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The radiative corrections to the high-energy bremsstrahlung and pair-production spectra are calculated
in the Weizsicker-Williams approximation. Results for the soft-photon radiative correction to the spectra
are given, and for the case of pair production the soft-plus-hard-photon radiative correction is also ob-
tained. The radiative correction to the total pair-production cross section is found to be practically in-
dependent of the photon energy and of the atomic number of the target material. Comparison with available
experimental data shows essential agreement within the relatively wide experimental limits.

I. INTRODUCTION

HE radiative correction to pair production and
bremsstrahlung has previously been studied by
several authors.!~¢ These works have been concerned
with the differential cross section, differential in the two
final-state particles'—3 or in one of the pair particles in
the pair-production process.t On the other hand, recent
very accurate measurements of the high-energy gamma
absorption coefficient®® seem to indicate the desirability
of obtaining accurate theoretical values for the total
pair-production cross section. Since most of the high-
energy pair production and bremsstrahlung take place
for very small angles between the projectile and the
secondary particles, we shall in this paper consider the
radiative corrections to bremsstrahlung and pair pro-
duction for small angles and high energies. These cross
sections may then be integrated to give spectra and, for
the case of pair production, the total cross section.
The form of the differential radiative-correction cross
sections obtained directly from the Feynman diagrams
is so complicated that an integration becomes virtually
impossible. Fortunately it is possible to utilize the
Weizsticker-Williams method?” to derive the high-energy
bremsstrahlung and pair-production radiative-correc-
tion cross section from the already known radiative
correction to the Compton effect® in much the same way
as Weizsiicker and Williams originally used the method
to obtain the bremsstrahlung and pair-production cross
section from the Klein-Nishina formula. The results are
expected to be reliable for the case that both the initial

* Sponsored by National Standard Reference Data Center at the
National Bureau of Standards.

1P. 1. Fomin, Zh. Eksperim. i Teor. Fiz. 35, 707 (1958) [English
transl.: Soviet Phys.—JETP 8, 491§(1959)7; S. Ya. Guzenko and
P. I. Fomin, Zh. Eksperim. i Teor. Fiz. 38, 513 (1960) [English
transl.: Soviet Phys.—JETP 11, 372 (1960) ].

2 A. N. Mitra, P. Narayanaswamy, and L. K. Pande, Nucl. Phys.
10, 629 (1959).

3 K. Mork, thesis, Trondheim, 1959 (unpublished).

4J.D. Bjorken, S. D. Drell, and S. C. Frautschi, Phys. Rev. 112,
1409 (1958).

8 E. Malamud, Phys. Rev. 115, 687 (1959); M. Fidecaro,
G. Finocchiaro, and G. Giacomelli, Nuovo Cimento 23, 800 (1962).

¢ H. W. Koch, Nucl. Instr. Methods 28, 199 (1964).

7E. J. Williams, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 13, 4 (1935); C. F. v. Weizsicker, Z. Physik 88, 612 (1934).

8L. M. Brown and R. P. Feynman, Phys. Rev. 85, 231 (1952).

and final particles all have energies which are large
compared to the rest energy of the electron.

We shall calculate in Sec. III the virtual-photon radia-
tive correction to the bremsstrahlung spectrum do;B(w;)
corresponding to the diagrams (a)-(d) and (a’)~(d’) of
Fig. 1 using the Weizsicker-Williamsmethod. The virtual-
photon radiative correction to the bremsstrahlung spec-
trum doy,P(w1) pertaining to vacuum-polarization dia-
grams v and ¢’ of Fig. 1 cannot be obtained in this way
and is calculated directly from the diagrams in Sec. IV.
The real soft-photon radiative-correction cross section
to the bremsstrahlung spectrum dorea, sofe®(w1,Aws) is
evaluated in Sec. V. This part of the radiative correction
has been obtained using the Weizsicker-Williams
method. The total radiative correction to the brems-
strahlung spectrum for the case that the additional
photon %, with energy w. is soft,

do'softB(whAw2) = do'virB(w V+deo vacB(w 1)
+d0'real. softB(wl;A‘*’Z) ’

(I.1)
is obtained in Sec. VL

The corresponding radiative corrections to the
pair-production spectrum for the positron energy
€ty do'virp(e+)) do'vacp(f+)1 doreal, softP(€+:A°’2); and dogope”
(é+,Aw;) are obtained in Sec. VII. The radiative correc-
tion to the pair spectrum dogostP(e4,Awz) may be looked
upon as describing the process of “pair production with
bremsstrahlung,”

kitZ— Z4-et ek, (1.2)
for the case that all photons %, with energy less than Aw,
are integrated over. It should thus be noted that the
Cross section oreal, soft”(e4,Aws) for the process Eq. (1.2)
cannot be disentangled from the virtual-photon radia-
tive-correction effects due to the infrared divergence of
doreal, soft”» The situation is completely analogous to the
case of bremsstrahlung, where the total cross section can
be defined only when the radiative corrections to the
elastic-scattering cross section are included.

In addition, we also calculate in Sec. VIII the real-
photon radiative correction due to the hard photons
doreal, hara T (€4,Awz). The radiative correction to the pair
spectrum for the emission of a secondary photon of any
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energy in the pair production process,
d‘TradP(5+) =do. softP(€+;Aw2)+d¢7 real, hardP(5+,Aw2) ) (1-3)

is obtained in Sec. IX.
The radiative correction to the total pair cross section
obtained from Eq. (I.3) by integrating over the pair

spectrum,
(1.4)

is calculated in Sec. X. The cross section oy,q” represents
the radiative correction to the gamma absorption co-
efficient. Relations to experiments are given in Sec. XI.

In this paper all energies and momenta are measured
in units of mc? and mc, respectively.

Oraa’= a'softP'l'a'real, hard® )

II. THE WEIZSACKER-WILLIAMS METHOD

When the diagrams for radiative corrections to brems-
strahling, Figs. 1 (a)-(d) and (a’)-(d”), are compared to
the diagrams for radiative corrections to the Compton
effect, Figs. 2 (a)-(d) and (a’)-(d’), it is seen that the
bremsstrahlung diagrams, except the vacuum-polariza-
tion diagrams v and v’, are similar to the Compton-effect
diagrams, the only difference being the appearance of
the Coulomb interaction ¢ in the case of bremsstrahlung,
while in the Compton effect an interaction with the
incident photon %y occurs. Thus it is clear that since at
high energies in the rest system of the electron the field
of the nucleus will look like the transverse field of a
photon, the contribution to the radiative correction to
bremsstrahlung from all the diagrams not involving
vacuum polarization may be obtained from the radiative
correction to Compton scattering. The vacuum-polari-
zation diagrams which correspond in the Weizsicker-
Williams picture to the change of the number of virtual
photons in the Coulomb field of the nucleus due to
vacuum polarization will be considered separately.

Before we consider the radiative corrections to brems-
strahlung, we discuss briefly the Weizsicker-Williams
method for the bremsstrahlung process without radia-
tive corrections.
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The bremsstrahlung cross section for the emission of
a photon of momentum and energy k; and ; in the
laboratory system is in the Weizsicker-Williams
approximation?

R
doB(ky)= / 2mpdpdesd F(wo)do(wy’,ki’)  (I1.1)
1

where primed quantities refer to the rest system of the
electron and unprimed to the laboratory system.
F(wy)dwy’ is the number of virtual photons with
energy wo’ in the field of the nucleus in the rest system
of the electron
Z 2d(.z)()l
F(wo’)dwo'=a(—) —, for wi'<e/p
TP wo

=0, for wi'>e/p, (11.2)

where a=¢?/%ic, and p is the impact I;arameter.
The Compton-scattering cross section may be written

da’c(wol,k]_l) = %ng(wl/wol)zUodﬂl, 5 (II.S)

with 7o=¢2/mc? and

1 1\2 11 K T
U0=4(—+—) +4(—+—-)——-— ,
K T K T T K
where k= —2wy" and 7=2w;’.

