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We discuss the implications of maintaining Gnite mass renormalization when the wave-function renormal-
ization constant Z3 of an elementary particle is set equal to zero, making only the approximations of two-
particle unitarity. We show that this deGnes a Geld-theory bootstrap for the elementary particle wbich is
completely equivalent to the usual type of bootstrap based on the ii/D method. As Zs goes to zero the
vertex function and inverse propagator develop poles which move to p,', the elementary-particle mass, in the
limit. For nonzero Z3 this pole does not contribute to the scattering amplitude, but at Z3=0 it cancels the
elementary-particle pole in the single-particle reducible part, leaving the dynamical pole in the irreducible
part. We suggest, further, that in this limit the bootstrapped state is a Regge pole.

I. INTRODUCTION

ECENT investigations in field theory and dis-
persion theory'' have veriGed the result, first

~

~ ~ ~

~

~

obtained in some model calculations, '—' that an ele-
mentary particle may be considered as composite when
its wave-function renormalization constant Z3 is set
equal to zero. SpeciGcally, it was shown in Ref. 1 that
if two theories are defined by 1V/D equations with
elastic unitarity which differ in their high-energy
behavior according to Levinson's theorem, ~ ' then the
Z3=0 limit of the "elementary-particle" theory yieMed
a scattering amplitude identical to the "bound-state"
theory. It has furthermore been suggested' that Z3=0
should be made the criterion not only for compositeness
but for a bootstrap theory where, loosely speaking, the
forces responsible for binding a composite particle are
a direct result of the existence of the particle itself.
We examine this suggestion in the present paper and
Gnd that it is correct when the self-mass of the corn™
posite particle is finite.

Our method will be to use the results of renormalized
Geld theory, making the approximation of elastic uni-
tarity in the spectral representations of the propagator
and vertex function. The recent results of Jin and
MacDowell' on the properties of poles of the vertex and
zeros of the propagator are quite important in this
regard. In fact, we show that for small Z3 the inverse
propagator and hence the vertex function must de-
velop a pole if bp' is to remain finite. These poles do not
normally give rise to a pole in the scattering ampli-
tude, a cancellation taking p1ace between the irreduci-
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ble single-particle part (IP) and reducible single-particle
part (RP). However when Zs ——0 the elementary-
particle pole itself is canceled by the other pole in the
RP, this entire term vanishes and the pole in the IP is
the pole in the scattering amplitude. That is, for Z3 ——0
the "unphysical" vertex function pole becomes the
bound state. Thus, along with the result that Z3=0,
8p,' finite provide a satisfactory definition of a bootstrap,
we also obtain a physical understanding of the
vertex function pole as giving rise to the' bootstrapped
particle.

Jin and MacDowellm have suggested that the vertex
function pole is associated with a Regge pole which,
however, does not give rise to an elementary particle.
Comparing this result with ours leads to the very sug-
gestive idea that, in a field theory, particles with Z3=0
and Gnite self-mass are bootstrapped states which lie
on Regge trajectories. This result is in accord with the
conclusions of Kaus and ZachariaserP in their com-
parison of the X/D bootstrap equations and. field, theory.
They require Zt=0 and Zt/Zs ——0 as well as Zs= 0 and
these conditions may be equivalent to bp,

' Gnite. Our
work is thus complementary to theirs. '~

Let us say a word about the finite self-mass condition
which is crucial to our work. %e know that this is not
an empty condition because there exists a model theory,
the Zachariasen model, " in which the A particle has
Gnite self-mass even in the Z3=0 limit. " In fact we
shall show in the Appendix how our results are verified
in this model. However, if the XB coupling is set equal
to zero then the self-mass of the 3 particle is inGnite
and our results no longer hold. Apparently some extra
condition of this type is necessary and we speciGcally
exclude theories of the type considered by Olesen'4 and
Hagen. "In fact we shall show in Sec. IV that with our
definition of a bootstrap, and if 5p' is Gnite for nonzero

"Our model does diGer from that of Ref. 9, however, because
we assume that the Geld theory has no dynamical pole for Gnite
Zs, cf. footnote 8 of Ref. 9.
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II. FIELD THEORY
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Jin an acd M Dowell' have shown that the s-wave AB
scattering amplitude
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U(s) =K(s)r (s), (12)

where K(s) has the left-hand cut of U(s) and Eq. (11)
becomes

We have included the possibility of a pole in r (s) at the
position of the zero of the propagator according to the
results of Ref. 10.

