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Radiative Corrections. I. High-Energy Bremsstrahlung and Pair Production*

KJELL MORK AND HAAKON OLSEN

Nattofsat Brsreats of Staftdards, Washslgtol, D. C. artd lrtststfste for Theoretical Physses,
gorges Tekniske Hggskole, Trondheim, Norway

(Received 25 June 1965)

The radiative corrections to the high-energy bremsstrahlung and pair-production spectra are calculated
in the WeizsKcker-Williams approximation. Results for the soft-photon radiative correction to the spectra
are given, and for the case of pair production the soft-plus-hard-photon radiative correction is also ob-
tained. The radiative correction to the total pair-production cross section is found to be practically in-
dependent of the photon energy and of the atomic number of the target material. Comparison with available
experimental data shows essential agreement within the relatively wide experimental limits.

I. INTRODUCTION

~ 'HE radiative correction to pair production and
bremsstrahlung has previously been studied by

several authors. ' ' These works have been concerned
with the differential cross section, differential in the two
final-state particles' ' or in one of the pair particles in
the pair-production process. s On the other hand, recent
very accurate measurements of the high-energy gamma
absorption coefficient" seem to indicate the desirability
of obtaining accurate theoretical values for the total
pair-production cross section. Since most of the high-
energy pair production and bremsstrahlung take place
for very small angles between the projectile and the
secondary particles, we shall in this paper consider the
radiative corrections to bremsstrahlung and pair pro-
duction for small angles and high energies. These cross
sections may then be integrated to give spectra and, for
the case of pair production, the total cross section.

The form of the di6erential radiative-correction cross
sections obtained directly from the Feynman diagrams
is so complicated that an integration becomes virtually
impossible. Fortunately it is possible to utilize the
Weizsacker-Williams method~ to derive the high-energy
bremsstrahlung and pair-production radiative-correc-
tion cross section from the already known radiative
correction to the Compton effects in much the same way
as Weizsacker and Williams originally used the method
to obtain the bremsstrahlung and pair-production cross
section from the Klein-Nishina formula. The results are
expected to be reliable for the case that both the initial
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and final particles all have energies which are large
compared to the rest energy of the electron.

We shall calculate in Sec. III the virtual-photon radia-
tive correction to the bremsstrahlung spectrum da;„n(ref)
corresponding to the diagrams (a)—(d) and (a')-(d') of
Fig. 1 using the Weizsacker-Williams method. The virtual-
photon radiative correction to the bremsstrahlung spec-
trum da „(tot) pertaining to vacuum-polarization dia-
grams ~ and v' of Fig. 1 cannot be obtained in this way
and is calculated directly from the diagrams in Sec. IV.
The real soft-photon radiative-correction cross section
to the bremsstrahlung spectrum da„,f, soft (&er,hoss) is
evaluated in Sec. V. This part of the radiative correction
has been obtained using the Weizsacker-Williams
method. The total radiative correction to the brems-
strahlung spectrum for the case that the additional
photon k2 with energy or2 is soft,

if&soft (rel&t1te2) flavir (Col)+fg&vac (tel)

+ffareal, soft (rely~&2) r (I I)
is obtained in Sec. VI.

The corresponding radiative corrections to the
pair-production spectrum for the positron energy
e+& ffavir (e+))idavac (e+)) fgareal, soft (e+p~tes)p and da'soft

(e+,h&oi) are obtained in Sec. VII. The radiative correc-
tion to the pair spectrum do;oft~(e+, Aces) may be looked
upon as describing the process of "pair production with
bremsstrahlung, "

ki+Z-+ Z+e++e +ks, (I.2)

for the case that all photons ks with energy less than Ates
are integrated over. It should thus be noted that the
cross section o„@„ft (e+,AM2) for the process Eq. (I.2)
cannot be disentangled from the virtual-photon radia-
tive-correction effects due to the infrared divergence of
do I ft . The situation is completely analogous to the
case of bremsstrahlung, where the total cross section can
be de6ned only when the radiative corrections to the
elastic-scattering cross section are included.

In addition, we also calculate in Sec. VIII the real-
photon radiative correction due to the hard photons
do;„1 h„d~(e+, f},te2). The radiative correction to the pair
spectrum for the emission of a secondary photon of any
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S1662 K. MORE AN D H. OLSEN

The bremsstrahlung cross section for the emission of
a photon of momentum and energy k2 and cvf in the
laboratory system is in the Weizsacker-Williams
approximation~

FIG. i. 3remsstrah-
lung radiative-correction
diagrams. A-virtual-pho-
ton radiative correc-
tions, 3-real-photon ra-
diative corrections.

p'

B

energy in the pair production process,

d&rad (e+) = fgosoft (e+y~~2)+funereal, hard (&+&~~2) y (I 3)

flo2 (kf) = 22f'p&pd&o'&(~o')d&r (fdo', 4') (II 1)

Jf Z) dip
~(&o')«o =&I I, fo»o (ef/p

~Pl P] Cdp

for Mp )el/p, (II.2)

where n=e2/Ac, and p is the impact parameter.
The Compton-scattering cross section may be written

=0
7

where primed quantities refer to the rest system of the
electron and unprimed to the laboratory system.

F(a&2')«2' is the number of virtual photons with
energy oro' in the Geld of the nucleus in the rest system
of the electron

(I.4)&rad a soft ~0rea1, hard
P P~ P

is obtained in Sec. IX.
The radiative correction to the total pair cross section

obtained from Eq. (I.3) by integrating over the pair
spectrum,

with r2 e2/flc2 an——d

(1 1~' )1 i~~'=41 -+-
I +41 -+-

I

——,
EK 7'l EK 7') t K

(II.3)

(II.4)

is calculated in Sec. X.The cross section 0;,d represents
the radiative correction to the gamma absorption co-
efficient. Relations to experiments are given in Sec. XI.

In this paper all energies and momenta are measured
in units of mc' and mc, respectively.

II. THE WEIZSACKER-WILLIAMS METHOD

When the diagrams for radiative corrections to brems-
strahling, Figs. 1 (a)—(d) and (a')—(d'), are compared to
the diagrams for radiative corrections to the Compton
effect, Figs. 2 (a)-(d) and (a')-(d'), it is seen that the
bremsstrahlung diagrams, except the vacuum-polariza-
tion diagrams v and v', are similar to the Compton-effect
diagrams, the only difference being the appearance of
the Coulomb interaction g in the case of bremsstrahlung,
while in the Compton effect an interaction with the
incident photon k2 occurs. Thus it is clear that since at
high energies in the rest system of the electron the Geld
of the nucleus will look like the transverse field of a
photon, the contribution to the radiative correction to
bremsstrahlung from all the diagrams not involving
vacuum polarization may be obtained from the radiative
correction to Compton scattering. The vacuum-polari-
zation diagrams which correspond in the WeizsKcker-
Williams picture to the change of the number of virtual
photons in the Coulomb Geld of the nucleus due to
vacuum polarization will be considered separately.

