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The 2i-co problem, as the simplest case of the pseudoscalar-meson and vector-meson system, is discussed
from the standpoint of the S-matrix approach. A general procedure of constructing invariant amplitudes in
spin and isospin space of the pseudoscalar-vector system is given, and for 2l-cy scattering, a set of invariant
amplitudes are conveniently chosen and their crossing properties are discussed. These amplitudes are ex-
pressed by one-dimensional representations which are derived from the Mandelstam representations by the
Cini-Fubini technique. Partial-wave expansions as well as projections are done by the use of the Jacob-Wick
helicity amplitudes. A prescription for calculating the driving forces from the exchange of particles is pre-
sented and applied to the exchange of the p and B mesons in states of the two possible quantum numbers
J~= 1+ and 2 . The procedure consists of a zero-width approximation to the transition amplitudes in states
of given I and I., crossing-symmetric relations, and the one-dimensional dispersion representations of the
invariant amplitudes. The relationship between the invariant amplitudes and the helicity amplitudes
greatly facilitates this procedure. The t-channel reaction is also analyzed. A method of solution of the partial-
wave dispersion relations is discussed based on a recently developed formalism, and is extended further to
avoid the diQiculty associated with the zeros of the driving forces. A systematic program to understand the
quantum numbers of the B meson as a 21-co resonance is also discussed. The qualitative nature of the forces due
to the B exchange in states of each possible quantum number is briefIy sketched. A model calculation which
favors a 2 state of the B meson is presented.

I. INTRODUCTION

N recent years, a great deal of progress in the study
~ - of strong-interaction physics has been introduced by
the dispersion-theoretic approach to elementary-particle
physics. ' The idea in this approach is to try to compute
the physical scattering amplitudes from the knowledge
of their singularities in the energy and momentum-
transfer variables. However, the dispersion relations
as applied to scattering have displayed only limited use-
fulness; we know no simple general rule for localizing
all singularities of the amplitudes. A prescription pro-
posed by Mandelstam' allows one to obtain a partial
understanding about the momentum-transfer proper-
ties of the scattering amplitudes, when only two par-
ticles are present in both the initial and the final states
of the scattering process. Also this prescription allows
us to derive dispersion relations for the partial-wave
amplitudes for which the unitarity relation takes a
simple form. An approximate representation' for the
amplitude of two-particle scattering has been deduced
from the Mandelstam representation, by neglecting
consistently inelastic processes in the unitarity condition.

Despite the lack of general methods for a complete
calculational framework of the S matrix, such as the
Feynman rules in the case of perturbation theory, the
dispersion-theoretic approach to the problems of strong
interactions has provided a theoretical framework in
which phenomenologically existing information can be
analyzed and summarized, thus giving a better theoreti-
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cal understanding of many problems. In particular, the
problems of the pion-pion, ' pion-nucleon, ' and nucleon-
nucleon' interactions have been extensively explored by
many authors and the Mandelstam representation has
provided a dynamical scheme for the discussion of scat-
tering to obtain many quantitative features of the sys-
tems. In many cases, the dispersion-theoretic handling
of the problems enabled us to predict a reasonable por-
tion of the driving forces of the system via the Mandel-
stam prescription.

In the present article, we consider the pseudoscalar-
meson —vector-meson scattering through the approach
of dispersion theory. We would like to have a theoretical
framework for understanding the existing experimental
data, such as the xor resonance~ called 8, and the two
mp resonances" A1 and A2. Owing to the diGerent

4 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960);
J. W. Moffat, ibid 121, 926 (196.1). More references can be found
in K. Kang, ibid 134, B1324. (1964).' W. R. Frazer and J. R. Fulco, Phys. Rev. 119, 1420 (1960);
S. C. Frautschi and J. D. Walecka, ibid 120, 1486 (1.960). Addi-
tional references can be found in the review article of J. Hamilton
and W. S. Woolcock, Rev. Mod. Phys. 35, 737 (1963).

6M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and
D. Y. Wong, Phys. Rev. 120, 2250 (1960); A. Scotti and D. Y.
Wong, Phys. Rev. 138, B145 (1965) in which further references
can be found.

7 M. Abolins, R. L. Lander, %V. A. W. Melhop, N. Xuong, and
P. M. Yager, Phys. Rev. Letters 11, 381 (1963).

S. U. Chung, O. I. Dahl, L. M. Hardy, R. I. Hess, G. R.
KalbQeisch, J. Kirz, D. H. Miller, and G. A. Smith, Phys. Rev.
Letters 12, 621 (1964); G. Goldhaber, J.L. Brown, S. Goldhaber,
J. A. Kaduk, B.C. Shen, and G. H. Trilling, ibid 12, 336 (1964.).

'R. T. Deck, Phys. Rev. Letter 13, 169 (1964) has suggested
that a kinematic enhancement in the mass spectrum of the anal
no scattering could be responsible for the lower (the As) of the two
peaks seen in the experiments of Ref. 8. This suggestion makes it
dificult to interpret the A~ peak as a resonance, because the mp

system associated with the kinematical peak does not occur in a
de6nite angular momentum state. Experimental evidence in
support of this suggestion has been presented by M. A. Abolins,
D. D. Carmony, R. L. Lander, and ¹ Xuong in Proceedings of
the Second T'opical Conjerence on Recently Discovered Resonant
Particles (Ohio University, Athens, Ohio, 1965) (to be published).
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isotopic-spin quantum numbers of the mesons belonging
to the pseudoscalar and vector-meson families, "we are
unable to incorporate universal isotopic-spin projection
operators for all systems of meson farnilies. Thus we
shall primarily consider vcr scattering as an explicit
example, for a given value of the total angular mo-
rnentum J. For then a complete characterization of any
pseudoscalar-vector scattering for a given total J will

be easily accomplished by means of appropriate pro-

jection operators of the isotopic-spin sta, tes. Even
without the isotopic-spin operators, the problem is con-
sid erably complicated by the presence of spin.

The pseudoscalar-vector system can be either in a
spin-singlet or spin-triplet state. For each process, the
Feynman amplitude can be expressed in terms of four
invariant functions of the energy and the momentum-
transfer variables.