The maximum impact parameter R is given by

R=2¢1e2/w;  for no screening
=183Z-13 for complete screening.

(IL.4)

(IL5)

The relation between the energy of the scattered photon
wi’ in the rest system of the electron and w,’ is

w1’ =wy'[ 14wy’ (1—cosby) T2, (I1.6)

where 61 is the scattering angle of the virtual photon.
Since in this work we are interested in energy spectra,
the cross sections will always be integrated over angles.

HHH
RRA

Fic. 2. Compton-
effect radiative-correc-
tion diagrams. A-vir-
tual-photon radiative

‘7“" i ;i /f% {/5 {4 Photon raditve cor
rections,
P, AN P2




RADIATIVE CORRECTIONS. I

It is then not necessary to transform the angle 6,’ to the
laboratory system; the angular integration may be per-
formed in the rest system of the electron. This procedure
is in fact preferable from the point of view of calcula-
tions, since it turns out that the high-energy cross
sections considered in this work are all sharply peaked
functions of angle in the laboratory system, while in the
rest system the cross sections are slowly varying func-
tions of 6,’. This means that the cross section in the rest
system of the electron does not become singular for any
angle even if we put f1=1, and we may simplify our
expressions considerably by putting 81=1 in expressions
of the type 1—pB;cosfy. The energy of the scattered
photon in the laboratory system w; is given by the
Lorentz transformation with transformation velocity
equal to the velocity of the electron in the laboratory

system, (8, where By~1:
w1= ey (1—cosby’). IL7)
From Egs. (IL.6) and (I1.7) we find
k= —(2w1/e)(1—cosby)1,
7= (2w1/e))(1—cosby’)?, (I1.8)

dwol = (61d(01/622) (1 b COSGl,)—l .

Inserting these expressions into Egs. (I1.1) and (I1.3),
we get, after performing the integration over the impact
parameter p,

doB(k1) = (are?Z%/7) InR(exdw1/ e101) UCdQy', (IL.9)

where

UC= (w12/€162) -I- 1+C05201I . (II. 10)

The bremsstrahlung spectrum is obtained by inte-
grating Eq. (IL.9) over the angle 6,'. The integration is
extremely simple and yields

dooP(w1) =4aZ?? InR(dw:/ e1%wy)
X{e?+et—%ee}. (I1.11)

III. THE VIRTUAL-PHOTON RADIATIVE
CORRECTION TO BREMSSTRAHLUNG

From the discussion in Sec. II it follows that the vir-
tual-photon radiative-correction cross section to brem-
strahlung corresponding to the diagrams (a)-(d) and
(a")-(d’) of Fig. 1 is obtained from Eq. (IL.1) by substi-
tuting for de€ the virtual-photon radiative-correction
cross section to Compton scattering dov;¢ correspond-
ing to diagrams (a)-(d) and (a")-(d’) of Fig. 2,

R
dovirB(ky) = / 2mpdpdwy’ F(wo')dovie(wo' k). (1IL1)
1

The cross section doy;:¢ has been calculated by Brown
and Feynman® with the result

doyicC= — (are?/21) (7/k)? ReUyi:%(k,7)dQ/. (111.2)
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It is convenient for the subsequent integrations to re-
write Brown and Feynman’s expression for Uy;;© in the
form

8
Uvit®(k,7)= D" in(k,7)F3s(x,7) In\,  (IIL3)
n=1
where
(K, 7)=1n"(k,7)F10" (75) (I11.4)
with
1 1\2 12 3k K 1 /¢ 1
i1'=4<—+—) —_—— 2—+———‘—(—+—) ,
K T k 27 72 k—1I\r 2
k2 K T 2 3 T
iy = GO(K)<‘—+—+K+—+——-—— 1+~—) ;
T T 2 K T K2
3r 3+ 3 7 8 8
i3'=lnx(-———+——l——+1——+————
22 2% T KT Kk K2
2k—72—k?2r 1 2K2+T>
] RS
U 2r(e—1) 2 (—1)2/’
- ] (1 1
14 =4y tanhy| ——-
S 2)’ (ITL5)
2 Tk 372
i’ =y* csch2y(—~—————) ,
k 4 4k

i =[—4y Sinhy(xr)'—l(z-—COShzy)‘}‘zy cothJa(y),
7' =—2y coth2y(2h(y)—h(2y))U°,

4 k—6
18’ = (lnk)4y coth2y|:—— cosh?y-} sech2y
KT 27
4 1 7 «
+— _______ l:I 9
k2 k 2% T

iy’=(1—2ycoth2y)U°.
The quantities x and 7 are defined in Eq. (IL8); U¢
is given by Eq. (IL.4); and y is defined by

sinh?y= (y/2)(1—cosby) ™, (I11.6)
with

(111.7)

y=w¥/er€s.

The functions Go(k) and 4(y) are given by

Go(k)=—(2/x) f 1 In(1—u) du/u, (I11.8)
and -

y
h(y)=y1 f u du cothu . (111.9)
0

Equations (ITT.4) and (IT1.2) lead to a formula which
is completely analogous to Eq. (IL.9) where now
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—(a/7) ReU,;,C appears instead of U€¢:

aZ%ry? edw; o

—ReUvir%Qy' .

™ €Wyl T

dovirB(B) = —

(I11.10)

The cross section here is the virtual-photon radiative-
correction cross section, which contains the infrared
divergence and thus the ‘“photon mass” A. To this cross
section has to be added the soft-photon double-brems-
strahlung cross section in order to remove A in the usual
way. We shall here proceed with the evaluation of do;?
and treat the soft-photon cross section later in Sec. V.

Equation (IIL.10) when integrated over the angle 6,
gives the virtual-photon radiative correction to the
bremsstrahlung spectrum

2 exdw; 8
da'virB(wl)= ——(OZZ1’())2 InR- { Z InB—l-IgB ln)\} ,
T €y n=l
(IIL.11)
where
LB=1,"5(e1,e0)+12"5(— €3, —e1), (I11.12)
+1
I/B(e,e)= |  d(cosdy) Rein/(c,r),  (IIL13)

-1

where ,,’ is given in Eq. (IIL.5). We have used the fact
that interchanging « and 7 is equivalent to interchanging
e with —e; and e; with — ¢ as seen from Eq. (IL8).
Therefore

1
f d(costy) Rei, (7,6)=1,"B(— €2, —€1),
-1

which is used in Eq. (ITL.12).

The evaluation of the integrals 7,5 is straightforward
but tedious. The results are listed in Appendix I.
Equation (II1.11) together with these expressions for
1,8 will be used in Sec. VL

IV. THE VACUUM-POLARIZATION RADIATIVE
CORRECTION TO BREMSSTRAHLUNG

Since in high-energy small-angle bremsstrahlung the
momentum transfer ¢ is never larger than of the order 1,
it is to be expected that the contribution to the radiative
correction from the vacuum-polarization effects, which
are important only for large momentum transfers, is
rather small.

Using standard theory of quantum electrodynamics®
we find that when the vacuum polarization diagrams v
and v’ of Fig. 1 are included, the Bethe-Heitler matrix
element Mg is replaced by

M=Msa(1-T(g*)(1/¢*), av.y

9 Reference 10, p. 194, Eq. (9.66). Note that Eq. (9.66) contains
a misprint; the minus sign in front of A1, should be deleted.
Equation (9.66) as it stands gives a positive 221, while it is easily
seen from Eq. (9.65) that A%, is always negative. Equations
(9.67) and (9.68) are, however, correct.

