The
cylindrical symmetry guarantees that M =0 in the ex-
pansion (19), so that, by (19) and (20), p becomes

2 R. K. Adair, Phys. Rev. 100, 1540 (1955).
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diagonal and generally the above tests assume a simpler
form. Furthermore, from R invariance, only the even-L
terms appear in (19) and p,=0. In fact, if we quantize
the spin along the direction of the momenta, we must
have pu,=p_,.—u which implies, by (20), L even. The
whole p matrix can thus be measured.

From these considerations and from the results on
the ranks of p’ and p’’ one concludes that the only non-
zero elements of p are
(38)

P12, 1/2=P-172, ~12=F

and the multipole coefficients in the expansion (19) are
p(L,M)=(L/5)(ju,LM | ju) (even L, M=0). (59)
The angular distribution (23) and (26), for j — 340, is
a(L,M) = (4m)1*(L/$)(j3,L0] j3)*, (60)

as noted by Adair.

Let us now consider a spin-j boson produced in (1)
together with a spin-} fermion. The density matrix has
only three nonzero elements, that is

Pn=;0—1—1=%lbl2 and P00=la[2’ (61)
with

la|?+[b]2=1,
so that the multipole coefficients take the form

p(L,0)=(L/5){|a|*(jO,LO] 0)
+5|%(1,L0] j1)} (evenL). (62)

The particularly simple form of p(Z,0) makes it possible
to obtain detailed information on the spin. Suppose for
instance that the experimental averages become zero
for L>2¢. One can thus assume j>¢ from the structure
of the multipole coefficients p(L,M). If actually j>¢
from (62) one easily sees that the only compatible
assignment is j=¢4-1 and

la|2=(+1)/(2+3), [b]*=(+2)/(2+3). (63)

The density matrix thus is completely determined and
one can test the experimental consistency of the spin
assignment j=¢41.

It is remarkable that the ambiguity of spin assign-
ment is reduced in Adair’s limit to the two possibilities
j=t t+1.

6. CONCLUSIONS

We summarize the results of the preceding sections
for the different cases that we have considered.

A. General Case

The density matrix p is completely determined from
the angular and polarization distributions of the decay
products. The conditions that p has to satisfy are
(1) that its rank cannot exceed the number r of pure
states of the mixture describing the unstable particle;
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(2) the non-negativeness condition, Eq. (16);and (3) the
limitations, Eq. (17), on the trace of p™, m>1.

B. Incomplete Determination of the Density Matrix

Only the even-L part p,in Eq. (19) can be determined.
The conditions that p, has to satisfy are (1) the non-
negativeness condition, Eq. (32); and (2) the limitations
on Tr[p™] as in the general case discussed above. The
upper limit of Tr[p™] must, however, be expressed in
terms of p, only. For m=2 we have mentioned, in Eqs.
(34), (34'), a result of Peshkin which allows one to put an
upper limit on Tr[p?] in terms of the eigenvalues of p..

C. Production on Unpolarized Target

We consider production of the unstable particle from
a spinless boson on an unpolarized spin-} fermion. The
density matrix is the direct sum of the two submatrices
o’ and p’’ according to Eq. (11). When the density
matrix is completely determined from the angular and
polarization distributions of the decay products, the
same conditions derived for the general case A for the
matrix p, apply here separately to p’ and p”’. The num-
ber r of pure states, which appears in the expression
of the conditions (1) and (3) of the general case A, is
now the number of pure states for given initial helicity,
i.e.,its value is one-half of the value in the general case A.
On the other hand, when, as for case B discussed above,
the density matrix is not completely determined, the
limitations depend on whether the unstable particle
whose spin is being determined is a fermion or a boson.
For bosons the same limitations obtained for case B
above apply separately to p’ and p”’, providing us with a
set of stronger conditions than for case B. For fermions a
non-negativeness condition, similar to that valid for
case B, but stronger, must be satisfied. This condition
is expressed by Eq. (39). The limitations that must be
satisfied in case B by Tr[p™] of course still apply here.

D. Production on Polarized Target

We consider production of the unstable particle from
a spinless boson on a polarized spin-3 fermion. The
density matrix p can again be split into the direct sum
of p’ and p”.

For a spin-j fermion produced together with a spinless
boson one has the following conditions: (1) according
to the parities, either p’ or p”” has to be zero, Egs. (43)
and (44); (2) the non-zero matrix (o’ or p’’) must have
rank one; (3) the L=2j coefficient of the multipole ex-
pansion of p cannot vanish, Eq. (44): the angular dis-
tribution of the decay products must therefore exhibit
maximum complexity consistent with spin 7;and (4) the
relations (51), (52), and (53), all among measurable
quantities, must be satisfied.

For a spin j boson produced together with a spin-3
fermion we have: (1) both p’ and p”’ must have rank one;
and, (2) the relation (56) among measurable quantities
has to be satisfied for spin j.