In the next section, the usual scalar variables are de-
6ned and the singularities in the direct as well as crossed
channels are described. We have outlined in Sec. III the
procedure to introduce invariant amplitudes for the
pseudoscalar-vector system in spin and isospin space.
As for the xco scattering, the isotopic-spin space appears
trivial since the reaction goes through only the I= 1
state. The crossing properties of the four invariant
amplitudes of the xco scattering are also discussed in
Sec. IV. These four invariant amplitudes are expressed
by the Mandelstam representation. ' By using the
Cini-Fubini technique, ' the double dispersion relations
are approximated to the one-dimensional representa-
tions which will be useful when the lower partial waves
give dominant contributions to the absorptive parts of
the invariant amplitudes. Partial-wave decornpositions
are considered in Sec. V. This is done by a modification
of the Jacob-Wick formalism" of scattering. Singulari-
ties of the partial-wave amplitudes are sketched. Section
VI contains calculations of the helicity amplitudes. The
polarization vectors of the massive photon are dis-
cussed and expressed in terms of its helicities, so that
one may calculate the helicity amplitudes. In Sec. VII,
a general procedure to derive the driving forces is
discussed. The procedure is verified by reproducing
the Born terms of the vector and an axial-vector ex-
change as those from the Feynrnan graphs. The 2 ex-
change" as a possible quantum-number state of the 8
meson is calculated. Here a narrow-width approxima-
tion to the absorptive part of the transition amplitude
in the physical region of the crossed channel and crossing
relations of the invariant amplitudes are incorporated
with the one-dimensional representation of the ampli-

"In order to construct a general theory, one should consider all
possible combinations of the pseudoscalar mesons (s.,q,E,E) and
the vector mesons (p,co,p,Z*,E*)

"M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959)."The 8 meson has G parity+ 1 and isotopic spin I=1. Possible
quantum numbers of spin and parity J are 2 and 1+.A 1 inter-
pretation of J3 is not likely to be due to nonobservation of EK.
See A. H. Rosenfeld, A. Barbaro-Galtieri, W. Barkas, P. Bastien,
J. Kirs, and M. Roos, Rev. Mod. Phys. 36, 977 (1964).

FzG. 1. Diagram representing the mu
scattering.

p, a q
I el

tudes to give the Born terms. The knowledge of the eGec-
tive interactions at the vertices of the Feynman diagram
is not necessary in our approach. Also we will see the
correct kinematical factors to be removed in the partial-
wave amplitudes in states of given J~, as a consequence
of making the invariant amplitudes free from kinemati-
cal singularities. In Sec. VIII we discuss the method of
solution of the partial-wave dispersion relations based
on a recently developed formalism. "This formalism.

gives a manifestly symmetric solution which does not
depend on any subtraction parameters. The method is
extended to avoid the difficulty associated with the
zeros of the driving forces. Finally, Sec. IX deals with
concluding remarks. A systematic approach to under-
stand the 8 meson in the viewpoint of a dynamical
theory of the mw interaction, which is under way, is de-
scribed as an application of our theory, and a model
calculation favoring a 2—state of the xco resonance is
discussed.

t =—(pt —ps)'= —2k '(1—cos8,),
~= —(pt —g )'= 2(Ms+gyps) —g—],

(1b)

(1c)

where we have denoted the four-momenta of the
pseudoscalar mesons by pt and ps, the four-momenta of
the vector mesons by q» and q2, the vector-meson mass

by M, the pseudoscalar meson mass by m, and the
center-of-mass momentum and scattering angle by
and H„respectively.

If the diagram in Fig. 1 is considered to represent the
annihilation of two vector mesons q» and —

q2 into two
pions —pr and ps, then we can write

~=4(q'+Ms) =4(ps+abls),

s= —p —
g +2plj cos8(,

I=2(M'+m') —s—t,

(2a)

(2b)

(2c)

» G. Q. Hassoun and K. Kang, Phys. Rev. 137, B955 (1965).

II. KINEMATICS

Scattering amplitudes for the process pt+gt ~ ps+ps
shown in Fig. 1 are considered as a function of the three
scalar variables

s= —(pt+qr)s=Ms+ms+2k '
+2L(k '+M')(k '+m')g"' (1a)
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take place only in the isotopic spin state 1. If this is to
represent the xp scattering, then the reaction will take
place in any of the three isotopic-spin states I=O, 1,
and 2. For this process, the projection operators for
isotopic spin states are

su=(M -m )'
u=O

(Ps=3—'(II.I,+1)(Il I,—1),

(Pl ———2—'(Il I,+2)(Il I,—1),

(Ps=6—'(Il Is+1)(I, I,+2),
(6)

(&)

t=O[s+u=2(M +m j] where Il, and I2 are the usual isotopic-spin operators for
pion and p meson, whose elements are given by

su*(M -m )

Flo. 2. Kinematics of the reactions (1), (2), and (3).

t= —2k '(1—cos8„),

s =2(M'+m') —t—u.
(3b)

(3c)

&n (1), (2), and (3), there are only two independent
variables because of the usual relations (1c), (2c), and
(3c), and we have used a convention a b= a'h —apbp.

The boundaries of the physical region for the s channel
are given by the limiting values of cos8, =~ 1.We obtain
a curve

and a line
su= (M' —m')'

s+u=2(M'+m') (4b)

as shown in Fig. 2. The physical region for the I channel
is symmetric to that of the s channel about the line
s= N. If there occurs a single-particle exchange of mass
III, say smaller than the threshold value M+m, then
the pole appears at s=m' and at 1=m'. The point
where s has the least permissible value for k, to be real
has the coordinates (s,t,u) = ((M+m)', 0,(M—m)') while
the corresponding point in the I channel has
(s,t,u) = ((M—m)' 0 (M+m)')

The physical region for the ( channel is bounded by a
branch of (4a) and the point with the least permissible
value of t for q to be real is (s,t,u) =(—(M —m2), 4M,—(M2—m')). But there are also threshold singularities
for intermediate states of lower energy involving pions,
namely, t =4m', or 16'', and so on.

III. CROSSING SYMMETRY

Let us first consider the process pl+ql~ P2+q2. U
this is to represent the +co scattering, the reaction may

where p and q are the center-of-mass momentum of the
pseudoscalar and vector meson, respectively, and 8& is
the scattering angle in this channel.