K. MORK AND H. OLSEN

where II(¢?) is given in Egs. (9)-(41) of Ref. 10.
Renormalization has the effect of replacing II(¢?) by
¢*I1;(¢%) where II;(¢?) is given by?

ars ¢ A+5)r+1
o1l ]
3rq?3 2 (145)12—1

(IV.2)

I,(¢»)=

with {=4/¢2%

Thus, when vacuum polarization is included, the
bremsstrahlung cross section do(? is replaced by

doBP+dova P=do®[1—2¢11;(¢®)]. (IV.3)

The vacuum polarization thus has the effect of
introducing a vacuum-polarization form factor Fy,.=1
—[1—2¢?T14(¢*) 2= g1 (¢?) to lowest order in a. It
should be noted that in the Weizsiicker-Williams method
the vacuum polarization would correspond to an in-
crease in the number of virtual photons in the field of the
nucleus, since when vacuum polarization is included the
electrostatic field of the nucleus is stronger than — Ze?/.

The cross section Eq. (IV.3) for high energies may
easily be integrated over angles using Bethe’s method!!
which is applicable to any form factor.

The integration is performed in Appendix IT with the
result

2(&27’0)2 dw1

do vacB(wl) =

[123(er?+ €2%) — 62€1€5]. (IV.4)

™ €1°w1

This result will be used in Sec. VI.

V. THE REAL-SOFT-PHOTON RADIATIVE
CORRECTION TO BREMSSTRAHLUNG

The infrared divergence occurring in do.;® Eq.
(TII1.11) through the term In\ is removed in the usual
way by adding to the virtual-photon radiative correc-
tion the real-soft-photon radiative correction. This
correction, which is the cross section for the emission of
an additional soft photon k&, besides the hard photon %,
in the bremsstrahlung process, is most easily obtained
from the formula

doreal, softB(ki,ks)

d*k
=~a—d0'03(k1)‘—-‘2< P P
2 w2 \p1-ks  po-ka

)2, V.1)

where p1, ps, and k1 occurring in the last factor are four-
vectors and doo® is the Bethe-Heitler cross section.
Formula (V.1) follows from general considerations given
by Jauch and Rohrlich.!?

10 7. M. Jauch and F. Rohrlich, The Theory of Phoions and
Electrons (Addison-Wesley Publishing Company, Cambridge,
1955) pp. 189-195.

1 H. A. Bethe, Proc. Cambridge Phil Soc. 30, 524 (1934).

12 Reference 10, pp. 390-392. Note Eq. (16.3).



RADIATIVE CORRECTIONS. I

For the Bethe-Heitler cross section we use the
Weizsicker-Williams approximation Eq. (IT.11):

dooB(w1) =4aZ?y? InR(dw1/ e1’w1)
X{e?+e?—%eae). (V.2)
The cross section for the emission of an additional
photon %, of energy less than Aw, in the bremsstrahlung

process is obtained by integrating Eq. (V.1) over the
part of phase space for which w,<<Aw,, where Aw;Ke;:

do'real, softB(kI:Aw2) = (_a/w)dUOBI(plxp%Aw?) ’ (V-s)

sz

I(p1,p2,Awg) = 2(1—2y coth2y) In

€1€2

B 1665

with

d3k2< 2 Pe

2
- > (V4
p1-ks pake

—1
I(plyp27Aw2) = /

4 2<Awg W2

Since this integral occurs in any process in which an
emission of a soft photon takes place we have in Ap-
pendix IIT calculated I for general vectors p; and ps.
In our case of small angles and high energies we have
according to Eq. (A3.9)

A=) —1) 9+1 g+l
1 In:

I2+% coth2y [ 2y In

2¢(n+1)

where

¢{=tanhy=

L, is the Euler dilogarithm

and

1) =1 11
A+H)En+1) 1-9)(En—1 1+ -1 1— +1
L2< - )_L <( 2;(17(:1) )> L<( 2:(),7(?1) ))_L (( 2;()17(?1) ))} v3)
(el2+e22—2c::62 cosBy)12’ (v.6)
Ly(x)=— [O xln(l—t) dt/t, w.7n
1= (et e2) /1. (V.8)

When the variable ¢ is introduced instead of 6, the cross section Eq. (V.3) integrated over the angle 6" becomes

s

er’ey J o1 §

2 wldwl 1
dO’rea], SOftB(whAw?) = _-‘_(O‘Z"O)z InR / _;UCI(plyp27Aw2) ’
m L]

where U¢ is given in Eq. (I1.4).
The integration gives the result

A reat, soft?(W1,Awe) = — (2/7) (Zr0)? InR(eadwr/ ex01) {To(In(Aws/ex\) — 5 §)
— (1/105)[372(2y*+ 28+ 357) +4(4y*+48v*+87y+46) in(h(£) — 3 Iny) ]
- [2/(105)2 (4747 — 175y — 829+ (1483 1078772+ 22750y +9660) Iny

Here v, (%) and 4 are defined in Egs. (I11.7), (II1.9),
and (V.8), respectively, and

t=In(es/e1). (V.10)

VI. THE SOFT-PHOTON RADIATIVE CORREC-
TION TO THE BREMSSTRAHLUNG
SPECTRUM

The high-energy bremsstrahlung spectrum including
radiative corrections is, according to the discussion in
Sec. I,

do'B(wlaA"-&) = dUOB(wl)"I—do'softB(wawZ) y (VI 1)

where dooB(w;) is the bemsstrahlung spectrum without
radiative corrections, the Bethe-Heitler spectrum, or
our approximate cross section Eq. (IL.11). The radiative

1 (148y+ 1133142+ 21069y-+8002)&n ]} . (V.9)
correction to the spectrum is
dosof tB(wl;A‘U2) = d”virB(w 1) +do vacB(wl)
+d0'real, softB(wI;Aw2) ’ (VLZ)

where the virtual-photon contribution doy;(w,) is given
by Eq. (II1.11) and Appendix I, the vacuum-polariza-
tion contribution doy.B(w1) by Eq. (IV.4) and the soft-
real-photon contribution doreal, soft® (w1,Aws) by Eq.
(V.9) for AwsKer.

We will write Eq. (VL.1) in the form

doB(w1,Aws) = dooB(wi)[148eostB(w1,Aws) ],  (VI.3)
where
Osof tB(w 1, Aw2)
= (deirB+d°'vacB+dareal, softB)/d‘TOB . (VI4)
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TasBLE I. The functions Fi(wi/€1), Fa(wi/e1) and Fyae(wi/er) occurring in the
soft-photon bremsstrahlung radiative corrections Eq. (VI.5).

wi/ea 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F1X10? —0.773 —0.340 —0.097 0.123 0.380 0.750 1.405 2.78 5.18

FaX10? 0.014 0.048 0.095 0.171 0.240 0.360 0.530 0.686 1.05
Fyae X102 0.198 0.196 0.194 0.192 0.190 0.188 0.185 0.183 0.180

The sum Eq. (VI.4) eliminates the infrared divergence
In) since the coefficient of In\ in dovi®, Eq. (IIL.11), is
—(2/7)(aZro)? InR(exdwy/ exwr)ly, while it is +(2/x)
X (@Zro)? In(exdwi/ e1wi) Iy In doreay, sofi®, Eq. (V.9).