Before we consider the radiative corrections to brems-
strahlung, we discuss brieQy the Weizsacker-Wil1iams
method for the bremsstrahlung process without radia-
tive corrections.

where K= —2co2' and 2 =2fdl'.
The maximum impact parameter R is given by

Z=2ele2/M2 for no screening
= 183Z 'f' for complete screening. (II.S)

The relation between the energy of the scattered photon
u2' in the rest system of the electron and cu2' is

~2'=~0'I 1+~o'(1—cos&q')]-' (I1.6)

where 82' is the scattering angle of the virtual photon.
Since in this work we are interested in energy spectra,

the cross sections will always be integrated over angles.

FIG. 2. Compton-
eBect radiative-correc-
tion diagrams. A-vir-
tual-photon radiative
corrections, 8-real-
photon radiative cor-
rections.
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It is then not necessary to transform the angle 81' to the
laboratory system; the angular integration may be per-
formed in the rest system of the electron. This procedure
is in fact preferable from the point of view of calcula-
tions, since it turns out that the high-energy cross
sections considered in this work are all sharply peaked
functions of angle in the laboratory system, while in the
rest system the cross sections are slowly varying func-
tions of 81'. This means that the cross section in the rest
system of the electron does not become singular for any
angle even if we put p1——1, and we may simplify our
expressions considerably by putting p1——1 in expressions
of the type 1—pI cos81'. The energy of the scattered
photon in the laboratory system MI is given by the
Lorentz transformation with transformation velocity
equal to the velocity of the electron in the laboratory
system, 481, where p1=1:

Uvir~(», r) = P i„(»,r)+i, (»,r) 1nX, (III.3)
n=1

where
(IIL4)Z~ IC~T Z~ KpT Z~ T)K

with

(1 1)' 12 3»
ii'=4/ -+-

/

1 (K 1)
2—+ I

-+- [,r' K 1kr—2)

K r 2 3 r)
i '=Gp(K)~ —+-+K+ +

Er r 2 K r Kl

(3r 3r 3
io'= ln»~ +—+—+1

(11.7)MI= oIMI (1 COS81 ) .
From Eqs. (II.6) and (II.7) we find

KT K Ill

2» r Kr —1 —2»'+r)

2»pr(K 1) 2—r (» 1)pJ—K= —(2M I/oo)(1 —cos81') ',
r= (2MI/oI)(1 —cos81') ',

dMp = (oIdMI/oo )(1 cos81 )

(II.8) 1 1~
i4' 4y tan——hy ——

~,
2i (III.5)

It is convenient for the subsequent integrations to re-
write Brown and Feynman's expression for Uv;, ~ in the
form

Inserting these expressions into Eqs. (II.1) and (II.3),
we get, after performing the integration over the impact
parameter p,

(2 7» 3r')
io'= y' csch'y( ——

EK 4 4»l

do P (k1)= (nro'Z /rr) lnR(oodMI/oiMI) U~d&1', (II.9) io'= P
—4y sinhy(»r)

—'(2 —cosh2y)+2y coth$h(y),

where
U~= (M Io/oIoo)+ 1+cos'81 . (II.10)

The bremsstrahlung spectrum is obtained by Inte-
grating Eq. (II.9) over the angle 81'. The integration is
extremely simple and yields

ir' —2y co——th2y(2h(y) —h(2y)) U,
-4 ~—6

io' (ln») 4——y coth2y —cosh'y+ sech2y
-KT 2T

d0' (M ) =4CKZ fp lnR(dMI/oI M1)

X{oIo+ooo—o oIoo} (II 11)
i o'= (1—2ycoth2y) U~ .

1
K It{: 2K T

III. THE VIRTUAL-PHOTOÃ RADIATIVE
CORRECTION TO BREMSSTRAHLUHG

The quantities K and r are defined in Eq. (II.8); U~

is given by Eq. (II.4); and y is defined by

From the discussion in Sec. II it follows that the vir-
tual-photon radiative-correction cross section to brem-
strahlung corresponding to the diagrams (a)—(d) and
(a')—(d') of Fig. 1 is obtained from Eq. (II.1) by substi-
tuting for do~ the virtual-photon radiative-correction
cross section to Compton scattering do-;,~ correspond-
ing to diagrams (a)—(d) and (a')—(d') of Fig. 2,

sinh'y= (y/2)(1 —cos81') ',

P=M1 /OIO2.

The functions Gp(») and h(y) are given by

(III.6)

(III.7)

dovir~(kI) = 21rpdpdMo'E(Mo')dovir (Mp k1). (III.1) and

Gp(») = —(2/K) ln(1 —u) du/u, (III.8)

(III.9)h(y) =y ' u du cothu.
0The cross section do;,~ has been calculated by Brown

and Feynman' with the result
Equations (III.4) and (III.2) lead to a formula which

da, ;,~= —(nro'/2m)(r/K)' ReU„;,~(»,r)dQI'. (III.2) is completely analogous to Eq. (II.9) where now
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—(a/gr) ReU;„o appears instead of Uo:

cl 5 (1+i')'"+1
11r(vg) = —f —1—I(1+i)"'»

3xg' 3 2i (1+i-)"-1 '

(IV.2)

The cross section here is the virtual-photon radiative-
correction cross section, which contains the infrared
divergence and thus the "photon mass" )t. To this cross
section has to be added the soft-photon double-brems-
strahlung cross section in order to remove X in the usual
way. We shall here proceed with the evaluation of do;,~
and treat tbe soft-photon cross section later in Sec. V.

Equation (III.10) when integrated over tbe angle 82'

gives the virtual-photon radiative correction to the
bremsstrahlung spectrum

with t =4/qg.
Thus, when vacuum polarization is included, the

bremsstrahlung cross section do-0 is replaced by

dop +do„, =doPP1 —2q'IIg(tt')7. (IV.3)

The vacuum polarization thus has the effect of
introducing a vacuum-polarization form factor F „=1
—(1—2qgIIr(qg)7'fg=q211f(qg) to lowest order in tr. It
should be noted that in the Weizsacker-Williams method
the vacuum polarization would correspond to an in-
crease in the number of virtual photons in the field of the
nucleus, since when vacuum polarization is included the
electrostatic field of the nucleus is stronger than —Zeg/r.

The cross section Eq. (IV.3) for high energies may
easily be integrated over angles using Bethe's method"
which is applicable to any form factor.

Tbe integration is performed in Appendix II with the
result

2 E2d&1
do (col) = ——(tlZrp)' InR f Q I„+Ig In)t)

(III.11)

I„=I„'(ei)es)+I„' (—es, —el), (III.12)
where

d(cos8l') Rei„'(ff,r),Ia' (ei)eg) = (III.13)

where i„' is given in Eq. (III.S). We have used the fact
that interchanging ft and r is equivalent to interchanging
el with —eg and e2 with —el as seen from Eq. (II.8).
Therefore

2(trZrp)' dhoi
dtrvac (col)= $123(ei 1eg )—62ele27. (IV.4)

81K e12M1

where II(qg) is given in Eqs. (9)-(41) of Ref. 10.
Renormalization bas the effect of replacing II(qg) by

fg(k ) l~ R U odfi (III 10) g f(tt ) wile e II&(g ) s gl ell

61M1 &

d(cos82') Rei '(r, a) =I„' (—eg, —el),
This result will be used in Sec. VI.

which is used in Eq. (III.12).
The evaluation of the integrals I„~is straightforward

but tedious. The results are listed in Appendix I.
Equation (III.11) together with these expressions for
I ~ will be used in Sec. VI.