Since r(s) has the phase of U(s) along the physical
cut we may write"

limit, and although we shall not continually qualify
our remarks, all statements made in the remainder of
this paper are subject to this condition.

We now show that the propagator must develop a
zero'0 for some critical, maximum Z3 and, in particular,
this zero is present for Z3=0. The residue C, as given
by Eq. (7), is greater than zero, and the pole position
m' is greater than p,', thus there can be no cancellation
of infinite terms in Eq. (9b), and finite 8p implies

E(s—p')
I'(s) = 1+

s—m'

s—' DI(s')
l
r(s')

l

'
ds'p(s') . (13a)

(s'—p') (s' —s—is)

and, if C&0,

lim
Z3~0

, lr(s') I'
ds'p(s') =0,

s —p2

lim l C(ms —p,')j Zs~0.
Zg~0

(17)

p(s') X(s')s—'
I" '(s)=1+ (13b) lim

l r(s) l'=0.
Zg~0(s s ss)(s p )

The information that r '(s) has a zero at s=m' is ex- T k th Z () I' t f E (8b) and using Eq (19)
pressed by we have

Using Eq. (13a) we write a dispersion relation for
r-I jof course both C and m' are functions of Zs.j But the

integrand. in Eq. (17) is positive definite, so that

m —p0=1+
X(s')ds'p(s'), (14)

(s' —m') (s' —p')

while the constant R is given by

0=1—lim C.
Zg~0

(2o)

So C=1 at Z3=0, which proves the contention that
CWO and Eq. (18) becomes

dr '(s)
E '=(m' —p')

lim (m' —p, ') Zs ~ 0.
Z3~0

(21)

s=m' Thus at Z3=0, the propagator has a zero which has
moved down to the elementary-particle position at p,',
and since its position is a continuous function of Z~ it
must move from the second sheet onto the erst sheet
at s& for some critical nonzero Z3. It should be noted that
Eqs. (20) and (21) are consistent with the expression

(7) for C.
Now consider Eq. (14) which is the condition that

r(s) have a pole at s= m'. In the Zs ——0 limit we have

1 " p(s')X(s')
= (m' —p, ')— ds' (15)

s'—m' '
ss.

We are, of course, making the assumption that the
asymptotic behavior of K(s) is such that Eq. (13) is
valid.

Jin and MacDowelP' point out that the residues E
and C are related. In fact, from Eq. (6) we see that the
pole in 6 (s) arises from the distortion of the integra-
tion contour around the pole of I'(s) as it emerges from
the second sheet at threshold. Using Eq. (20) of Ref.
10, we have

,p(s')&( ')
ds = 1)

(s'—p')'
(22)lim

Z3~0

where we have used (21) to replace m' by p' where it
(16) occurs explicitly in the integrand. Now Eq. (15) yieldsX(m') (m' —p') =g'R/C.

Of course if there are no poles in r(s) and 6 '(s) we

put C=R=O and ignore the equations determining
them and m'

(23)lim E.=—1.
Z3~0

Thus we have the picture that as Z3 is decreased a pole

III. THE S3=0 LIMIT in I'(s) and a zero in h(s) appear to keep 5ps finite.
This singularity moves to the left as Zs is further de-

In this section we study the Z3=0 limit of the theory. creased and approaches p, , the position of the elemen-

Ke make the assumption that 8p is Gnite, even in this tary particle as Z3 approaches zero. At the same time

"The relation of r (s) to U(s) is the same as that of F(s), the
form factor defined by F(s) (s—p') '=I'(s)a(s), to T(s).