Adding Egs. (I11.11), (IV.4), and (V.9), we may write
the radiative correction §% in the convenient form

dsottZ(w1,Awg) = F1(w1/e1) +Fa(w1/ 1) In(Aws/e1)
+F vac(“’l/ e1) (lnR)_l ) (VIS)
where Fy, Fa, and Fy,. are functions of wi/e; only and
are given by
Fi(wi/e1)=—(a/mao) [ a1+ (as+ast)é
+ (es+asD)n+(as+art+as Iny) Iny
+ (ot o104 011 Iny+-a12h(£/2)
+4a1h(§)én],
Fa(wi/e1)= 2a/may) (aatar Iny +a1otn) ’
Fyaclwi/e1)= (e/mae)(123y+184)/81.

The quantities v, 7 and § are given by Eqgs. (IIL.7),
(V.8), and (V.10), respectively, and D is defined by

(VL6)

e1/w1

D=L2(61/w1)—L2(—" 62/w1)= '—/ ln(l—t)dt/t

—e2/wl

The coefficients in Eq. (VL.6) are
a0=2v+8/3,
8r? 32 581
a1=~—73+<——+—7r2)72
315 105 630
59941 7x? 12229
( { )’y+4
1052 6 1052

16 40 23
a=— (-72+—'y+8-—) ,
105 21 105

)

(16 3+157 , 1763 424 132)
ag=—{—y*+— ,
" \1os' 84’ ' 420 105 35y

1l'2
Q= (7_6)— )
6
as=—3v*—(5/3)v+2,
9653 102655 28
as= y*+ y+—,
1052 2X1052 105

8 16 4
ar= —(-—'7"’+—72+-'y) )

105 15 3
as=3v*+5v,
11333 \ 9443 6608
a.

9= Y Y+ ’
1052 2X1052 1052

8 32 58 92
ap= —( +—+ > )

Y v+
105 35 35 105
6 1 119
an= y2——vy+ )
105 10 105
2 142 o 16
a12=—"7"+— —y——.
"T10s' T35 105 21 (VL7)

We note that 845® is of the order a/r when wi/e;
is of the order one, this is also true for the lower part
of the spectrum where w;— 0. At the upper end of
the spectrum the correction becomes of the order
(o/) In%(er/ e3).

The functions Fy, Fy, and Fy,. are given in Table I.

The contribution to 68 from the vacuum polarization
Fy.o(InR)™ is small in all cases. When this small con-
tribution is neglected ds05:% becomes a function of wy/€;
and Aws/¢; only, independent of the initial energy e and
of the atomic number of the bremsstrahlung target. The
curves for 8q? given in Fig. 3 for some values of Aw,/€;
show that the effect of the radiative corrections on the
bremsstrahlung spectrum is small unless Aws/¢; is ex-
tremely small. In the application of the present theory
the energies of both the photon and secondary electron
should be determined and then Aw, should be set equal to
the maximum value of the energy imbalance e;— e;—ws.

VII. THE SOFT-PHOTON RADIATIVE COR-
RECTION TO THE PAIR-PRODUCTION
SPECTRUM

The radiative correction d¢? to the pair spectrum
when a soft secondary photon k; with energy less than
Aw, is emitted in the pair-production process is given
analogously to Egs. (VL.3) and (VI.4) by

doP (e, Awe) =dooP(e4)[1— SsortP(er,A02) ],  (VILI1)
where
asoftP(eﬁAwZ) = {do'virp(6+)+d0'vacp(5+)
+d0'real, softP(€+7Aw2)}/dU'0P(€+) . (VII-Z)
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Here e; is the positron energy. In all the following
formulas the electron energy e_ should be substituted
for e when the energy spectrum of the electron is
desired.

The cross section dogP(er,Aws) is the cross section
for pair production with soft bremsstrahlung

Z+k1 il Z-I—e++e—+k2 N

when all secondary photons %, with energies less than
Aws are included.

The pair-production cross section doo?(e), the virtual-
photon, vacuum-polarization, and soft-photon radia-
tive-correction cross sections dov;F(ey), dovact(ey), and
doreal, softT(€4,Aws), respectively, are obtained from the
corresponding cross sections for bremsstrahlung, Egs.
(IL.11), (TI1.11), (IV.4), and (V.9), by the substitutions
€1— —e€;, e — e, and w3 — —wj and by multiplication
with the statistical factor ratio e;2de;/(wi?dw;). Further-
more, as discussed by Harris and Brown!? for the case
of two-quantum positron annihilation, the definition of
v, Eq. (II1.6), must be changed by substituting for y a
new variable x by y=x—1in/2. The quantities 7", Eq.
(IIL.5), for the case of pair production may be shown to
get the following changes besides the substitutions
€1— —é€p, > e and w3 — —wy ¥

(VIL3)

sinh?y — —cosh?v,
Re[yh(y)]— «[7(22)—h(x)],
Re[y4(2y)]— a[h(2x)—7*/4| x| ],
where x is defined by

(VIL4)

coshZr=2%v,(1—cosby)1, (VILS)
with

Yp=wi?/ere_. (VIL6)

In this way we obtain 7, where

IﬂP(€+: E—) =I7L,P(€+7E—)+I"/P(_— €y — 6—) )

Soon
(%)

F16. 3. Soft-photon radia- 20
tive correction to the brems-
strahlung spectrum, 8ox? 10
=F1+F, ln?Awg/ﬂ) Num-
bers affixed to the curves 0
give the values of ¢1/Aws.

0 02 04 06 08 @k

with
+1
I/ Pey,e)= d(cosfy’) Rei, P(k,T),
-1
where ,,’? is obtained from i, of Eq. (IIL.5) by the
substitutions Eq. (VIL.4). The results are given in
Appendix I.
For the virtual part of the radiative correction we
find from Eq. (IT1.11)

(VILT)

{Z I.P+17 In\},
0-’1 n=1
(VILS)

where the integrals I, are given in Appendix I.
The vacuum-polarization part of the virtual-photon
radiative correction is from Eq. (IV.4):

2(aZr0)? dey
817[' w13
X[123(e;2+ € 2)+62e1¢_]. (VILY)

We obtain the real-soft-photon radiative correction
from Eq. (V.9), noting that since the cross section is a
first-order Born-approximation cross section for a real
process no complications of the form discussed above
Eq. (VIL4) may occur. We may thus directly substitute
€1— €, € — €, w1— —w; and Iny — Iny,. Rewriting
the expression in such a way that In(Aws/w;) appears
explicitly, we obtain

2
dovirP(e;) = ——(aZro)? lnR
T

da‘vacp(€+) =

doreat, soft T (e, Awe) = — (2/7)(0Zr0)? InR (ere—der/w1®) {1y In(Aws/w))

- (4/105) ['Yp(27p2

where 7, is defined in Eq. (VIL6) and
tp=In(e_/eyp), (VII.11)
Np=(e4—e_)/w1. (VIL.12)
Collecting the terms, Egs. (VILS8), (VIL9), and
(VII.10), we find that the soft-photon radiative correc-

tion to pair production, Eq. (VIL2), analogously to
Eq. (VL.5) may be written in the form

6softp<€+,Aw1) = Gl(e+/w1)+(}2(e+/w1) In(Awg/wl)
+Gvac<€+/w1) (ln-R)_l ’ (VII-13)
13 T, Harris and L. M. Brown, Phys. Rev. 105, 1656 (1957).