Figure 1 can also be interpreted as representing the
scattering process pl+( —q2) -+ P2+(—ql). Then the
role of s and I is interchanged;

u —M2+m2+2P 2+2DP 2+M2)(P 2+ms)$1/2 (3a)

As for the xE*scattering, the projection operators of the
I=—,

' and I=-,' states are given by

(Pats= 3 (2+I' c)

(PI)2= 3 (1—I ' &) &

(9)

(10)

where I and ~ are the usual isotopic operators for 2r and
E*, while as for the EE* scattering, we have

(Pp ——4—'(1—~1.~2)

(Pl ——4 '(3+~1.~2) . (12)

F(s,t,u)=Q p F (s,t,u)O, (PI, (13)

where F;1(s,t,u)'s are functions of the invariant variable
s, t, and I and the 0 s are the four independent com-
binations of the spin nature of the particles involved.
We can treat F as a matrix in isospin space. However,
we shall discuss this procedure for the xm scattering for
which the reaction will take place only in the I= 1 state.
The Feynman amplitude F and the scattering amplitude

Since the spin of the pseudoscalar-vector systems is
0+1=1, we observe that for a given value of the total
angular momentum J, the orbital angular momentum L
can be J or J+1.For L=J, one amplitude is sufficient,
as parity conservation forbids transitions to L=J~1,
while for L=J&1, three amplitudes are required to de-
scribe the transitions 7+1~7+1, J—1+-+J—1, and
J—1~ 7+1, respectively. Because of time-reversal
invariance, the transition amplitudes for J—1-+1+1
and 2+1~J—1 are equal. Thus, there must be four
invariant amplitudes describing the scattering, and four
independent combinations of the spin are necessary.

The usual procedure to include the spins and charges
of the particles is to define the usual Feynman ampli-
tudes as an operator in spin and isospin space and to
situate the operator between the appropriate spin and
isospin state vectors.

We shall write the Feynman amplitude Ii for process
pl+ql + ps+q2 1I1 the folIn
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f are given by

F p
——Fb p

——5K„,e2„ej.b p

F=8n$'t'f. ,

scalar amplitudes

F;(u,t,$)=P X;;I';(s,t,u) (t,=1, 2, 3, 4) (21)

where e~ and e2 are the initial and final vector-meson
polarization four-vectors, normalized to unity, and n
and P are the isospin indices of pions.

Let us write

~oooo
0 0 1 0
0 1 0 0
.0 0 0 1.

(22)

OR„.=Ft8„„+FsP„P.
+F,R„R„+2 'F4(P—„R„+P„R„)+Fsqs„qr„
+2 'Fs(q&„P„+q&„P„)+2 'F7(qssRy+qt„Rp), (16)

where F~ through F7 are scalar functions of s, t, and I,
and

(17a)P=pt+qt,
R=pt —qs &

then we notice the P'= —s and R'= —N. Only four of
the seven functions Fj through F7 actually count, since
we will be working with the subsidiary condition

This relation is useful in obtaining the zen interaction
generated by the exchange of resonant or single-particle
intermediate states in the u channel.

In the t channel where two pions annihilate into two
co mesons, the only allowed isotopic state is I=0. More-
over, the orbital angular momentum in this channel is
uniquely related to the total angular momentum J.
Bose statistics restricts values of J=I. only to even
values; thus the t channel may not contribute when
the odd-parity or the I=1 particle exchanges are con-
sidered in all the channels. One can also easily verify
for this process that'5

61pgp &2ittg p F.s 3 't'F(t, $——,u)-3., (23)
and F($,t,u) becomes

The crossing relation under s~ t with I fixed can be
worked out in an analogous manner as in the mX scat-
tering. We will relate the F; of the mw scattering to the
production amplitudes fq, q, es, where )it and Xs denote
the helicity of the two to mesons, when we discuss the
partial-wave amplitudes.

F($,t)u) = (et. es)Ft($, t,u)

+(et P)( e'sP) F(s~$)tu) +( le' R)( esR)Fs(S~t, u)

+2 'L(et. P)(es R)+(et.R)(es.P)]F4($,t,u) . (19)

Thus we have identified the 0 s."
As for the process pt+ (—qs) ~ps+( —qr), the Feyn-

man amplitude will have a representation analogous to
(19) with (qt, sr) and (—qs, es) interchanged. This pro-

als takes lace onl in the I=1 state and

IV. AN APPROXIMATE REPRESENTATION
OF THE INVARIANT FUNCTIONS

cess o p
According to Mandelstam's postulate, ' each of the

four invariant amplitudes F; is an analytic function of
the energy-momentum variables except where s, t, and

On the other hand, the invariant operators 0; must also I equal the thresholds for energy conserving inter-
be crossed, thus giving the crossing properties of the mediate states:

00

F;($,t,u) =P;($,t,u)+— Cx
(M+7yt)

t. '(x,y)
cfy

sr+~) ~ (x—$)(y—u)

(m+m) '2

t.t'(x,y)
dy +

(x—$)(y—t) s' (~+ )

ts t'(xy)
(24)

(x—u)(y —t)

where the term P;($,t,u) denotes the single-particle ex- threshold cuts are neglected. We shall overlook the
change terms such as the p-exchange terms in the s and possibility of subtractions. The spectral functions
u channels of the neo scattering, and the anomalous p'(x, y) are not independent, but it follows from (21)

' This choice is equivalent to that of M. L. Mehta, Phys. Rev.
134, 31377 (1964). Construction of invariant scattering am-
plitudes for arbitrary spins are discussed from group-theoretical
considerations by A. O. Barut, I. Muzinich, and D. N. Williams,
Phys. Rev. 130, 442 (1963).

~~ Following the method of %.R. Frazer and J.R. Fulco, Phys.
Rev. 117, 1603 (1960), we write the isotopic-spin decomposition
as (~[F)pa)=F(t,s,l)(cau~g )pn), where n, p=1, 2, 3 and
g = I=O, I,=O(~))((m)I=O, I,=O is the projection operator
for the 1=0 state. Thus one can easi y get (~(g )pa)=3 &0 s.
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,„d (22) that and
p. '(y t')

(25 ) &.'(y
p,.("yId', .~y+t 2(~'+m')(M+m)

for j=~ 4

)or j=& 4

t(x y) =p~s'(y)x)

;( ) p„,~(y, x) (25b)

(25c),( ) p„, (y,x),
,( ) p„,3(y,x),

,2(»y) =ps' (y~*)

24) one-dimensionaalso derive from
d varjables axed

ecana
f h t, an gsvlations with one o )

axed-t dispersion
sion re a i

nt jn pur casase to write aQ, is convenie
~ h'b'ts the s-I metrelation) wh h then still ex ' '

p,.(s,t,u) =P (s t ")
g;(x,t)d*' '+

S 7p (N+m)(~+m) '

2 u (y~ )
(26)dy

pq (24) shows

Go
pgg (xyt )

g, t(x, t) =-
7r

(30)

4m

p, „~(x,u )
(27)

2(~'+m')(~+m) ' ) g., (,t)+A; ' *»

(25d) prom (25) "'
.