~ A similar remark was made by J. S. Dowker, Nuovo Cimento
36, 304 (1965).
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the residue constants C and R approach one and minus
one, respectively.

It is apparent in the simultaneous limit Z3=0, s= p,
'

that F(s) and d (s) are poorly defined. For example, de-
pending on how we take the above limits, h(ps) is either
zero or has a pole while P (ps) is either one or has a pole.
This behavior is not too surprising since neither F(s)
nor h(s) are observable functions and to make further
progress we turn to expression (10) for the scattering
amplitude.

We have previously noted that the RP, I'(s)A(s)&(s),
has poles at s=p' and. s=m' while the IP, U(s), has a
pole at s=m'. We write a dispersion relation for each of
these functions using the fact that P (s)6(s)I'(s) has only
a right-hand cut while U(s) =K(s)F(s) satisfies two-
particle unitarity on the right-hand cut,

g'I'(s) A(s) I'(s) =
g' g'E/C

s—p, s—m

g' " Im(I'(s')A(s') I'(s'))ds', (24)
7P as, s —s—zt.

where
F(s) = 1/D(s),

T(s)=X( )/s(D),s

and is well behaved and nonvanishing in the Z3=0
limit since the scattering amplitude is nonvanishing

"C. Goeble and B. Sakita, Phys. Rev. Letters 11, 293 (1963)."S.D. Drell, A. C. Finn, and A. C. Hearn, Phys. Rev. 136,
31439 (1964).

x(m') R(m' —p')
K(s)F(s) =

$ m

,~(s')
I
&(s') I'IP(s') I'

ds'—
/s —s—zc

Im(X(s')) P(s')
ds' . (25)

z, s —s—z6

(The question of possible subtractions need not con-
cern us here. ) Equation (16) ensures that the poles at
s=m' cancel and so do not appear in the scattering
amplitude as has been noted by many people. """
However, in the Zs ——0 limit, Eqs. (20), (21), and (23)
show that the two poles in Eq. (24) cancel each other
while Eq. (25) becomes

&(s)P(s)=g'/(s —')+" . (26)

Thus, in this limit the term P (s)0 (s)P (s) no longer has
a pole corresponding to the C particle at all, while F(s)
contributes the particle pole at s=ps to T(s) with the
correct residue g'.

In fact we can go further and show that the entire
RP vanishes in the limit Zs=0. This is because F(s),
the form factor, "is given by

We emphasize that this behavior is possible and con-
sistent with Eq. (24) only because the pole at s=p' is
cancelled and vanishes at Z3 ——0.

The reason why d (s) develops a zero for small Zs is
now clear. For Z3 nonzero, the pole at s= m' of the RP
is harmless and is just canceled by the pole of U(s).
At Z3 ——0, however, the RP vanishes. This is possible
only if the pole at s= p,

' due to the intermediate C par-
ticle is canceled (its residue is g' which is nonzero) and
the extra pole at s=m' eGects this cancellation leaving
us with

T(s) = U(s) =X(s)r(s). (2&)

The pole in I'(s) contributes the C-particle pole to T(s)
and the C particle is now a composite.

IV. DISCUSSION

We now see why the C particle should be termed com-
posite when its wave-function renormalization con-
stant is zero. Although T(s) is perfectly well behaved
in this limit and has a pole at s= p, ', the interpretation
of this pole is different. For nonzero Z3 the pole was due
to an elementary C particle in an intermediate state,
reflected by the fact that the pole arose from the RP,
I'(s)A(s)1'(s), i.e., from the C-particle propagator. At
Z3 ——0, however, this propagator no longer contributes
to T(s) and the pole arises from U(s), the dynamical
term.