—287,+35)(In*y,—?/6)— (47, —
+[2/(105)*J[4(74v,*+1257,—829)— (148v,°—

48y,*+87v,— 46) £ (h(Ep)— Iny,) ]
11627y ,2+33250y,—19320) Iny,

— (148, — 11331y,2+21069y,—8002)£,m, 1}, (VIL10)
where
G1(€+/w1) =— (05/71'001)){01",—62 I Np [ +(l§p1]pr

+(cstcalnyy) Iy pt-aspé?+[as,+cs Iny,
— a10ph(Ep/2)coht(Ep) JEpmp} (VIL.14)
G2(5+/w1) = (2a/maop) [ asptarp ln’)’p_{'alﬁpgp’?p] ’
Gac(ey/w1)=—(a/Taop)(123y,—184)/81.
Here D,=Ly(ey/wi)— La(e_/w1). The coeficients a@op,
@3p, Asp, Qop, B2p, Q1p, AN @10, are obtained from the

coefficients ay, as, as, as, @2, a7, and ayo of Eq. (VL.7) by
substituting —+v, for . The remaining coefficients
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are

8 32 37 59941
= ____4,,-2 3_( _1.2)71,2__( +,’r2
(105)?

.

315 105 45
12220 27% 4x?
S ¥ e
105)2 3 3y,
2(8 \ 32 2+174 92)
=1 —p' 1"t Yo )
" \105"” '35 105" 105
11333 | 144655 5565 ViLts)
3= Voo v 4 s II.
P 05): T 2%(105)2 T (105)?
8 109 31
4= _"_"Yp3+'_7p2"‘—‘711 ,
1057 68 " 12
2 109 +211
es=—v"— ¥t
T35 70" 105
2 8 e
Ge=—Ypt——¥p— =+
5 15 15

The functions G1, Gs, and Gy, are given in Table II.
As for the case of bremsstrahlung, the contribution to
the radiative correction due to vacuum polarization is
always small. Neglecting Gyac(InR)~! we obtain the
curves for ds5? in Fig. 4. The form of the spectrum is
independent of the atomic number of the target and of
the initial photon energy wi, the only dependence on w;
is through the energy resolution Aws/w;.

K. MORK AND H. OLSEN

F16. 4. Soft-photon radi-
ative correction to the pair
spectrum, &otf =G1+Ga
XIn(Aws/w;). Numbers af-
fixed to the curves give the
values of wi/Aws.

VIII. THE REAL-HARD-PHOTON RADIATIVE
CORRECTION TO PAIR PRODUCTION

We shall in this section calculate the contribution to
pair-production effect from the process Eq. (VIL.3) for
the case that k3 is a hard photon with energy larger than
Aws. This contribution to the radiative correction,
Shara”, when added to 8gost P gives the radiative correction
to the spectrum 6¥ when an extra photon k. of any
energy is emitted during the pair-production process.
This radiative correction is independent of Aws,

6P(€+) = 6softp(€+)Aw2)+ ahardP(€+7Aw2) . (VIII' 1)

Again we use the Weizsicker-Williams method. The
cross section doreat, hara 1S obtained from the corre-
sponding bremsstrahlung cross section dorea, hard®, With
diagrams given in Fig. 1. The cross section doreat, hard® 1S
in turn obtained from the double Compton cross section
which has been calculated by Mandl and Skyrme.!* By
a procedure exactly like that of Sec. III we obtain

€

w1—e+ »
do'real, hardP(€+,Aw2) =— (aZr0)2[lnR/(21r)3:|(de+/w1) (——';)wg dwzfdﬂ’dﬂll ‘vaa_2 . (VIIIZ)
Awsg

The quantity X of Mandl and Skyrme is given by!*

X=2(ab—c)[(a+b)(x+2)— (ab—c)—8]—2x(a*+b>)—8&¢
+(4x/A B)[(A+B)(x+1)— (aA+bB)(2+2z(1—x) /%) +3*(1—2)+22]—2p[ab+c(1—x) ],

b=22()7",

Z2= Z K,'K,rl N

p=2_(ki(x ) +xkiT).

with
=3 ki1,
x=z ’Q':Z Ki,,

B=K1’K21K3, 5

€+

For the pair-production process with bremsstrahlung Eq. (VIL3), we find

k1= (w1/ey)(1—cosfy) !,
Ko= — (w2/€+)(1 - C0502’)_1 y

K3= f3(€+/(:_)(1 - COS@’)"I(I - COSH],,)_1 ’ ks'= (E_/E+)K3 ,
f1= €+~1{ “—wz(l - C0501/) + (e+—l—w2) (1 - 00302/) + (wg/e+)(e++w2) (1 - cosom’) } y

with

f2= q.“‘{wl(l—cosog’)-!—(e+—w1)(1 —COSG]_I)" (wl/e+)(e+—w1)(1 —COSGlz’)} y

(VIIL3)
c=2_ ki (ki)
A= Ki1KoK3, (VIII4)
kt' = (w1/e)(f1/ foks,
ko' =— (wz/es)(fo/ fa)ks, (VIILS)
(VIILG)

f3 = e+”1{w1(1 —_ C0502,) - wg(l —_ COS(91’) + (w1w2/6+) (1 -_ 008012,)} .

The angles 6, 6y’ and 6y, are the angles in the rest
system of the positron. 8," is the angle between the
virtual photon and the incident photon %1/, 6, the angle
between the virtual photon and the secondary photon
ko', and 615 the angle between %, and %'

It is convenient to introduce the new variables

x=w2/w1; y=e+/w1) ¢:¢/27r)
z1=3(1—cosfy), 2z2=3%(1—cosby’).

¥ F. Mandl and T. H. R. Skyrme, Proc. Roy. Soc. (London)
A215, 497 (1952).
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TasBLE II. The functions Gi(ey/w1), Ge(ey/w1) and Gyac(e,/w1) occurring in the
soft-photon pair-production radiative correction Eq. (VII.13).
er/w1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
G1X10? 2.70 2.22 2.16 2.30 2.53 2.30 2.16 2.22 2.70
G2 X10? 1.07 0.750 0.632 0.553 0.526 0.553 0.632 0.750 1.07
Grac X102 0.174 0.171 0.168 0.166 0.165 0.166 0.168 0.171 0.174

The cross section Eq. (VIIL.2) then becomes

do real, hardp(é.q.,sz)

witdey [1 1 1
= (2/1!') (aZfo)2 InR / dZ],/ de/ dd
&3 Jo 0 0

-y
X / dx x(x+y—1)X/fs2. (VIIL7)
Awz/w1

The fourfold integration in Eq. (VIIL7) is performed
by the Monte Carlo method, that is, we evaluate the
integrand a large number of times for random combina-
tions of the variables x, ®, 2, and z,. The probable error
in the result, the root-mean-square deviation, is also
obtained.

For small values of x the integrand behaves as 1/x.
In order to separate out the term In(Awy/w;) we write
the integrand in the form

x(x+y—1)X/ fs
=x(x+y—1)X/f—[x(x+y—1) X/ fs* a0
+[x(a+y—1)X/fs*]zs0  (VIILS)

where, since Awy/w<K1, we may put Aws=0 in the

integral Eq. (VIIL7) for the combination of the first

two terms of the integrand Eq. (VIIL.8). The last term

of Eq. (VIIL8), when integrated over x, gives

In[(w1— €4)/Awy ] multiplied with the known function

dooTGy(ey/w1), where Gay(ez/ws) is given in Eq. (VIL.14).
We may therefore write

A0 real, hara? (€4,Awe) = dooP{ — (ary p/T0p) AT

+Gs h’ll:(wl—‘ e+)/Aw2:|} ’ (VIIIg)

where

A=y / e / i f s f GGty D X/£)

—2(1=y)y 2 {4a’— 4z +2—y~(1—9)7"}
X{y*+Qau(1=y)/ f2)—2(1—2y(1—y)z1)/ f2}] .

The integral Al was performed on the NBS IBM
computer. The results are given in Table III. The
statistical error is always smaller than 59.