IV. THE VACUUM-POLARIZATION RADIATIVE
CORRECTION TO BREMSSTRAHLUNG

Since in high-energy small-angle bremsstrablung the
momentum transfer q is never larger than of the order 1,
it is to be expected that the contribution to the radiative
correction from the vacuum-polarization effects, which
are important only for large momentum transfers, is
rather small.

Using standard theory of quantum electrodynamics'
we 6nd that when the vacuum polarization diagrams v
and v' of Fig. 1 are included, the Bethe-Heitler matrix
element M&H is replaced by

3f=MnH(1 —II(qg) (1/gg)), (IV.1)

Reference 10, p. 194, Eq. {9.66). Note that Eq. (9.66) contains
a misprint; the minus sign in front of O'IIy should be deleted.
Equation (9.66) as it stands gives a positive k IIf, while it is easily
seen from Eq. (9.65) that kgIIf is always negative. Equations
(9.67) and (9.68) are, however, correct.

V. THE REAL-SOFT-PHOTON RADIATIVE
CORRECTION TO BREMSSTRAHLUNG

The infrared divergence occurring in do-», Eq.
(III.11) through the term ink is removed in the usual
way by adding to the virtual-photon radiative correc-
tion the real-soft-photon radiative correction. This
correction, which is the cross section for the emission of
an additional soft photon k2 besides the hard photon k1
in the bremsstrahlung process, is most easily obtained
from the formula

dtrreal, soft (ki&kg)

dk2 pl pg
do pn(ki) —,(V.1)

42r cog pl ' k2 p2 ' k2

where Pl& P, , and kl occurring in tbe last factor are four-
vectors and da-0 is the Bethe-Heitler cross section.
Formula (V.1) follows from general considerations given
by Jauch and Rohrlich. "

J. M. Jauch and I'. Rohrlich, The Theory of Photons und'

Electrons (Addison-Wesley Publishing Company, Cambridge,
1955) pp. 189—195.

"H. A. Bethe, Proc. Cambridge Phil Soc. 30, 524 (1934).
~ Reference 10, pp. 390-392. Note Kq. (163).
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For the Bethe-Heitler cross section we use the
Weizsacker-Williams approximation Eq. (II.11):

do p~(M 1)=4nZ2rp' lnR(dM 1/st'M 1)

X(st +22 ssts2}. (V.2)

The cross section for the emission of an additional
photon k2 of energy less than AM2 in the bremsstrahlung
process is obtained by integrating Eq. (V.1) over the
part of phase space for which M2(EM2, where AM2«st'.

„,i „f, (kt)AM2) = (—n/2r)dopI(pt)p2, 6M2), (V.3)

with

d'ks f p1 p2
1(P„P„aM ) =

I

—
~

. (V.4)
42r (os(pars M2 ~Pl'~2 P2 ~2~

Since this integral occurs in any process in which an

emission of a soft photon takes place we have in Ap-

pendix III calculated I for general vectors p~ and p2.

In our case of small angles and high energies we have

according to Eq. (A3.9)

DM2 (1-~-')(t-"'—1) ~+1 i.+1
I(pt, p2, AM2)=2(1 —2ycoth2y) ln +2 coth2y 2yln +in

~(sls2)"' 41-'(~2—1)

+1-2—(1+|)(t'rf+ 1)l (1 |)(frf 1)l i'(1+| ) (t rf
—1) if (1—f)(frf+1

I+L21 i, (V.5)
2f'(rf+ 1) I 2i'(rf+ 1) J 4 2( (rf 1) — k 2f'(rf —1) )

where

L2 is the Euler dilogarithm

1 =tanhy=
(st +s2 221st cos—e1 )

ln(1 —t) dh/f,

(V.6)

(V.7)

rf = (el+ s2)/M, . (V.S)

When the variable i' is introduced instead of 01' the cross section Kq. (V.3) integrated over the angle 81' becomes

2 M tdM1
do'real, soft (Ml)+M2) (nZrp)' in& —U I(pt, p2)EM2) p

7r et e2

where Uo is given in Eq. (II.4).
The integration gives the result

dorsal soft (Mt AM2) = —(2/sr)(nZrp) 1nR(ssdM1/stM1)(Ip(ln(AM2/stX) 2 $)
—(1/105)L22rs(2ys+28y2+35y)+4(4yp+48y2+87y+46) pti(h($) ——', in')$
+L2/(105) 'j[4(74ys —175'—829)+ (148ys+10787y2+ 22750'+9660) 1ny

+(148ys+11331y2+21069y+8002)prf 1}. (V.9)

dtrsoft (Ml~™2) dovir (Ml)+dovae (Ml)

+do'real, soft (Ml~™2)& (VI 2)$= ln(s2/st) . (V.10)

Here y, h($) and tf are defined in Eqs. (III.7), (III.9), correction to the spectruxn is
and (V.S), respectively, a,nd

VI. THE SOFT-PHOTON RADIATIVE CORREC-
TION TO THE BREMSSTRAHLUNG

SPECTRUM

The high. -energy bremsstrahlung spectrum including
radiative corrections is, according to the discussion in
Sec. I,

where the virtual-photon contribution do;, (Ml) is given

by Eq. (III.11) and Appendix I, the vacuum-polariza-
tion contribution do,p(M1) by Eq. (IV.4) and the soft-
real-photon contribution d~„@ „fp(M1,AM2) by Kq.
(V.9) for DM2«st.

We will write Eq. (VI.1) in the form

do (Mt, AM2) = dog(M1)L1+Bsoft ('M1 QM2) j (VI.3)
do (Mt&DM2) = dop (Mt)+dOsoft (Mt, DM2) ~ (VI.1)

where

where dop (Mt) is the bemsstrahlung spectrum without
radiative corrections, the Bethe-Heitler spectrum, or
our approximate cross section Eq. (II.11).The radiative

8sof t (M 1,BM2)

= (do. ;„~+do„++do„,i „fP)/dop~. (VI.4)
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TABLE I. The functions Pr(csl/sr), Ps(ss&/s&) and Fvss(&v&/s&) occurring in the
soft-photon brernsstrahlung radiative corrections Eq. (VI.S).

J 1X10'
J"2X10'

J v~X10'

0.1
—0.773

0.014
0.198

0.2
—0.340

0.048
0.196

0.3
—0.097

0.095
0.194

04
0.123
0.171
0.192

0.5

0.380
0.240
0.190

0.6

0.750
0.360
0.188

0,7

1.405
0.530
0.185

0.8

2.78
0.686
0.183

0.9

5.18
1.05
0.180

D= L2(el/Qll) L2( es/Gpi) = In(t —t)dt/t.