The above provides the connection between a field-
theory bootstrap and the more familiar calculations
based on the X/D method. "In the latter, one assumes
the existence of an elementary C particle and calcu-
lates D(s) by assuming that the exchange of C pro-
vides the left-hand cut of T(s). The requirement that
T(s) have a pole at s=p' with residue g' then provides
the bootstrap. In Geld theory, however, one would ex-
pect the assumed existence of C to provide a pole in
2'(s) via the RP, and it would seem to be inconsistent
to ignore this term. Thus, it would appear that if one
actually carried. through a consistent P/D bootstrap
in field theory one would obtain the C-particle pole
twice, once dynamically and once kinematically. In
Ref. 1, however, it was shown that the E/D composite-
ness conditions are equivalent to Z3——0 for C, and thus
with the additional requirement of Gnite mass re-
normalization our result shows that the RP vanishes,
its pole disappearing, and thus the X/D bootstrap is
completely equivalent to the Geld-theory calculation.

"F.Zachariasen, Phys. Rev. Letters 7, 112 (1961).

I essentially because F(s) is an observable whereas
I'(s) is not7. But

P()~()P()=P()( —') 'F()
and thus, according to Eq. (19)

lim (I'(s) d, (s)F(s))=0.
23~0
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The pole of the dynamical term U(s) is just the pole
which appears as the zero of the D function in the N/D
method.

Jin and MacDowellts have given an interpretation
of the pole in I'(s) at s= m' as a Regge pole. They argue
that if the C particle is not a Regge pole and if a Regge
trajectory exists, with the quantum numbers of C and
the proper signature, which passes through /=0 at
s=m', then the pole in I'(s) develops to cancel the Regge
pole in U(s) so that it does not contribute to T(s).
But we have shown that for Zs ——0, the pole in U(s) is
the pole of T(s). Thus, if Jin and MacDowell are cor-
rect we conclude that the conditions Z3=0, bp,

' Gnite
not only deGne a Geld-theory bootstrap but are the
conditions which make C a Regge pole.

We may reverse the arguments given in the above
by assuming that a bootstrap solution exists. So we
assume that a pole develops in the Rp which, in the
limit of the bootstrap, has moved down to p'. Equation
(7) shows that if this occurs then in this limit

T(s) =g'r(s)a(s)r(s)+nr(s). (A1)

The constant e is given by

n= X/Zs.

Formulas applicable to this model are now obtained by
specializing the appropriate equation of the text to

APPENDIX: THE ZACHARIASEÃ MODEL

In this Appendix'4 we illustrate the conclusions of
Sec. III in a version of the Zachariasen model' which
includes three- and four-particle interactions. The scat-
tering amplitude in this model is pure s wave, has no
left-hand cut, and satisfies elastic unitarity. The model
is easily solved using the method developed by
Whippman and Gerstein, ' where it is shown that the
absence of a left-hand cut in T(s) requires U(s) to be
proportional to P(s) so that

C=1,
while from Eqs. (14) and (15)

(28a) K(s) =n=X/Zs.

From Eq. (13b) we obtain
(28b)

Therefore, making only the assumption that a pole in
the Rp moves down to p', it automatically follows that
the residues take on the correct values to effect all the
cancellations necessary for the bootstrap. Furthermore,
from Eq. (Sb) and the conditions

0&Z3&Z,

s—p' X " p(s')
P '(s) =1+ — ds' . (A2)

Zs „(s'—p, ')(s' —s—ie)

The integral in Kq. (A2) can be evaluated explicitly,
and it can be shown that as Zs becomes small (provided
XNO) the function I' '(s) develops a pole at s= ms given
by the solution of

ZB= 0 (28c)

since the right-hand side of Eq. (Sb) is negative, semi-
deGnite for C= 1, and therefore

Z3
(m' —p') = ———

'A 7r

ds
p(s')

(s'—p') (s'—m')
(A3)