(29a)g i(x t) =A~'(»t)
(25e)

g g(x t) =g „(x)t)~)

(29c)~ 8(,,t)=a.'(x, t).
3 4) are to be

~ .1 st) (i=» u~&= ' ' '
of the

The functions ' '
he absorptive part ocacua e1 l ted by considering

H ever we shalltlons ow v

the technique int o
'

e the essential struxlmat pn is .
h gipn pf low- gy

e e
believed tp give t e

- nel'
~

am litude»
'

the
pf the invariant P

f I.rom unitarity,d low-n1pmentum r
m pf contributi n

an o
e ressed as t e su

the

g.i(x,t) can be e P
d t ~tates involved»

~

terme iate s
~ .

ere
rpm ]ower mass ln .

ntributlpn wn and anlne astlcco
diate

e as i«~scattering
d in the lntermero uce indditipnal mesons are p

state:

in the low-energyt) va„is e ind' te sta
' nfromt e igh h her mass intermwheree the contribution

'. Then we can write 26 asfor x((&+2m '. en w

00

P;(s,t,u) =P, (s,t,u)+—
A„~(x,t) 1

dx +—
X—S X' (~+m) ~

A„i'(x, t)
dX

A, i,'(x, t) 1
dx — +—

X S T (3/I+2m) 2

A „),&(x,t)
dX

00

+—
(M+2m)

sin usin ularity in t starts a. 3 that the lowest g
ithth t i d

of 31), it is easy o u
intbeginsat4m wi

ms. Then
31 th n st tlast two integrals in

1

5$ )

We shall expan e

(3f+2m)

A, ),&'(x,t) 1
dX—

X—S K 4m2

a,&'(t', s,u)

(m+2m)'

p,„),&(x,u')

x t—2M' —2m') (x—s)u' x(M+m)

where

j 00

(3112m)

p. ~),'(x,t')
dX (33)

)
'

th same manner, gwe getl in 3I ln eTreating t e oh fourth integra
'

(

(M'+2m)

A„t,t(x, t) 1
dX

X—Q 1i

a ~'(t', s,u)
dt' +—-

2go+2m)

p,.„i,&'(s', x)

t—2&V2—2m')(x —u)t~+ ) (s +x t u
(34)
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with
p„g,'(x, t')

4S
00

a„'(t',s, I)=— . (35)
7t' (~+277') ~ S—Q

The second terms in (32) and (34) should have only a
weak dependence on all three variables since the cuts
are all distant and they will be expressed in a pheno-
menological manner; furthermore they will be assumed
to be absorbed in J;(s,t,u) which contain adjustable
parameters in general.

Thus we obtain an approximate representation for
the invariant amplitudes F,(s,t,g):

A, t '(x, t)
4S—

00

F (ts, t, t)t=P, (s,l,g)+-
(M+m) 2

00

+-
(M+tn)

where

A„ts(x,t) 1 " a (txs, t)t

dx +— dx, (36)

"W. Selove, V. Hagopian, H. Brody, A. Baker, and E.Leboy,
Phys. Rev. Letters 9, 272 (1962); Y. Y. Lee, B. P. Roe, D. Sin-
clair, and J. C. Vander Velde, eÃd. 12, 342 (1964).

"M. Feldman, W. Frati, J. Halpern, A. Kanofsky, M. Nuss-
baum, S. Richert, P. Yamin, A. Choudry, S. Devons, and J. Grun
Haus, Phys. Rev. Letters 14, 869 (1965);W. Selove, V. Hagopian,
J. Alitti, J. P. Baton, and M. Neveu-Rene, Bull. Am. Phys. Soc.
ll, CB7 (1965).Not all the experiments seem unanimous for the
existence of a scalar meson. For example, see W. D. Walker, in
Proceedlrtgs of the Secowd Tops'cal Conferertce ort Resolartt Particles
(Ohio University, Athens, Ohio, 1965) (to be published).

'e L. M. Brown, Phys. Rev. Letters 14, 836 (1965).
"K.Kang, Phys. Rev. 139, B126 (1965).
~ C. Kacser, P. Singer, and T. N. Truong, Phys. Rev. 137,

81605 (1965).

g'(x, s,u) =a,'(x,s,l)+a '(x,s,m) (37)

is a sum of a real polynomial of low degree in s and a
polynomial in I, and A;t'(s, t) is a real polynomial of
low degree in t.

The use of unitarity to calculate A;t'(x, t) and
a'(t, s, tt) in (36) is simple, since they are given by the
imaginary parts of the low partial waves of the reac-
tion in question and the related crossed processes. The
integrals of (36) will get dominant contribution from
the imaginary parts of partial waves in which a reso-
nance is present in the corresponding channel.

In the t channel, the nearest singularity is at k=4m'
as shown in Fig. 3. This two-pion state must occur in
the I=O state, and have even values of the orbital
angular momentum. Thus the s and d waves will be im-

portant in our approximation. A possibility of the I=0
d-wave resonance of two-pion called f' has been con-
6rmed, "and even the I=O s-wave resonance of a two-
pion state has been reported. "Furthermore there seem
to be two possible candidates in this state and the mix-

ing of these two scalar resonant particles has been
argued, "while in some calculations, "and in some semi-
empirical analyses, ' a strong Anal-state interaction is
favorable in the I=0 s-wave state instead of a resonance.

If we do not assume any I=0 two-pion s-wave reso-
nance, then the nearest singularity in t occurs further

FIG. 3. Determination of the lowest"singularity in s and t
of the mes scattering.

away in the last two integrals of (31).The pole coming
from f exchange in l channel locates much f'urther.

Thus effectively the lowest singularity in t will start
further at t= 16m' and in s and u at (M+3trt) for the
last two integrals in (31).The last integral of (36) will

have thus a weak dependence on s, t, and I as the
cuts will effectively be distant. In particular, if only the

p and 8 exchanges are considered in all the channels,
then the third integral in (36) will not appear.

and time-reversal invariance gives

Using (40), (41) and the relation

(41)

one can again reduce the possible nine helicity ampli-
tudes to four independent ones, say, f++, f ~, faI., and

V. PARTIAL-WAVE DECOMPOSITIONS

It is convenient to express the S matrix in terms of
transition amplitudes in states of given quantum num-
bers of the total angular momentum J and parity. We
will treat reactions of xor, employing the formalism
developed by Jacob and Wick."This formalism ha, s an
intrinsic simplicity of expansion in terms of amplitudes
for transitions between states of given helicities.