The coeKcients in Eq. (VI.6) are

ap ——2y+8/3,

82r2 / 32 581
y'+I — + ~' Iy'

315 k 105 630 j
tt'59941 72r2) 12229

+I + Iy+4
5 105' 6 j 105'

t 16 40 23~
as= —

I y'+~+8
(105 21 105j

( 16 157 1763 424 132)
y'+ y'+ y+ +

(105 84 420 105 35yj

as= (y-6)—,
6

as= —3y' —(5/3)y+2,

1026559653 28
as= y'+ y+

1052 2X1052 105

The sum Eq. (VI.4) eliminates the infrared divergence
Ink since the coeKcient of Ink in da. B, Eq. (III.11), is
—(2/pr)(nZro)'lrLR(esd&l/sinai)Io, while it is +(2/pr)
X (nZro)' 1n(esd&ol/picot)I2 in do«ai, «tt, Eq. (V.9).

Adding Eqs. (III.11), (IV.4), and (V.9), we may write
the radiative correction P in the convenient form

ti oft (&1 t1pp2) Fl(oil/el)+F2(oil/pl) ln(BGls/el)

+F „(col/el)(lnR) —', (VI.5)

where Fl, Fs, and Fv„are functions of col/el only and
are given by

Fl(~l/ei) = (n/~ —a)oLal+(as+as&)5
+(as+asD)rt+(as+alp+as Iny) lny

+(ag+ alos+ all Iny+ aish(P/2)

+4a„h(P))g~), (VI.6)

F2(oil/el) = (2n/prao) (as+ar»y+ alp(i)),

Fvac(~l/sl) = (n/~ao) (123y+184)/81 ~

The quantities y, 2) and $ are given by Eqs. (III.7),
(V.S), and (V.10), respectively, and D is defined by

(8 16 4~
y'+—y'+-y I,

(105 15 3 j
as= 3y'+5y,

11333 9443 6608
ao= y — y+

105' 2)&105' 105'

/' 8 32 58 92'
alo ———

I
y'+ —y'+ —y+

(105 35 35 105j

11916
all = — y Y+

105 10 105

142 94 16
alp= y'+ y'+8 y ——.

105 35 105 21 (VI.7)

VII. THE SOFT-PHOTON RADIATIVE COR-
RECTION TO THE PAIR-PRODUCTION

SPECTRUM

The radiative correction b,pft to the pair spectrum
when a soft secondary photon ks with energy less than
icos is emitted in the pair-production process is given
analogously to Eqs. (VI.3) and (VI.4) by

do' (ai-, dpps) =do'p (e+) I
1—8sort (e+)icos)j, (VII.1)

where

~soft (e+&~co2). {d&vir (e+)+dovac (e+)
+do.r,si soi, (p+,Aois) }/dorp (p+) . (VII.2)

We note that B„ft is of the order n/2r when col/el
is of the order one, this is also true for the lower part
of the spectrum where &pl~0. At the upper end of
the spectrum the correction becomes of the order
(n/pr) ln'(el/22).

The functions F~, F2, and F „are given in Table I.
The contribution to P from the vacuum polarization

F „(inR) ' is small in all cases. When this small con-
tribution is neglected 8„itn becomes a function of col/ei
and hpo2/el only, independent of the initial energy el and
of the atomic number of the bremsstrahlung target. The
CurVeS fOr 8soft giVen in Fig. 3 fOr SOme Valuea Of t) rds/el
show that the effect of the radiative corrections on the
bremsstrahlung spectrum is small unless hco2/el is ex-
tremely small. In the application of the present theory
the energies of both the photon and secondary electron
should be determined and then d cps should be set equal to
the maximum value of the energy imbalance e~—c2—co~.
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Z+ki —+ Z+e++e +kp, (VII.3)

Here p+ is the positron energy. In all the following
formulas the electron energy t. should be substituted
for p+ when the energy spectrum of the electron is
desired.

The cross section do„fi (p~, ho)2) is the cross section
for pair production with soft bremsstrahlung

F1G.3.Soft-photon radia-
tive correction to the brems-
strahlung spectrum, B„f~
=Pi+F4 hi(ho)4/4)). Num-
bers axed to the curves
give the values of gI/hor2.

B
ssnft

('I)

2.0-

1,0-

-1,0—

when all secondary photons k2 with energies less than
6~2 are included.

The pair-production cross section do p~(p~), the virtual-
photon, vacuum-polarization, and soft-photon radia-
tive-correction cross sections do„., (p4.), do.„, (p+), and
do f, f4~(p4. 6o)p) respectively, are obtained from the
corresponding cross sections for bremsstrahlung, Eqs.
(II.11), (III.11), (IV.4), and (V.9), by the substitutions
&1~ —e+, e2 ~ e, and a&1~ —co1 and by multiplication
with the statistical factor ratio p+'dp+/(&pi'dhoi). Further-
more, as discussed by Harris and Brown" for the case
of two-quantum positron annihilation, the de6nition of

y, Kq. (III.6), must be changed by substituting for y a
new variable x by y=x ifr/—2 The. quantities i„,Eq.
(III.5), for the case of pair production may be shown to
get the following changes besides the substitutions
61 + 6+~ 62 + 6 and M1~ 1

with

0 0.2 0.4 0.6 0.8 P/&t

I„'~(p4.,p )= d(cosgi') Rei„'~()4,r), (VII.7)

where i '" is obtained from i ' of Eq. (III.5) by the
substitutions Eq. (VII.4). The results are given in
Appendix I.

For the virtual part of the radiative correction we
find from Eq. (III.11)

2 6+6 de+
do (p+) = (c4Z—rp)' InR ( Q I +Ip Ink),

'r 1 A 1

(V11.8)

where the integrals I„~ are given in Appendix I.
The vacuum-polarization part of the virtual-photon

radiative correction is from Eq. (IV.4):
sinh'y ~ —cosh'x,

ReLyh(y) j~ ~P (2~)—h(~)3,

ReLyh(2y)g ~ xLh(2x) —ir'/4(x( j,
where x is defined by

cosh'x = -,'y„(1—cosOi')
with

'))'4) =Co i'/P4. P

In this way we obtain I„~, where

Io (&+)p )=Io (&+)p )+Io' -( &+) —p—),-—

(VII.4)

2(cfZrp) ' dp+
dovac (&+)=

81K' G)1

XL123(p+'+ p ')+62p+p j. (VII.9)

We obtain the real-soft-photon radiative correction
from Eq. (V.9), noting that since the cross section is a
first-order Born-approximation cross section for a real
process no complications of the form discussed above
Eq. (VII.4) may occur. We may thus directly substitute
~1~ ~~, ~2~ ~, ~1~ —~1 and lny~ lny„. Rewriting
the expression in such a way that 1n(do)&/ppi) appears
explicitly, we obtain

do)'oo} 4ofi (p+, 64pp) = (2/7f)(—o)Zrp)' 1nE(p4-p de+/o)i')(Ip ln(64o, /o)X)
—(4/105) Ly), (2y —28'„+35)(ln'y„—m'/6) —(4y„'—48' +87' —46)$„)f (h($„)—ln7 )j
+(2/(105) jL4(74&„P+125&~—829)—(148&~P—11627' +33250'„—19320) in'„