IX. THE TOTAL RADIATIVE CORRECTION
TO THE PAIR SPECTRUM

When the result Eq. (VIIL9) is combined with 847,
Eq. (VIL.13), we obtain the radiative correction &%,
Eq. (VIIL1):
87(er) =G1+Ge In[1—(e4/w1) ]

FGrac(InR) 71— (ay,p/mae,) AL

T T T T T T T

40}

Fi16. 5. Total radiative N\ &
correction to the pair
spectrum, 87 (e/w1), Eq.

(IX.1). The virtual-pho- A &
ton contribution Gy, and
real-photon contribution 0
Ga In[1— (e4/w1)]
— (avs/maop)Al, €
-20} G, Infi- £)-( 2 \a1
are also shown. n( "") ("3°P)A

0 0.2 04 06 08

Again we neglect the vacuum polarization contribu-
tion and 67 is then a function of e,/w; only, independent
of the initial photon energy and of the target material:

8 (ey/w1)=G1(er/w1)+Ga(er/w1) In[1—(e1/w1) ]
—(avp/ma0p) Al (er/w1). (IX.1)

This radiative correction is shown in Fig. 5. The
statistical errors in 8F are less than 59, and are due to
the errors in Al It should be noted that the pair spec-
trum is not symmetric about e; =3w; when the radiative
correction is included. The shift towards lower positron
or electron energies is due to the energy loss by the
emission of the secondary quantum #k,.

TasiE III. The integral AI(e;/w1) occurring in the real, hard pair-production radiative correction Eq. (VIIL.9).

er/w1 0.01 0.02 0.03 0.04 05 0.06 0.1 0.15 0.2 0.3
Al —34.5 —29.3 —26.3 —24.2 —19.0 —17.2 —13.4 —10.1 —17.9 -5.0
e/ 0.4 0.5 0.6 0.7 8 0.85 0.9 0.95 0.97 1.0
Al —3.35 -2.1 —-1.0 —0.10 60 0.82 0.60 0.50 0.27 0.0
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TaBLE IV. The radiative correction to the total pair cross
section AP for incomplete screening, supplementing Eq. (X.4) (no
screening) and Eq. (X.3) (complete screening).

Z=13 Z=29
w1 200 400 800 150 300 600
AP (%) 1.03 0.98 0.94 1.04 0.99 0.94
Z=350 Z=82
w1 125 250 500 100 200 400
AP (%) 1.04 0.99 0.94 1.06 1.00 0.94

When the present result is combined with the high-
energy Coulomb-corrected pair specrtum,! we obtain

do®(er) =aZr¢*(dey/wi®) { (e e H)[P1—5 InZ—4£(Z) ]
Jere [®—5 InZ—4f(z)}(1+067), (IX.2)

which is the formula for the pair spectrum with a rela-
tive error which is given by the larger of the two num-
bers (aZ)? Inwi/w; and 0.0005. The error of the order
(aZ)? Inw;i/w; is due to the inaccuracy of the Coulomb
correction for lower energies!® and the number 0.0005 is
the error in 8%, Eq. (IX.1), due to the uncertainty in A7,

The functions ®; and &, are given!! and tabulated!” by
Bethe and Heitler. The quantity f(2) is given by Davies,
Bethe, and Maximon'®. In Eq. (IX.2) we have neglected
the Coulomb-correction effects on 6% which is justified
for the accuracy given. We have further assumed that
6% is independent of screening also for the case of partial
screening, since this is true both for no screening and
for complete screening, as we have seen.

X. THE RADIATIVE CORRECTION TO THE
TOTAL PAIR CROSS SECTION

The radiative correction to the total pair cross section
AP is obtained by integrating dogs:?, Eq. (VIL.2), and
doreal, nara®s Eq. (VIILY), over the positron energy ey

e1-1 dosoft T doreal, hard”
ar=a/en [ aed (S (5
1 dey dey

w1—1 dG’oP
o) [ de(=)
1 d€+

x{Gl+Gzln(1—ff)—a7”A1}, (X.1)

wi. TQop

according to Eq. (IX.1). Here o,? is the total pair cross
section without radiative corrections.

The first two integrals in Eq. (X.1) were calculated
analytically and the last intergral numerically. We use

15 H. Davies, H. A. Bethe, and L. C. Maximon, Phys. Rev. 93,
788 (1954). See also H. Olsen and L. C. Maximon, Phys. Rev. 114,
887 (1959), Egs. (10.9) and (8.7).

16 H. A. Bethe and L. C. Maximon, Phys. Rev. 93, 768 (1954).
%i’:es%so G. White Grodstein, Natl. Bur. Std. (U. S.) Circ. 583

957).

17 H. A. Bethe and W. Heitler, Proc. Roy. Soc. (London) A146,
83 (1934).
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the Weizsicker-Williams approximation for doo*/de;
obtained from do¢®/dw;, Eq. (I1.11):

doP/der=4aZ%? InRwi3{es2 e H-2ere ). (X.2)
The result is for complete screening,
AP=(0.93+0.05)9, (complete screening), (X.3)

where the uncertainty is due to the Monte Carlo method
as discussed previously. The vacuum-polarization con-
tribution Ay,.?=0.032(1—0.06 InZ)19, is very small.

For the case of no screening we find, correspondingly,

In2w;—1.58
3

AP=0.93———
In2w;—2.08

Yo (no screening), (X.4)

and Ay, P=0.17(In2w;— 2.08)719%,.

The deviation of (X.4) from (X.3) is small; indeed
its largest value occurs at the lowest photon energy for
which the present theory is valid, w;=30 (15 MeV).
Equation (X.4) gives A?=1.129, which is only slightly
above the complete screening value 0.939.

For the case of incomplete screening, sufficiently ac-
curate values for A? are obtained using the Weizsicker-
Williams approximation, Eq. (X.2), for doo?/dey, with
InR=—% In[ (w1/2ere_)2+(Z13/183)?]. The results are
given in Table IV for some energies and elements. These
values together with Eqgs. (X.3) and (X.4) are sufficient
for calculation of A® for all elements and energies above
15 MeV. _

The relative error in AP is in‘all cases of the same order
as that given in Eq. (X.3), viz., of the order 5%.

The total pair cross section is then given by

wi—1 d€+
0'P= (1!227’02 l/ ——3[(612+ 622)q)1+%6162q)2]
1

w1

—(28/9)(5 InZ+f(2) ] (1+4%). (X.5)

The integral involving ®; and &, has to be computed
numerically.!8
We have also computed separately the contribution to
the total-cross-section radiative correction due to the
soft photons:
er-l g,
Asoft?= (I/UOP)/ dey:
1

soft”
d€+ '
The calculation is described in Appendix V. The result

is, for the case of complete screening,

Agort?= A+ B In(Awg/w1) ) (X-6)

18 The most accurate evaluation of the screening effect using
Hartree-Fock potentials is given by A. Sgrenssen, Nuovo Cimento
38, 745 (1965).
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TaBLE V. Comparison between experimental (Ref. 5) and theoretical values of the radiative correction to the total pair cross section
for 1-BeV photons. (The theoretical value of AP is 0.93%, for all elements.)

z 13 22 29 42 50 73 82 92
Element Al Ti Cu Mo Sn Ta Pb U
AexptP(%) 1413  27+14  —08+14  25+13  —01+08  —07+19  —0.6+10  —1.8+1.1
Atheor” (70 0.93
with cross section we shall leave out in the present com-
parison elements lighter than aluminum.
= ._._91 _SiEL (2)— 1452;(3) When comparing with the available experiments® we
147\ 35 © 35 have selected experiments where w; and Z meet the

316 6283 128
24 2 nZ) ,

225 210 35

9 128
B= ———(6-—-———1r2> .
147 105

Introducing the values for the Riemann zeta function
$ $(3)=1.202 and for the Euler trilogarithm Ls,
L;3(2)=2.762, we obtain?®

Aot P=[2.7540.90 In(Aws/w1) ]102
(complete screening). (X.7)
Because of the complexity of the calculations involved
in computing Agsf we have checked the result, Eq.
(X.6), by an independent method of calculation. We
have integrated the differential radiative-correction pair
cross sections doyi;P(p4) and dovea, soft? (P+,Aws), corre-
sponding to the bremsstrahlung radiative-correction
cross sections doyi (ki) of Eq. (IIL.1) and orea, soft®
(k1,Awg) of Eq. (V.3), directly over angles and energies
without first obtaining the energy spectrum. As this
calculation is performed in a way substantially different
from the way it is done in the text, one obtains an inde-
pendent check on the soft-photon radiative correction
Eq. (X.6) and thereby a check on the results of Secs.
VI and VII.