We de6ne the T matrix by the relation

Ts; (Sg; Bs;)/(——2iky't'—k'") (38)

where k~ and k; refer to the center-of-mass momentum
in the Gnal and initial states of the +co scattering and in
the case of elastic scattering k~=k;=k. The scattering
amplitudes of Jacob and Wick can be expressed for
given helicities X; and X~ of the initial and Gnal co mesons,
as follows:

()t~ I f I y;& l't I»'P —'» P~(2J+1)
&&(Xt I

T I)„&d)„.xi (8)e'&"*—"~le (39)

where dx,.xr~(8) is the reduced rotation matrix and

(XtITsIX;& means (JM;ADITI JM;X;). Without loss
of generality, we shall set the azimuthal angle of the
Anal momentum of au equal to zero. For the helicity
amplitudes, the invariance under space inversion implies
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Pl JM; x&g=&(—)~l JM; x&~. (44)

fpp. Here the helicity of the co meson is labled by +,
and 0.

The parity operation P on the helicity state I JM; X&

produces the eGect

Pl JM; X}=r/( )—sI JM; —lI,&, (43)

where S and g are spin and intrinsic parity of the ~
meson, and the helicity and intrinsic parity of the pion
are omitted in forming the helicity state

I JM; X& of the
m pp system. Explicitly g(—)~ e in the present situation
is (—)~. Now we define eigenstates

I JM; X)+ of parity
such that

where

C~.q ~+(8)=2—'f L2'/' cos(8/2)]~"'+"~~

XL2'/P sin(8/2)]~"' "/'~dy. ), (8)
~( )xg+&na—1I 21/p sin(g/2) ] I

/ a+&/'I

XI 2'/' cos(0/2)]~"' "&~d/, /, (8)) . (51)

We shall use notations TqIq, .~+=~&JM; &/ I Tl JM; 4&~
and fq, &,~+=. &Xr I

f+
I X;&. From (47), one finds

f++ (1+——cos8) 'f++—(1—cosg) 'f +, (52)

f+++= (1+cos8)—'f+++(1—cosg) 'f +, (53)

fo++=2Lsing]
—'fo+, (s4)

This is satis6ed by fpo 2fpo y (ss)

I
JM; x&~——2 '/'(I JM; x&~ I JM; —g&) .

When the parity is conserved, T matrix will have the
nonvanishing elements only between the same parity
states: d(cosg)((2J+1) 'T++' —2 '

(45) while from (50), the partial-wave amplitudes in states
of given parity and total spin are given:

=2 ' d(cos8) LCq,.q~ +(8)(ar I
f+

I
lI.;&

yc, „'-(0)(~rI f'I X'&] (SO)

,&JM; ~, ITI JM; ~,&,
=(4I T'll *&~(—4l T'll *&. (46)

Let us dekne parity-conserving scattering amplitude
by the rule"

&~ lf'll'&
= L2'/' cos(8/2)] ~"'+"&~L2'/' sin(8/2)] ~/' ~/~

X &g I f I
),&~ ( )x '+x

I
21/2 sin(g/2)] fx +xIJ

XL2"' cos(8/2)]-~"' —"&~(—X/
I fl X;&, (47)

where

X„=max(l X;I, I
Xr I ) .

Finally, one can express (47) in terms of parity-
conserving T-matrix elements:

g, If+I~;&=+,(2J+1)
XLe~;,'+(0)+(JM; l r I

T
I JMi l,&~

+e...,,~-(0),(JM;~, ITI JM;~;&,], (4S)

where

e&„.~~~+(0)=2 '(I 2'/o cos(8/2)] ~" '+"I~

XL2'/' sin(8/2)] ~ "~ "&~d/, .)I (8)
&(—)"~+' L2'" sin(8/2)]-~ "+"I~

XL2'/'cos(8/2)] —i"' "&id'. q (8)). (49)

For completeness, we give the partial-wave projections;

~&JM; X, l
T

I JM; X;&~

XL(J+1)Pg y(cosg)+ JPg+/. (Cosg)]f++

+Pq(cosg) f+++), (56)

d(cosg)((2J+1) '

X [(J+1)P~ i(cosg)+ JP +J,( csog)]f~
+P.(-0)f -), (57)

Tp+ +=2 '(2J+1) 'LJ(J+1)]"' d(cosg)

XI P~+i(cosg) —P~ ~(cosg)]fo++W 'M, (58)
1

Top +=2 d(cosg)Pz(cosg)fop+LMW ']' (59)

Here Tp+J+ and Top~+ are modified by the factors M/W
and (M/W)' to remove the kinematical singularities in

fo++ and fpo+ as will be seen later. This will necessarily
modify the partial-wave expansions (48) so that W/M
and (W/M)' should be multiplied to fo++ and fpp,
respectively. W is given by (M'+k')'/' in the center-of-
mass system. The expression for the transition ampli-
tudes in states of given orbital angular momentum I.are
readily obtained by using the relation"

I
JMLS) =P(2L+1)/(2J+1)]'/'

XQg C(LSJ; OX)C(S„S S; XO) I JM; ),&, (60)

where the summation is over the helicity states of
co and S„and 5 are spins of co and pion, respectively.
Here we have explicitly put the helicity of the pion
to zero. We shall denote the transition amplitude
(JMLS

I
T

I
JML'S) by T~(L &-+ L'). Let us first consider

the singlet state L=J. (60) gives

2' Vie follow the de6nition of M. Gell-Mann, M. L.Goldberger,
F. E. Low, E. Marx, and A. Zachsiasen, Phys. Rev. 133, B145
(1964).

T'(J~ J)=T++' T +'—-
~ See the Appendix 8 of Ref. 11.

(61)
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thus from (46)
T'(J~ J)=T++' . (62)

I
JM;) t)„)+=2-r{

I JM;),),)y ~
JM;).~t)

+~JM; —)1 )2)+~JMj ~2 )tl)}. (66b)

The T matrix becomes

p(JM; Xths [ T [ JM; 00)p ——2&(2"'(Xi'As
~

T~
~
00) (67a)

or
T),~Km, oo —2+2 I T),&x&, oo (67b)

where Xy and X2 are the helicities of the two co mesons in
the final state. Again we define the scattering ampli-
tudes by the rule of (47) in which X; and Xy are replaced
by 0 and X~—X2, respectively. The scattering amplitude
in terms of T matrix is then given by

f~,x,; +s(s&,0~)=q'"p "'2 '
g (sing, )

—
~ "&—"z~ P~(21+1)Ld, q

+(—) "' "' de~, ).,'(gz)]Tx, x.;os'+, (68)
where

Txrxs; 00 z2 (pq) +) zxs; 00

Finally we get the partial-wave amplitudes

1

T&,,y, I +=4 'p'I'q '~' d(cosg&)(sing, )~"z "'~

(69)