—(148'„'—11331'~'+21069'„—8002)$„rf~)), (VII.10)

where y~ is defined in Kq. (VII.6) and

&„=1n(p /p+), (VII.11)

rf =(&+ p )Io)i. —-(VII.12)

Collecting the terms, Eqs. (VII.8), (VII.9), and

(VII.10), we find that the soft-photon radiative correc-
tion to pair production, Eq. (VII.2), analogously to
Eq. (VI.5) may be written in the form

~soft (p+ ~o)1)=Gi(p+/4pi)+G2(p+/~i)»(~)p/~i)
+G„,(p+/o)i)(lnR) ', (VII.13)

'3 I. Harris and L. M. Brown, Phys. Rev. 105, 1656 (1957).

where

Gi(p+/~i) = —(~/~ap. )fci+cp I ~.l
+a4.n&,

+(cp+c4 in'„) in'„+ap„p„'+ [apy+cp 1ny~
—aip h($„/2)+cph($„) jP„)f„), (VII.14)

Gp(p4./Ml) = (2cf/7fap„)[ap +a7 in'„+alp
Gvoo(p+/(pi) = (n/m'api, )(1237), 184)/81

Here D„=Lp(p+/&pi) —Lp(p /4pi). The coeflicients ap„,
a3~, a5„, a9„, a2„, ay~, and a10„are obtained from the
coeKcients ap, ap, ap, ap, a&, a&, and aip of Eq. (VI.7) by
substituting —y„ for y. The remaining coeKcients
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(VII.15)

The functions G~, G2, and G „are given in Table II.
As for the case of bremsstrahlung, the contribution to
the radiative correction due to vacuum polarization is
always small. Neglecting G e(lnR) ' we obtain the
curves for b„ft~ in Fig. 4. The form of the spectrum is
independent of the atomic number of the target and of
the initial photon energy co&, the only dependence on co&

is through the energy resolution 8402/0Ir.

VIII. THE REAL-HARD-PHOTON RADIATIVE
CORRECTION TO PAIR PRODUCTION

We shall in this section calculate the contribution to
pair-production effect from the process Eq. (VII.3) for
the case that k2 is a hard photon with energy larger than
Aco2. This contribution to the radiative correction,
bh„~, when added to B„gt gives the radiative correction
to the spectrum 8 when an extra photon k2 of any
energy is emitted during the pair-production process.
This radiative correction is independent of ~~2,

8 (e+)= 8eofr (+)™2)+Shard (e+qkN2) ~ (VIII.1)

Again we use the Weizsacker-Williams method. The
cross section do„@ h d is obtained from the corre-
sponding bremsstrahlung cross section do„,i, h„g, with
diagrams given in Fig. 1.The cross section do-„,i h„~ is
in turn obtained from the double Compton cross section
which has been calculated by Mandl and Skyrme. "By
a procedure exactly like that of Sec. III we obtain

re 1 &+

dcreal, hard (e+qAOI2) = —(nZro)'LlnR/(22r) i(de+/OIr) io)2 40I2 IfQ dQr Xfa
+ r

(VIII.2)

The quantity X of Mandl and Skyrme is given by"

X=2(ab —c)Da+ b) (x+2)—(ab —c)—8j—2x(a'+b') —Sc

+(4x/AB)((A+8)(x+1) —(aA+bB)(2+2(1—x)/x)+x'(1 —2)+22j—2pLab+c(1 —x)j, (VIII.3)
with

a=+ K
—'

x=+K;=+K
1 I Ir8=Kg K2 Ka

b=Z(K') '

S QKrKr y

P=P(K;(K )
—'+K K,

—').

c=Q K-'(K ) '
c4 =KIK2Itl3

&
(VIII.4)

For the pair-production process with bremsstrahlung Eq. (VII.3), we find

Kr= (o)r/e+)(1 —cos8r ) Kr'= (~r/~)(fr/f2)K2,

K,= —(oI2/e+)(1 COS82 ) i K2 = (M2/e+)(f2/f2)K2,

K2= f2(e+/e )(1—cos8 ) (1—cos82 ), K2 =(e /e+)K2,
with

fz e~ '{ oI2(1 co—s8——2')+—(e++0I2)(1 cos82 )+( / +40)2( e++Me)(1 2cos812 )) p

f2= aI {402(1—cos82 )+(e+ 4dr)(1 cos82 ) (012/e+)(e+ Mr)(1 cos822 )) ~

f2 e+ '{402(1———cos82') —oI2(1—cos82')+(0IroI2/e~)(1 —cos822')) .

(VIII.5)

(VIII.6)

The angles Hi' 02' and Hi~' are the angles in the rest
system of the positron. 8&' is the angle between the
virtual photon and the incident photon ki', 0~' the angle
between the virtual photon and the seconds, ry photon
k2', and gi~' the angle between ki' and k2'.

It is convenient to introduce the new variables

x=oI2/oIr, y= e+/oIr, C = q/2a. ,
sr= 2(1—cos82 ), 22=x2(1—cos82 ) .

"F.Mandl and T. H. R. Skyrme, Proc. Roy. Soc. (London)
A215, 497 (1952).
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p /a») occurring in therat) Gr(a~/rpt) anti G„.(p~ a) e,.d.,t,', ,'+ t r +
soft-photon pair-

C01

G).X10'
G2X 10'

G X10'

2.70
1.07
0.174

0.2

2.22
0.750
0.171

0.3

2.16
0.632
0.168

0.4

2.30
0.553
0.166

0.5

2.53
0.526
0.165

0.6

2.30
0.553
0.166

0.7

2.1.6
0.632
0.168

0.8

2.22
0.750
0.171

0.9

2.70
1.07
0.174

. (VIII.2) then becomesThe cross section Eq.

dtrreal, hard (e+,Dots)

Iorj d6+= (2/ )(~Zr,)»m
1 ],

dory ds'2 dC
0 0

hco2/cog

dx x(x+y —1)X/fss. (VIII.7

x(x+y 1)X/f '—
=x(x+y 1)X/fs' —x, x y ——

e ation in Eq. (VIII.7) is performed
d, h t is e e al ate the

domber of times or ra
Th mb bl m

in eg
x C s~, an s2.t' s of the vartables x,

deviation, is also
tions o

n ot-mean-square eviin the result, t e roo-

f* h 't dbh 1/.
( / )ut the term nIn order to separate ou

the integrand in the form

g p
Th.e results are given in a

sta tical error is always sma etis
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0.05—19.0

0.8
0.60
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0.1—13.4

0.9
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TABLE IV. The radiative correction to the total Pair cross the Wejzsaclcer Wjihams approxjmatjon for dcrpP/cie+
section A~ for incomplete screening, supplementing Eq. (X.4) (no B
screening) and Ecl. (X.3) (complete screening). obtained from dcrp /dept, Eq. (II.11):