XI. RELATIONS TO EXPERIMENTS

The comparison with experiments is made difficult
because the theoretical pair cross section without radia-
tive corrections is in many cases not known to the
accuracy required, viz., to a fraction of a percent. The
uncertainty in the theoretical cross section arises from
the fact that the error in the Coulomb-corrected cross
section is of the order (aZ)?lnwi/w; as stated below
Eq. (IX.2). Another uncertainty, namely, that the
screening correction based on the Thomas-Fermi model
is not sufficiently accurate, seems now to be removed
to some extent through the recent calculation of the
screening effect based on Hartree-Fock potentials.!®
Because of the uncertainty in the theoretical triplet

19 This partial result has been given before, K. Mork and
H. Olsen, Nuovo Cimento 18, 395 (1960).

requirement that the uncertainty in the cross section
(aZ)? Inwy/w1 should be less than 0.005 giving an un-
certainty in the theoretical cross section which is less
than 0.5%,.20

For the highest photon energy, 13.5 BeV, for which
the gamma absorption coefficient has been measured,
the experimental value?! of AP is (1.1742.0)9, for
copper and (1.854-2.4)%, for lead. This is consistent
with the theoretical value of AP which is 0.939, for all
elements.

For 1-BeV photons Table V shows that only for the
case of uranium is there a serious disagreement between
experimental and theoretical value of A, The average
experimental radiative correction based on all elements
in Table V is

Aexpt?=1(0.334-2.0)%,

which again is consistent with Apeor”=0.939%,. The
large (in the present context) experimental uncertainties
prevent detailed comparison with theory.
Experimental®22-% and theoretical radiative correc-
tions for other energies are given in Fig. 6. Again the
number of cases where serious disagreements occur are
few. For all cases in Fig. 6 the pair production process is
the dominant contribution to the total gamma-absorp-
tion cross section. The largest contribution from the
Compton effect occurs for 60 MeV for aluminum, but
the contribution is small, only 159, of the total cross

20 This requirement means that for Sn only experiments with
energies above 50 MeV, for Pb above 225 MeV, and for U above
300 MeV can be used in the comparison.

2 Since Sgrenssen’s results (Ref. 18) were not available at that
time, the theoretical cross sections in Ref. 5 are based on Thomas-
Fermi screening. We have for the case of 13.5- and 1-BeV photons
corrected the theoretical cross sections in accord with Sgrenssen’s
results.

(1”5_1.) M. Wyckoff and H. W. Koch, Bull. Am. Phys. Soc. 3, 174

959).

3 J. L. Lawson, Phys. Rev. 75, 433 (1949).

% J. Moffatt, J. J. Thresher, G. C. Weeks, and R. Wilson, Proc.
Roy. Soc. (London) A244, 245 (1958).
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( 2“5{.) W. De Wire, A. Ashkin, and L. A. Beach, Phys. Rev. 83, 505
1951).

# J. D. Anderson, R. W. Kenney, and C. A. McDonald, Phys.
Rev. 102, 1626 (1956).

28 J. D. Anderson, R. W. Kenney, C. A. McDonald, and R. F.
Post, Phys. Rev. 102, 1632 (1956).

2% D. H. Cooper, thesis, California Institute of Technology,
1955 (unpublished).
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Fi1c. 6. Comparison with experiments. For the selection of
experiments see Ref. 20. For the high-energy experiments of
Malamud (Ref. 5) we have corrected the theoretical cross section
according to Ref. 18. Other experimental points are taken from
Malamud’s paper (Ref. 5).

section. Thus for all cases in Fig. 6 the radiative correc-
tion to the total cross section is practically equal to the
radiative correction to pair production.

It should be noted that qualitatively the increase in
the radiative correction towards the lower energies of
Fig. 6 is in accord with theory (Table IV). The experi-
mental increase is, however, considerably larger than
that predicted by theory, but again the agreement is
fair within the experimental limits of uncertainty.

Finally as another relation of the present theory to
experiments, the application to the photonuclear meas-
urements might be mentioned. In these measurements
the gamma absorption coefficient is measured as a

IB="Ty+(22/3)+v(y+3%) Iny+vy(y+3)én,
IP=3[—v—4+23v—2)tn+(y*—y— (y—6)n)7?/2
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function of energy and the photonuclear contribution is
obtained by subtracting from the measured gamma-
absorption coefficient the theoretical electromagnetic
gamma-absorption coefficient. Since the photonuclear
contribution is always considerably smaller than the
electromagnetic contribution, the radiative correction
to the electromagnetic processes is of the order of 19,
when compared to the electromagnetic cross section but
much larger when compared to the photonuclear cross
sections. Thus to obtain a reliable interpretation, the
radiative correction to pair production is needed. Also,
the radiative correction to the Compton effect is neces-
sary in order to obtain the necessary accuracy for the
gamma-absorption coefficient. The latter will be given
in a later paper.
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APPENDIX I: THE INTEGRALS I,2 AND I,°

We list here the integrals I,,# occurring in Eq. (IT1.11)
for bremsstrahlung and the integrals I,® occurring in
Eq. (VIL8) for pair production. With the definitions

Yo=w1?/(ere),
&=In(e_/ey),

o= (es— /oo,

v=wi¥/(ae),
t=In(ex/er),
n=(a+e)/w1,
D= Ly(er/w1)— Lao(— e2/w1)
D,= Lz(ﬂ/wﬁ “Lz(f—/wl) )

h(x)=x"1 / (cothu)u du,
0

we obtain

— (3y24+-19y+20—32/7)£2/4+3y(v—1) In>y+3(y—6)&n Iny— (3y*+2vy—6)2D],
I8=—3vy+(2/9)—y(2y+1)nD+2v(y+3)(n2y— £+ 272 — (y2+3v+3) Iny+(v*+5v+3)én,

IB=2[34+1+2%y) Iny—2(v+4)&n],

I8=— Gy +1—4/(37)) £~ 4v/45+2/15+v(131y/90+1) Iny+(131y?/90+49v/45—4/15)én

IeB=(1/15)[2(3y*+2v—32) enh(£/2) +§v(3y—5) (3£2+2x2)
+(v/30)(231y—400) Iny+(1/30) (2312 — 232y — 544) g — Tv/5+39/15],



RADIATIVE CORRECTIONS. I

I;8=(8/105)[[(2v*+24v*+87v/2+23) in(2h(¢/2) — h(£))

B1673

+y(2v2+28y+35)3 w2+ (1/210)(599v2+ 1070172/ 2+ 6702v+ 1586) £n
+(1/210)(599y2+11417y/2+6125)y Iny+(1/105)(179y2—2307y—934) ],

IsB=—(105)2[105(167*+ 128y2— 587144+ 816 /) £2

+105(1673+ 9672202y — 132) &y Iny+ 5384724201027+ 18614
+ (269272 5811372457683y — 22578) £+ (2692246013724 36435y +9030) Iny ],

I4®= (16/105)[ 27"+ 25y+23+3(2y*+28y+35)y Iny+3(2v*+ 24y *+87v/2+23) én].