XLds~, ~,'(0~)+(—) "' "'do~, ~,'(0~)]f~,x,;I". (70)

As for the triplet states, where I.=J~1, we get as
follows:

T~(J 1~—J—1)=(2J+1) '
X{(J/2)Tss'++(J+ 1)T++'+

+L2J(J+1)] I T~"}, (63)

T~(J 1~J—+1)= (2J+1) '$J(J+1)]i"
&& ( 2 'Tss—~++-T++~+

—L»(J+1)]-"'To+'+},

T~(J+1&-+J+1)=(2J+1) '
&&{2

—r(J+1)T z++JT z+

—
t 2J(J+1)]'I'Ts+~+}. (65)

Partial-wave projections in the t channel can also be
carried out by constructing"

~
JM; 00)+——2"'(JM; 00) (66a)

VI. CALCULATION OF THE HELICITY
AMPLITUDES

Before we consider the +co interaction generated by
the exchange of resonant and single-particle intermedi-
ate states in the t and u channel, we shall erst calculate
the helicity amplitudes in terms of the invariant
amplitudes.

The scattering amplitude may be calculated for the
given helicity states of the initial and final co. One can
easily obtain the helicity amplitudes in terms of the
invariant amplitudes from Eq. (19):

F++ 2'(1+cosg) LFt———k'(1—cosg) Fs],
F =2 '(1—cosg)LFt+k'(1+cosg)Fs],

(72)

(73)

Fs+ 2"'M ' singL—W——I~'t+k'(W cosg+I~:)P,,
+2 'k'(W+I';)F4], (74)

Foo ——M 'L'(W' cosg —k')Fi
+sk'Fs+k'(W cosg+E)'Fs

+s'I'k'(W cosg+E)F4], (75)

where k is the barycentric momentum, W= (M'+k')'~',
E=(m'+k')'" s=(W+E)' and Fi, g.——8zrs'"fi, ), .The
parity-conserving amplitudes defined by (52)—(55) are
given by

of the two co mesons. In doing so, one also obtains the
relations between the invariant amplitudes and the
amplitudes for production of two co mesons with helicity
X~ and X2. For example,

f++;os+(f, cosgz) =—(16&&3'I'zrf'i') '

&&p' sin'8,
l Fs+Fs+F4]. (71)

Singularities of the partial-wave amplitudes Tq, y~~+

defined by Eqs. (56)—(59) will occur when the curves
s+zz =2(Ms+m') and szz = (M' —zrz') ' meet singularities
of F;(s,t,zz). Thus a pole in the zz channel at 1=m' will

give a branch cut in the s plane from s= (M' —zzz')'/m'
to s=2(M'+zzz') —m' The normal threshold in s gives
a branch cut s=(M+m)' to s= ~ while the normal
threshold in I giving a branch cut s=(M —zzz)' to
s= —~. The normal threshold in t at (=4m' gives a
branch cut s= —(M' —zzz') to s= —«o and a cut along
the circumference of a circle

~

s
~

=M' —m'. Finally there
will be a pole at s=m' corresponding to a bound state.
However, we can avoid consideration of such cuts on the
complex domains, by evaluating exchange terms directly.

One can relate T)„y, oo
+ to the invariant function Ii,

by calculating (8zrt'") 'F(t, s,u) in the barycentric sys-
tem of the t channel for the corresponding helicity states

Jf+ —— $&p3

F~ +=Fr+k' cosgFs,

(76)

(77)

~ When both helicities ) 1 and X2 equal to zero and
vzrlz( )s&+~&= 1, Eq. (4—5) gives ) J3II; 00)+——2~~s

) JM; 00) and
JM; 00) =0. See footnote g of Ref. 21. As for the «&co state, we

have to use a correctly symmetrized wave function, since m is
treated the same as eo. Starting with an eigenstate of the exchange
operator P», 2 '~'{

~
JM; 4X,)+ ~

JM
& 4X&)), one obtains the

parity eigenstate (66b). Notice that only even values of J are
allowed for the t-channel process.

Fs~+ = —2"'(W/M) $F i+ k'(cosg+ E/W) Fs

+2—1W—lgl/2k2F ] (78)

FI+= 2(W/M) '[(cosg—k'/W') Fi
+W 'k'sFs+W 'k'(W cosg+E)'F,

+k's'I'(W cosg+E)F«]. (79)
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Thus by identifying the invariant functions, one can
readily calculate the parity-conserving amplitudes and
the transition amplitudes for given angular momentum
1. from (62)—(65) of Sec. V.

Before closing this section, let us write down the p
exchange and axial-vector meson exchange (A exchange)
terms in the s and u channels (Fig. 4). The psco and As.ce

vertices shown in Fig. 5 are described in terms of the
effective interactions,

s' 'E= 2 '(s+m —M') ~ pu(k~ +ms)7' s

=E(E—W) —k,s(1+cos8,), (96)

where E= (k,'+m')'~' and W= (k,'+M')O'. Those re-
lations are trivial consequence of the two invariants

2kps(1 —cos8,)=s+u —2(M'+m')
=2k„'(1—cos8„), (97)

2sk '(1+cos8,)= (M' —m')' —us

and
(gp pp)/m p )8a)spv Rasp(op)kv sx(p) g p

g)t)))pm' 8aisp(&) sp(A) ~ (81)

=2uk„'(1+cos8„). (98)

Finally, the exchange of a scalar meson (s exchange)
in the t channel gives

In (81), the d-wave interaction ep(A)k ps„(o))p„ is
neglected. One can easily verify the contributions of the
p and A exchanges in the s channel to the invariant
amplitudes as follows:

The p exchange:

Ft(s)t)u) =sks cos8)yp/(mps —s)$) (82)

Fs(s)t)u) = —(E'—k' cos8)fop/(m '—s)j, (83)

Fs(s, t,u) = —sLy, /(m, '—s)j,
F4(s,t,u) =2Es't'(y /(m '—s)).

The A exchange:

Ft(s)t)u) =r~/(m~ —s),
Fs(s t u)) =)m)t r~/(mp s) )

Fs(s)t)u) =F4(s)t,u) =0.
Also the exchanges in the I channel give:

(84)

(85)

(86)

(87)

(88)

Ft(u, t,s) =yg/(m~' —u),

Fs(u)t)s) =m~ 'yg/(m~' —u),

Fs(u)t)s) =F4(u, t,s) =0.