A (%)

200
1.03

125
1.04

Z=13

400 800
0.98 0.94
Z=50
250 500
0,99 0.94

150
1.04

100
1.06

Z=29

300 600
099 094
Z= 82
200 400
1.00 0.94

dop /dey= 4ctZ rp lnRcpt je+ +e +2e+e' j . (X.2)

The result is for complete screening,

DP= (0.93&0.05)% (complete screening), (X.3)

X. THE RADIATIVE CORRECTION TO THE
TOTAL PAIR CROSS SECTION

The radiative correction to the total pair cross section
AP is obtained by integrating dcr„ftP, Eq. (VII.2), and
do„,i h»dP, Eq. (VIII.9), over the positron energy e+

gP (1/~ P)
(dcrsoft l (dcrreal, hard

&e+
I I+I
k de„) i de+ )
do

=(1/~p ) de+
I de+ i

f e~) cr'y p
X Gi+Gs lni 1——

i

— AI, (X.1)
Coli sl C1p&

according to Eq. (IX.1).Here op" is the total pair cross
section without radiative corrections.

The first two integrals in Eq. (X.1) were calculated
analytically and the last intergral numerically. We use

"H. Davies, H. A. Bethe, and L. C. Maximon, Phys. Rev. 93,
788 (1954).See also H. Olsen and L. C. Maximon, Phys. Rev. 114,
887 (1959), Eqs. (10.9) and (8.7)."H. A. Bethe and L. C. Maximon, Phys. Rev. 93, 768 (1954).
See also G. White Grodstein, Natl. Bur. Std. (U. S.) Circ. 583
(1957)."H. A. Bethe and W. Heitler, Proc. Roy. Soc. (London) A146,
83 (1934).

When the present result is combined with the high-

energy Coulomb-corrected pair specrtum, "we obtain

da (e+) cr=Z'rp'(cle+/cot') j (e+'+e ') t C 1 ',—ln-Z —4f(Z)j
+22e~e L'C2 —42 lnZ —4f(z) j)(1+3P), (IX.2)

which is the formula for the pair spectrum with a rela-
tive error which is given by the larger of the two num-
bers (crZ)2 1ncdt/cot and 0.0005. The error of the order
(crZ)' incor/cot is due to the inaccuracy of the Coulomb
correction for lower energies" and the number 0.0005 is
the error in 5P, Eq. (IX.1), due to the uncertainty in AI.

The functions C z and C» are given" and tabulated' by
Bethe and Heitler. The quantityf(2) is given by Davies,
Bethe, and Maximon". In Eq. (IX.2) we have neglected
the Coulomb-correction effects on 3P which is justified
for the accuracy given. We have further assumed that
liP is independent of screening also for the case of partial
screening, since this is true both for no screening and
for complete screening, as we have seen.

where the uncertainty is due to the Monte Carlo method
as discussed previously. The vacuum-polarization con-
tribution 6 „P=0.032(1—0.06 lnZ) "%%uo, is very small.

For the case of no screening we Q.nd, correspondingly,

In2cog —1.58
0 P=0.93 %(no screening),

ln2cvg —2.08
(X.4)

and A „P=0.17(ln2cpt —2.08)—"%.
The deviation of (X.4) from (X.3) is small; indeed

its largest value occurs at the lowest photon energy for
which the present theory is valid, cot ——30 (15 MeV).
Equation (X.4) gives AP =1.12%%uo which is only slightly
above the complete screening value 0.93%.

For the case of incomplete screening, suKciently ac-
curate values for AP are obtained using the Weizsacker-
Williams approximation, Eq. (X.2), for dcrp /de+, with
lnR= —

2 in/(cpr/2e+e )'+(Z'f'/183)'). The results are
given in Table IV for some energies and elements. These
values together with Eqs. (X.3) and (X.4) are sufficient
for calculation of A~ for all elements and energies above
15 MeV.

The relative error in AP is in all cases of the same order
as that given in Eq. (X.3), viz. , of the order S%%uo.

The total pair cross section is then given by

0 =(xZ fo

co],—1 d~
$(el +e2 )C'1+ 2 ele2C'sj

My

—(28/9)('2 InZ+ f(z)j (1+hP). (X.S)

&soft P= (1/o.pP)

cd] 1 do f P

1 A+.

The calculation is described in Appendix V. The result
is, for the case of complete screening,

h„ftP =2+8 ln(icos/cd 1), (X.6)

The most accurate evaluation of the screening eGect using
Hartree-Fock potentials is given by A. Sgrenssen, Nuovo Cimento
38, 745 (1965).

The integral involving cf 1 and cf 2 has to be computed
numerically. "

We have also computed separately the contribution to
the total-cross-section radiative correction due to the
soft photons:
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TABLE V. Comparison between experimental (Ref. 5) and theoretical values of the radiative correction to the total pair cross section
for 1-BeV photons. (The theoretical value of hp is 0.93% for all elements. )

z
Element

~.me (%)
&eseer (%)

13
Al

1.4~1.3

22
Tl

2.7~1.4

29
CU

—0.8+1.4

42
Mo

2.5~1.3
0.93

50
Sn

—0.1~0.8

73
Ta

—0.7~1.9

82
Pb

-0.6a1.0

92
U

—1.8~1.1

9n (512 1452
L (2)— t (3)

14K( 35 35

9n ( 128
J3= —

i
6—

14s E 105

6283 128
s'+ — x' ln2 ~,

225 210 35

316

Introducing the values for the Riemann zeta function
f (3)=1.202 and for the Euler trilogarithm Ls,

Ls(2) =2.762, we obtain"

h.,t&
= L2.75+0.90 ln(ha»/co~))10 '

(complete screening) . (X.7)

Because of the complexity of the calculations involved
in computing Q,tt we have checked the result, Eq.
(X.6), by an independent method of calculation. We
have integrated the differential radiative-correction pair
cross sections do. ;,~(p+) and do;„~,ot,~(p+,h~s), corre-
sponding to the bremsstrahlung radiative-correction
cross sections do„;, (k&) of Eq. (III.1) and o„@„t&
(k&,hers) of Eq. (V.3), directly over angles and energies
without ffrst obtaining the energy spectrum. As this
calculation is performed in a way substantially different
from the way it is done in the text, one obtains an inde-
pendent check on the soft-photon radiative correction
Eq. (X.6) and thereby a check on the results of Secs.
VI and VII.

cross section we shall leave out in the present com-
parison elements lighter than aluminum.

When comparing with the available experimentss we
have selected experiments where ~t and Z meet the
requirement that the uncertainty in the cross section
(nZ)'in~~/cot should be less than 0.005 giving an un-
certainty in the theoretical cross section which is less
than 0.5%%u

"
For the highest photon energy, 13.5 BeV, for which

the gamma absorption coefffcient has been measured,
the experimental value" of 6 is (1.17&2.0)%%uo for
copper and (1.85&2.4)%%uo for lead. This is consistent
with the theoretical value of d, ~ which is 0.93% for all
elements.