(28d)

Thus the condition that the RP vanish, which we take
as the deGnition of a bootstrap, is ensured by assuming
that a pole in I'(s) moves to p' and this yields all the
conditions (28). Our original assumptions of Bp finite,
Z3=0 are thus sufhcient for a bootstrap, but we can-
not show that the first one is strictly necessary. If,
however, bp, ' is finite for finite Zs, then Eq. (9b), to-
gether with (28) yields

llm Z,5p2=0,
zg~o

which is a necessary and sufhcient condition on the be-
havior of Bp' for the existence of a bootstrap solution in
Geld theory.

m p,
lim—
Z 0

, p(s')
ds

(s'—p')'

(A5)

This zero Grst appears at the threshold, s=s„from the
second sheet for some critical value of Z3 and then
travels down to s= p,'. We do not consider the case X=0
since, as we shall see, it leads to bp'= ~ and so does not
deGne a theory which satisfies our assumptions. To ob-
tain the detailed behavior of m' as it approaches p' we
note that the integral in Eq. (A3) is finite for any
m'&s, so we have
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The dispersion relation Eq. (13a) for I'(s) becomes (A11),

R(s—p')
I'(s) =1+

lim C= lim g'R/L(X/Zi)(m' —p') j= 1. (A13)
Z3~0 S3~0

where

$—7S

m' —p,
' X " p(s')

ds
Za, ) (s'—m')'

(A7)

p(s')
I
I'(s') I'ds', (A6)

Z3 ., (s' —p')(s' —s—ie)

I
It should be noted that we cannot use this method to

obtain C in the full field theory considered in the text
since we do not know, in general, the Z3=0 behavior of
X(s) a Priori

Thus we have verified explicitly in the Zachariasen
model that when Z3 ——0 and 8p' is finite we have

g= —1., m'= p', I'(s) =0,

Using Eq. (A3) we have

p(s')
ds

(s' —p')(s' —m')

and so, when Za= 0, since m'= p,'

p(s')ds', (A8)
(s' —m')'

and we have shown in detail how these functions ap-
proach their limits.

Now let us consider the scattering amplitude T(s).
We note that the form factor F(s)=(s—p,')I'(s)A(s)
js given byu

(s—p')
F(s)= 1+

x'
T

R= —1. (A9)

The analog of Eq. (16) for the Zachariasen model is

p(s') g2 ——1

X X+
(s'—p')(s' —s—4) s' —g')

(A15)

(X/Zs) (m' —p') =g'R/C, (A10) and is perfectly finite at Z& ——0. So from Eqs. (A1) and
(AS) the first term in T(s) vanishes and we have

which guarantees that the pole in I'(s) at m' does not
appear in" T(s) for Zq&0. Using Eqs. (8b), (A2), (A6),
and (A10) we obtain by the method of Ref. 6

T(s) = lim (X/Z, )I'(s), (A16)

g' ", p(s')
Z3= 1 ~$

s „(s'—p')'
residue = lim R(m' —p')X/Za

Z3~0

g2

which is finite. This term has a pole at $=p' with residue
given by

(A11)

Mass renormalization is obtained by taking the $ —+~
limit of Eq. (A6), taking into account Eq. (A5) and
using Eqs. (9b) and (A10),

8)Ms =g'/X.

Thus we see that X~O is necessary for finite bp' and
since Eq. (A12) is independent of Zs, 8p remains finite
in the Z3 ——0 limit. The behavior of C when Z3= 0 is ob-
tained from Eq. (A10) using Eqs. (A4), (A9), and

p(s')
ds'

(s'—p')'

as is required by Za ——0. Thus the pole in (X/Z3)I'(s)
materializes at $=p,' as a pole of the scattering ampli-
tude in the Z3=0 limit and has the correct residue re-
quired by this limit, just as in the full field theory the
cancellation of the poles in I'(s)h(s)1'(s) allows this
term to vanish.