(93a)

(93b)

(93c)

Here, yp ——(gp „/mp)' and y~ ——(g~ „mg)'.
Indeed, the invariant amplitudes satisfy the crossing

relation (21) of Sec. II, if we notice the following rela-
tions under s+-+I, t~ t:
sk, ' cos8, —& Nk„' cos0„

=k,' sin'8, + (E'+W') k,' cos8,+2k,'EW, (94)

k,' cosg, —E' —+ k„' cosg„—k„'—nz'

=k,s cos8,—E', (95)

The p exchange:

Ft(u)t)s) = (k' sin'8+k'(E'+W') cos8+ 2k'EWj

XC~pl(m '—u)7 (89)

Fs(u, t,s) = ufyp/(—mp' u)), — (9o)

Fs (u, t,s) = —(E'—k' cos8) (yp/(m, '—u)j, (91)

F4(u, t,s) = —2Lk'(1+cos8) —E(E—W)j
XPy p/(m, '—u)j. (92)

The 3 exchange:

Fg(s, t,u) =2X3—'~'7 /(t —m ')

Fs(s)t)u) =Fs(s)t)u) =F4(s)t)u) =0,
(99)

where y, =y, y,„„.Here we have also neglected the
d-wave interaction (et ks) (ss k&). Thus the parity-
conserving amplitudes for given helicity states are
readily obtainable from (76)—(79), and then their
partial-wave projections will immediately follow.

VII. BORÃ TERMS

THE P EXCHANGES THE A EXCHANGES

Fxo. 4. Diagrams representing the exchange of the p and
A (a t+ state of the 8) in the s and u channels.

While we were calculating the helicity amplitudes in
the last section, the method of localizing the poles of the
5 matrix was also mentioned on the basis of the Feyn-
man graphs of perturbation theory. It should be noticed
that in dispersion theory a single-pole term includes all
e8ects from propagator and vertex renormalization and
all kinds of stable particles whether elementary or com-
posite give rise to poles according to the same rules.

In this section, we shall outline a general procedure to
derive the driving forces. The advantage of this general
discussion is that we can obtain the Born terms of
particle exchanges in any spin-parity state. This formal-
ism will become very useful in the ~or scattering when
we want to use the experimental information such as
the exchange of the 8 meson for which we do not know
yet the definite J state. "The 8 meson should be in-
cluded in the discussion of the xco scattering along with
other possible exchanges, particularly when we want
to understand the +co resonance and its spin and parity
state. One should naturally consider all possible assign-
ment of the J" state and observe the characterization
of the driving forces in each of the possible states.

Our procedure will be carried out essentially through
two steps: First we shall make use of a narrow-width
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(&u), k

p, E&(p), q, i

FIG. 5. The vertex graphs for the
7t-cop and 77.cod vertices.

, a, p

„(~),k
e„(A), i, q

resonance approximation in particular transition ampli-
tudes, and secondly, from them we shall calculate the
contribution of the crossed ~co cut by using crossing
symmetry The procedure will be justiied by reproduc-
ing the p and A exchanges (82)—(88) of Sec. VI.

Let us erst invert the relations (76)—(79) of the last
section and get

Fy($)t,u) =P+y +cosg Py+ (100)

Fs(s, t,u) = (sk')-'
&& P2 'M'Ppp+y2'"M(W cosg+ E)Fp++

+ (W' cosg+ 2WE+k')F+++
+ (k' cosg E')F++ ), —(101)

Pp(s, t,u) = k'F++—
F4(s,t,u) = (s'"k') '

X( 2'"MFp++—2WF+~++—2EF++ j, —

where

(102)

(103)

F/ ++=P $(2 J+ 1) LJ( J+1) j 'LP '(cos8) T
+Ps"(cosg) (cosgT+~$+ T+~$+)g, (104—)

Po++= —(W/M)Z$(2J+1)
X(J(J+1)i—'~'Ps'(cosg) Tp+ +, (105)

From the relations (62)—(65) of Sec. V, (107) becomes

T~~' =Dp, T++'+= Tp+'+= Tpp'+=0 (108)

and we get from (104)—(106) that

F++ = (3/2)Dp, Fp++=Fp++=Fpp+=0. (109)

By substituting (109) from Kqs. (100)-(103), the con-
tribution to the invariant amplitudes becomes

Fg(s, t,u) = s cosg Dp )

Ps(s, t)u) = s (sk ) (k cos8—E )Dp )

Fp(s, t,u) = —ssk 'D„
F4(s,t,u) =3 (s'"k')-'ED, .

Thus if we take

Dp = -ssk'Py p/(esp' —s)], (111)

then (110) becomes the p-exchange terms (82)—(85) of
Sec. VI and the form of (111) has not only a correct
threshold behavior but also makes the invariant ampli-
tudes F; free from kinematical singularities. It should be
noticed that our procedure necessitates in a natural
way the use of the sk' in order to impose the threshold
condition on the partial-wave amplitude Ts='(1~ 1)
which has no kinematical singularities. '4 Using the rela-
tions (94)—(96) under s &-+ u crossing, (110) with (111)
gives the contributions due to the p exchange in the I
channel, which are (89)—(92) of Sec. VI. Thus the Born
term or the driving force due to the p exchange is ob-
tained. For completeness, we give the contributions of
the p-exchange pole in the I channel to the parity-
conserving amplitudes from the relations (76)—(79) of
the last section.

F~~—=k'(E' —ks cosg))y, /(m, '—u)$, (112a)

F+++=k'(k'+2WE+W' cosg)(y, /(m, ' u)g, (1—12b)

PPP+= (W/M) P (2$J+1)Pz( gc)oTsPP +. (106) Fp++= —2&I~Mks(E+W cosg)t y /(yg &—u)j (112C)

Ts-'(1+-+ 1)=D
Ts='(0 ~ 0)= T$='(0 ~ 2) = Ts='(2 ~ 2) =0,

(107)

where D, is essentially a pole term with correct thresh-
old factor and a kinematical factor which will remove
kinematical singularities in the invariant amplitudes.

Here P$'(cosg) means dP $( cos 8) /d(c os 8) and again we
mention that P) ~gP = 8vrs'~' f)~)„.+.

By substituting now a narrow-width approximation
for the transition amplitude of given J and L state, we
can evaluate contributions to the partial-wave ampli-
tudes with given helicity from (62)—(65) of Sec. V. One
then obtains the parity-conserving amplitudes from
(104)—(106) which in turn are used to calculate con-
tributions to the invariant amplitudes by the relations
(100)—(103). Finally from crossing symmetry, we get
the Born terms.