For 1-BeV photons Table V shows that only for the
case of uranium is there a serious disagreement between
experimental and theoretical value of A~. The average
experimental radiative correction based on all elements
in Table V is

„~=(0.33&2.0)'%%u,

which again is consistent with 8th, o, =0.93%%uo. The
large (in the present context) experimental uncertainties
prevent detailed comparison with theory.

Experimental' "" and theoretical radiative correc-
tions for other energies are given in Fig. 6. Again the
number of cases where serious disagreements occur are
few. For all cases in Fig. 6 the pair production process is
the dominant contribution to the total gamma-absorp-
tion cross section. The largest contribution from the
Compton effect occurs for 60 MeV for aluminum, but
the contribution is small, only 15%%uo of the total cross

XI. RELATIONS TO EXPERIMENTS

The comparison with experiments is made difficult
because the theoretical pair cross section without radia-
tive corrections is in many cases not known to the
accuracy required, viz. , to a fraction of a percent. The
uncertainty in the theoretical cross section arises from
the fact that the error in the Coulomb-corrected cross
section is of the order (eZ)'incest/cot as stated below
Eq. (IX.2). Another uncertainty, namely, that the
screening correction based on the Thomas-Fermi model
is not suKciently accurate, seems now to be removed
to some extent through the recent calculation of the
screening effect based on Hartree-Fock potentials. "
Because of the uncertainty in the theoretical triplet

"This partial result has been given before, K. Mork and
H. belsen, Nuovo Cimento 1S, 395 (1960).

~ This requirement means that for Sn only experiments with
energies above 50 MeV, for Pb above 225 MeV, and for U above
300 MeV can be used in the comparison."Since Sgrenssen's results (Ref. 18) were not available at that
time, the theoretical cross sections in Ref. 5 are based on Thomas-
Fermi screening. We have for the case of 13.5- and 1-BeV photons
corrected the theoretical cross sections in accord with Sgrenssen's
results.

~ J. M. Wyckoff and H. W. Koch, Bull. Am. Phys. Soc. 3, 174
(1959).

n J. L. Lawson, Phys. Rev. 75, 433 (1949).
~ J. Moffatt, J. J.Thresher, G. C. Weeks, and R. Wilson, Proc.

Roy. Soc. (London) A244, 245 (1958).I J.Moffat and G. C. Weeks, Proc. Phys. Soc. (London) 73, 114
(1959).

~' J.W. De Wire, A. Ashkin, and L.A. Beach, Phys. Rev. S3, 505
(1951).

~7 J. D. Anderson, R. W. Kenney, and C. A. McDonald, Phys.
Rev. 102, 1626 (1956).

'8 J. D. Anderson, R. W. Kenney, C. A. McDonald, and R. F.
Post, Phys. Rev. 102, 1632 (1956).

~'D. H. Cooper, thesis, California Institute of Technology,
1955 (unpublished).
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function of energy and the photonuclear contribution is
obtained by subtracting from the measured gamma-
absorption coefficient the theoretical electromagnetic
gamma-absorption coefficient. Since the photonuclear
contribution is always considerably smaller than the
electromagnetic contribution, the radiative correction
to the electromagnetic processes is of the order of 1%
when compared to the electromagnetic cross section but
much larger when compared to the photonuclear cross
sections. Thus to obtain a reliable interpretation, the
radiative correction to pair production is needed. Also,
the radiative correction to the Compton eGect is neces-
sary in order to obtain the necessary accuracy for the
gamma-absorption coefficient. The latter will be given
in a later paper.
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Frc. 6. Comparison with experiments. For the selection of
experiments see Ref. 20. For the high-energy experiments of
Malamud (Ref. 5) we have corrected the theoretical cross section
according to Ref. 18. Other experimental points are taken from
Malamud's paper (Ref. 5).

section. Thus for all cases in Fig. 6 the radiative correc-
tion to the total cross section is practically equal to the
radiative correction to pair production.

It should be noted that qualitatively the increase in
the radiative correction towards the lower energies of
Fig. 6 is in accord with theory (Table IV). The experi-
mental increase is, however, considerably larger than
that predicted by theory, but again the agreement is
fair within the experimental limits of uncertainty.

Finally as another relation of the present theory to
experiments, the application to the photonuclear meas-
urements might be mentioned. In these measurements
the gamma absorption coefficient is measured as a

7=4&1/(ere )

$=111(es/el)

tl = (el+ es)/Ml )

L2(e1/tel) Ls( es/&1) y

Dp Ls(e+/(et) ——Ls(e /&or)—,

v.=~1'/(e+e-),

4=»(e-/e+),

v =(e+—e-)/~1,

h(x) =x-' (cothg)N dN,

we obtain

APPENDIX I: THE INTEGRALS I + AND I„~

We list here the integrals I„soccurring in Eq. (III.11)
for bremsstrahlung and the integrals I ~ occurring in
Eq. (VII.S) for pair production. With the deinitions

IP= 7y+(22/3)+y(y+s) Iny+y(y+s)$tI,

Is~ = s1L—y —4+2 (3y—2)gtI+(ps —y —(y—6) tl)7r s/2

—(3y'+ 19y+20—32/y) P/4+ 4sy(y —1) 1nsv+-, (y—6)ptI Iny —(3ys+2y —6)tID7,

I, = —3y+ (2/9) —y(2~+1)tID+-,'y(y+ 3)(In'~ —P+ sstr') —(y'+3y+-,') in'+ (ps+ 5y+ s )ptl,

I'=2vLl+(1+le)1 v —-'. (v+4)kn7,

I = —(sy+1 —4/(3y))g' —4y/45+2/15+7(131'/90+1) Iny+ (1317'/90+49'/45 —4/15) pal,

Is/ = (1/15)L2(3y'+2y —32)Ptlh(f/2)+ sy(3y —5)(3P+2tr')

+(p/30) (231'—4QQ) lny+ (1/30) (231''—232' —544) gtI —7y/5+ 59/157,
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I2 = (8/105) L(2y'+24''+87'/2+23) fg(2h($/2) —h($))
+y(2y 2+2 8y+35)-,' 2r2+(1/210)(599' 2+10701' 2/2+6 702y+1586) (g

+(1/210) (599y2+ 11417'/2+6125)y 1'+(1/105) (179y2—230'—934)j,
IP= —(105)—2L105(16''+128y2 —58y+144+ 816/y) P

+ 105 (16''+96y2+ 202' —132)$g Iny+ 5384y2+20102y+ 18614

+(26927'+ 58113''+57683'—22578) Pq+ (2692''+ 60137''+36435y+ 9030) lny],

IP= (16/105) L2y2+25y+23+ 2 (2y2+28y+35)p ln7+2 (2y'+24y2+87y/2+23) )gj.