The corresponding quantities for pair production 7,?
may be obtained from I,? in the following way: I, I3,
147, Is?, and I,P are obtained from I8, I,5, 1.5, Is5,
and I8, respectively, by replacing v by —v,, £ by &p,
1 by 7, Iny by Iny,, and D by D,. I, is obtained from
I,® by replacing y by —v,, £ by &y, 1 by 15, Iny by Iny,,
D by Dy, and [v*—y—(y=6)n1r%/2 by (yp*+12v,
—16/v,—10)7%/2. I?, I, and I;” are obtained from
I8, I8, and I.B, respectively, by replacing v by —+v,,
n by 7, Iny by Iny,, ¢ (when occurring linearly) by
&y (but & by £,°—?), h(£/2) by h(£p)—h(£,/2), and
[2/(2/2)— (&) 1by — [2h(£,/2)— h(Ep) T/ (285 1))

APPENDIX II: VACUUM POLARIZATION

According to Eq. (IV.3) of the text, the vacuum
polarization contribution to the radiative correction is
given by

dova®(k)=—2do®(k)¢’TI;(¢*)  (AIL1)

where do (k) is the differential bremsstrahlung cross
section and TI;(¢?) is given in Eq. (IV.2). In order to
integrate dov,P(k) over angles we use a method due to
Bethe.!! Bethe integrates the bremsstrahlung cross sec-
tion using three variables x, y, and ¢% It is convenient
for us to use the same method since II; is a function of
g only. At high energies we find, according to Bethe,!
that the cross section integrated over x and y is given by

dwy [ d(g?) \
/a ; 11,(¢%)

€1%w1 q
X {(ef+ g2 s/ (14912 —Sae(l— 28/ (1419},

where we have used the fact that the contribution to the
integral is negligible for ¢ of the order 4, due to the rapid
vanishing of ¢?I;(¢?) for small values of ¢. Here

=3 In[((1+)2+1)/((1+5)2—1) ], where {=4/¢"

When £ is introduced as a new variable we get

dO’vacB (w 1) = 20!Z27’02

B 2 4 ’ dé
d(Tvac (w]_) = 2((1Z70) —1; ‘/; Sinhzg

X{ (e’ +e?)E— erea(cothE—E(sinh %))}
X {5/3— (sinh?¢)~1—(2— (sinh?£)~)£ cotht} . (AIL2)

When the integrals are performed the result given in
Eq. (IV.4) is obtained.

APPENDIX III: THE REAL-SOFT-PHOTON
CROSS SECTION

A. General

In the expression for the real-soft-photon cross sec-
tion, Eq. (V.3), there appears the integral I(p1,pz,Aws)
which may be written, according to Eq. (V.4),

d*k

1
I(p1,ps,Aws) =— f

T J w<Awg @
% { 1 ' 1 ' 2?1?2
(pih)* (po)? (pik)(pok)

Since this integral is often encountered in calculations
involving soft photons we shall first give a general ex-
pression for 7 in terms of pi, ps, and Awe. We introduce
the variable

¢=w/| k| =[14+0/[k[)*],

\ being the “photon mass,” and the integral becomes

] . (AIIL1)

1 = dﬂdﬁ‘{ 1 N 1
tr )y o—1la2c—Bi-0)? e(s—Bo0)?
| 2p1p2 }
T )
e1e2({—B1-€)({—B2-e)
where
Bi=pi/e1, B:=p2/e2, e=k/|k]|,
and

o=[1+(\/Awg)* 2.

We use the Feynman parametric method® to rewrite
the last term in the integral in the following way:

1 /1 dx
(t—B-e)(c—Bre) Jo (=B )
8= (81— B2)x+B2.

The integrations over angles and { are elementary
and we obtain

I=(2+91) In(2Aws/N)— (1/281) In[(1+81)/(1—B1)]
—(1/28,) In[(1+82)/(1—B2) ]— 92.
30 R. P. Feynman, Phys. Rev. 76, 769 (1949).

with
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The integral 9, is easily found to give

2p1ps 1 dx
s |
0

€1€2 1 —,8/2

=4y cothy,

where y is defined by

sinh?y=2%(p1— p2)2. (AIIL2)

The other integral,
pip1 [t dx 148
2=—— [ ———In ,
o B/(1—=B%) 1-p

is more complicated. Introducing 8’ as a new variable,
we find that 9, may be separated in two terms:

P1pe

2:——_———-
ereaB_(1—qa2)1/2

€1€2

X{F(B1)+0(B2>—B1- B2)F(B2)}, (AIIL3)
where 0(x)==1 for x=0 and
B as’ 1 1 ’
F(ﬁ): (1—a2)1/2/ 8 In +6 ’
a (6/2_—02)1/21_6/2 I_BI
with
a={(81762—(B1- 82)2)/B-2}112 (AIIL4)
and

B_=01—08:.

In order to convert F(B) into known functions we
take as new variable

1= —a)/(6'+a))'"?,
b=(1—a)/(1+a).

with
(AIILS)
We then get

4 1 b
)= / dn( : )m
0 1_ .)12 b?__. 772

where

b(1—17?)
®—n?)’
c(B)=(B—a)/(B+a)"2, (AIIL6)
with the result
1+ 4p2(1—c?)3 b+ 1—p)4
PO =3Iy, 070
1—c (8°—c®)*(1-0)* b—c  4(b2—c?)
b+c b—c 14+¢ 1—¢ 1+c¢
()

+In: In In In-
b-+c b+c b—c¢
+2L2(———)+2L2( )—2L2(1 ), (AIIL7)

2b 2 2
2b 14-¢ —c

where the arguments of all L, functions are all positive
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and smaller than one since 0<¢<6<1, where 4 and ¢
are given in Eqgs. (AIILS) and (AIILG).
We have then

I(p1,p2,Aw2)
=2(1—2y coth2y) In(2Aw,/N)
—(1/281) In[(1+B1)/(1—B1)]
—(1/282) In[(1+82)/(1—B2)]

+1 coth2y[F(81)+6(822—B1- 82)F(B2)]. (AIILS8)

B. e2>1, 251, —pipa~1

For the case of high energies and small angles needed
in Sec. V of the text, Eq. (AIILS8) simplifies consider-
ably. It should be noted that the expression for I ob-
tained is valid for any process in which a high-energy
particle is deflected through a small angle.

On terms of the variables

n=(ete)/wy ¢=tanhy
we find from (AIIL.4)
e
- ae(1—2) (¢ —1) ’

so that a~1, and consequently from Egs. (AIILS5) and
(AILL6) it follows that b~1/e? c~1/e?, and F(B)
simplifies to

b+c b+¢ b—c¢
F(B)=—% ln;—— ln4(b2—62)+L2(——) —Lz( ) ,
—c

2b 2b
with
SAn?—1)
dere(1—¢) (522 —1)
and
S FD (1)

= =)

where the upper signs are valid for 8, and the lower
for 62.
We then finally get

I(p1,p2,Aws) = 2(1—2y coth2y) In

Aw;
Merea)'?
(1= =1  9+1 ptl
+In In
42 (n*—1) 7—1 {n—1
. [(1+§)(§n+1):|_L2|:(1—§)(§17—1)}
2t (n+1) 2% (n+1)
LZ[(1+§)(§0~1):|_L l:(l~s“)(s“n+1)
2(n—1) 2(n—1)
which is used in Eq. (V.5).

% coth2y { 2y In

]} (AIIL.9)