The corresponding quantities for pair production I„~
may be obtained from I„sin the following way: Il, I2,
I4 I8 and I are obtained from I I I I
and IP, respectively, by replacing y by —y„, $ by $~,
p by p„, lnp by lnp„, and D by D~. I2~ is obtained from
Ip by replacing & by —p„, g by p„, p by 21~, lny by in~~,
D by D„, and $y2 7 (y —6)g]~2—/2 —by (y„2+12'—16/yl, —10)2r2/2. I2, I6+, and Il are obtained from
I5, I6, and I7, respectively, by replacing y by —y„,
p by &2„1np by lny„, $ (when occurring linearly) by
p„(but t2 by („2—2r2), h(g/2) by h(&„)—h((„/2), and

I 2h($/2) —h($)g by —
I 2h((„/2) h($—„)]+ 2r/(2(„I lt„I).

APPENDIX II: VACUUM POLARIZATION

According to Eq. (IV.3) of the text, the vacuum
polarization contribution to the radiative correction is
given by

(AII.1)da „,s(k) = —
2d0 os (k)q21lq(q2)

where doos(k) is the differential bremsstrahlung cross
section and II~(q2) is given in Eq. (IV.2). In order to
integrate da. „s(k) over angles we use a method due to
Bethe." Bethe integrates the bremsstrahlung cross sec-
tion using three variables x, y, and q . It is convenient
for us to use the same method since IIf is a function of

q only. At high energies we 6nd, according to Bethe, "
that the cross section integrated over x and y is given by

dGOg

do (col) = 2nZ2r 2—"d(q')
rrg(q2)

g2

x ((~,'+ 62 )q'2f $/(1+t. )'I' 8E,E2(1 —2f $/(1+—f)'I') }
where we have used the fact that the contribution to the
integral is negligible for q of the order 8, due to the rapid
vanishing of q'II~(q') for small values of q. Here
(=-,' ln/((1+ f')'"+1)/((1+1)'~'—1)), wllere 1 =4/q'.
When $ is introduced as a new variable we get

4 " d$
d...,.(.,)= —2(nZro)—

32r & Sinh2t

)(((6l +E2 )f 62E2(cothp $(slnh $) )}

where

and

1 El (f gl' e) 62 (i g2' e)

2plp2

~le2(i I}l e)(f—g2 e)—

gl Pl/~1 I}2 P2/~2, e=k/ I
k

I

1 o= L1+W» )2jl12

We use the Feynman parametric method'2 to rewrite
the last term in the integral in the following way:

(|—5 e)(t —I}.e) o (&
—5' e)'

5'= (I32—02)&+Ib.

The integrations over angles and i are elementary
and we obtain

APPENDIX III: THE REAL-SOFT-PHOTON
CROSS SECTION

A. General

In the expression for the real-soft-photon cross sec-
tion, Eq. (V.3), there appears the integral I(yl, y2, »2)
which may be written, according to Eq. (V.4),

d'k
I(yl, y2, »2) =—

4'r ~gg~2 CO

1 1 2plp2
+ + — . (AIII.1)

(plh)2 (p2h)2 (plh)(p2h)

Since this integral is often encountered in calculations
involving soft photons we shall first give a general ex-

pression for I in terms of p~, p2, and hco2. We introduce
the variable

1 =co/IkI =I 1+(x/IkI)'1'",

X being the "photon mass, " and the integral becomes

When the integrals are performed the result given in
Eq. (IV.4) is obtained. 30 R. P. I'eynman, Phys. Rev. 76, 769 (1949).

)& (5/3 —(sinh'() '—(2—(sinh'$) ')( coth(} . (AII.2) I= (2+ 8,) ln(2»2/X) —(1/2pl) lnL(1+pl)/(1 —pl) j
—(1/2/2) lnL(1+p2)/(1 —p2) $—&2.
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The integral 8'~ is easily found to give

2PlP2
=4y cothy,

plp2 p 1 P

where y is defined by

slnh y= (pl —p2)

The other integral,

(AIII.2)

and smaller than one since 0(c(b(f, where b and c
are given in Eqs. (AIII.5) and (AIII.6).

We have then

~(Pl~P»»2)
=2(1—2y coth2y) In(2»2/P. )

-(1/2P ) I L(f+P.)/(1 —P )7
(1/2p, ) In/(1+p2)/(f p2)g

+-,' coth2yLF(pl)+0(p22 —gl lh)F(p2)7. (AIII.8)

dx 1+P'
In"" ~ P'(1—P") 1 P"-

is more complicated. Introducing P' as a new variable,
we Gnd that d2 may be separated in two terms:

PlP2

B. el))1, 22))1, —plp2~1

For the case of high energies and small angles needed
in Sec. V of the text, Eq. (AIII.8) simplifies consider-
ably. It should be noted that the expression for I ob-
tained is valid for any process in which a high-energy
particle is deflected through a small angle.

On terms of the variables

where e(x) =&1 for x~~0 and
1—8 ="(1-I')(t'~'- 1)dP' 1 1+p'

F(P)= (1—')'" - ln
(p"—/22)'/2 1—p" 1—p' so that a 1, and consequently from Eqs. (AIII.5) and

(AIII.6) it follows that b 1/pl2, c 1/pl2, and F(P)
(AIII 4) simplifies to

with
g {(P12P22 (gl g2)2)/P 2)1/2

and

(1 /22)1/2
2/= (pl+ 22)/(pl I = tanhy

~ {F(P')+~(P2 ~' ~2)F(P2)) (AIII 3) we find from (AIII.4)

with

We then get

n=(b(P' ~)/(P'+~))"',

b = (1—a)/(1+a) . (AIII.5)

5-= Ib—52 ~

In order to convert F(p) into known functions we
take as new variable

and
I (v+1)(I'v~ 1)

C(P2.2) =
42122(f I'2)(g22/2 1)

b+c (b+c) (b c)—
F(p) = —

2 ln ln4(b' —c')+ L2l l

—L2l
b —c ( 2b ) k 2b )

with
V(~'-1)

b= )4, ,(1-|')O- q' —1)

where

b(i —&2)

F(p) = Al +
p (1—2/2 b' —2/21 (b' —2/2)

(P) =(b(P—)/(P+ ))" (AIII.6)

where the upper signs are valid for pl and the lower
fol' p2.

We then anally get

with the result
I(p„p„»2)=2(1—2y coth2y) ln

X(p,p2)»2

1+c 4b'(1 —c2)' b+c (1—b)'
F(P)= 2 ln In +-', In ln

1—c (b' —c2) '(1—b) 4 b c4(b' —c2)— 4I'("—1)

(f-I-')(t'~'-1) ~+1 I.~+1
+-', coth2y 2yln +In ln

2/
—1 I'2/ —1

b+c b c-
+ln In

2b 25

1+c 1—c (1+t:)
2 2 k 2

-(1+~)G-~+1)- -(1—t-)(t ~—1)-
+L2 —1-2

2{-(~+1) 2I-(q+ f)

b+c b+c b c-
+2L21 +2L2l l

—2L2l l, (AIII.7)
k 2b &foci kf —c)

'
-(i+I-)(t. -1)- -(f-I)O. +1)-

+L2 —I.2—
— 2{.(~- f) — — 2{-(~-f)— (AIII.9)

where the arguments of all L, functions are all positive which is used in Eq. (V.5).