%e shall now verify our procedure by reproducing the
p-exchange terms. The p meson comes into the m-co scat-
tering as its bound state. It has J=L=1.Thus we put

Fpp+ =—2M'k' sin'gfy, /(m '—u)$. (112d)

From (112) and the relations (56)-(59) of Sec. V, the
partial-wave projections and thus the transition ampli-
tudes are readily available.

Let us next look at the exchange of the 8 meson. In
Sec. VI, we discussed the contributions to the invariant
amplitudes due to an axial vector exchange assuming
only s-wave interactions. We shall first reproduce
them from the procedure developed in this section and
then derive the Born terms due to the particle exchange
with J~= 2 assuming p-wave interactions. Ifwe assume
that the 8 mesoe has J~= 1+, then the interaction can be
either s or d wave. Neglecting d-wave interactions, we
then put

Ts '(0&-+0)=—D~,
T$-'(1 ~ 1)=Ts='(0+-& 2)=T$-'(2 ~ 2) =0. (113)

~ This statement supports the choice of the phase-space factor
for the 1 amplitude of the ~co channel made by J.Fulco, Q. Shaw,
and D. Wong, Phys. Rev. 137, 31242 (1965}.
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ImF I(s,t,u) =ImD~,

ImFp(s, t,u) = Im(D~/s),

ImFp(s, t,s) =ImF4(s, t,u) =0.
Here we take

Dg =m~
—'$(yg/(mg' —s))

(116)

(117)

and make an approximation

ImD~ ——7rygm~ '$8(s—m~') . (118)

Again we mention that the amplitude Ts I(0~0)/s
will have no kinematical singularities. It is easy to
observe that (86)—(88) of VI is reproduced when (116)
with (118) is used to evaluate the first integrals in Eq.
(36) of Sec. VI;

OQ

P '($|t)u) =-
(M+m) 2

A, lt(X, t)
d~ (q=1, 2, 3, 4), (119)

where A, I&(x,t)~ImF;(x, t,u). From crossing symmetry,
it follows that

ImFI(u, t,s) =Ã'r~m~ S8(u—mg ),
ImF4(u, t,s) =7ry~m~ '8(u mg')—, —
ImF p(u, t,s) = ImF4(u, t,s) =0.

(120)

These absorptive functions give the Born terms by
evaluating the second integrals in Eq. (36) of Sec. IV;

1
F,(u, t,s) =-

(m+m) '

where

A„I (X,t)
(j=1,2, 3 4), (121)

.4.It(x, t) ImP;(x, t,s),
which have a cut along the crossed neo cut and are
analytic everywhere else in the s plane. Equations (120)
and (121) give the contribution from the crossed
channel to the invariant amplitudes, thus reproducing
(93) of Sec. VI. Again, we give the contribution of the
axial vector exchange in the I channel to the parity

Equation (113) gives

T++I+= To+I+= Tool+= (2/3)DA & T+4.1 =0 (114)

which results in

Fp++= Dg, Fp++= —2"'(W/M)Dg,
Ppp+=2 cos8(W/M)'Dz, P++ =0. —(115)

Therefore we obtain

We obt, ain

~++ =—-'D~

Ii+++=3 cosOD~,
Fp++= —3&2(W/M) cos8Dz,
Fop+= 2(W/M)'(3 cos'8 —1)Dr.

(125)

ImPI(s, t~u) =
o cos8 ImDz,

ImF, (s, t,u) = —,'(sk') —'

)& (k' cos8+8' —2W'/3) ImDr, (126)
ImF4(s, t,u) =-,'k ' ImDr,
ImF4(s, t,u) = —3(s't'k') IE ImDr.

Notice that (126) is very similar to those of the p
exchanges (110) but ImFp(s, t,u) which behaves like
s 'k ' Ima~. Taking a narrow-width-resonance approxi-
mation with an appropriate kinematic factor for Imaz
in the form of

ImDr =-'p~yz S'k'8($ —mI'),
we obtain the absorptive amplitudes

(127)

conserving amplitudes:

F4.+ = ——m& 'k'Lyg/(m~' —u)),
F+++= (1+m~ 'k' cos8)Ly~/(m~' —u)),
Fp++= —2ltPM ILw+m~ 'k'(w cos8+P)5

(122)
&&Le /( '—)),

Fop+=2M 'PW' cos8 k'—+mQ k (W cos8+E) 5
X Ly~/(mg' —u) 5

From (122), the partial-wave amplitudes and the transi-
tion amplitudes are easily obtainable.

So far we have considered a possible assignment of
J = 1+ for the 8-meson exchanges. There is still another
possible J~ state which has not yet been excluded from
the experimental information, that is, J~=2 . We
have noticed that this J~ state can give rise to three
transitions. However, we shall assume again the lowest
partial-wave interactions only in calculating the Born
terms If th. e 8 meso44 has J~=2, then neglecting f-wave
interactions we put

T~='(1+-+ 1)=Dr, —
T ='(2+-+ 2) = T ='(1+-+ 3)= T ='(3 ~ 3)=0 (123)

where D~ is a propagator with correct threshold and
kinematical factor to make the invariant amplitudes
free from kinematical singularities. Equation (123)
gives

&++' =o
(5/3) T+ '+= (5/2V3) TlH. '+= (5/4) Tpop+= Dr (124)

and therefore

ImFI(s, t u) =Iryz s{4 ILs—(M—m)')Ls —(M+m) )+st +m —2 '(s+u))) 8(s—mz 4)

ImFp(s, t,u)=myr{3 Ils—(M m)')I s —(M+ )'—5m+ )M$'/3+2 m2'(s+u)5)8(s mr' )—
ImF4($)t~u) =3prs 8($—mz ) ~

ImF4(s, t,u) =—s yrs(s+m' —M') 8(s—mr') .

(128)



THEORY OF LOW-EN Ea. GV SCAVrExlN 6

From crossing symmetry, ImF, (u, t,s) is readily available and thus we get the Born terms from (121):

F&(u, t,s) =m&'{4 '[m&' —(M —m)'7[m&' —(M+m)'7+m&'[M'+m' —2 '(s+m~')5}[yr/(mr' —u)5

F,(u, t,s) =mr4[yp/(mr' —u)5,
F3(u, t,s) = {3 [mr' —(M m—)'7[mr' (—M+m) 7+mr [M /3+2m 2—'(s+mr )5}[yr/(mr' —u)7,

F4(u, t,s) = m—z '(mr'+ m' M—')[yr/(mr ' u—)7 .

The parity-conserving amplitudes are then given by

(129)

(130a)

from which one can have partial-wave projections.

F++ = k—'{3 '[mz ' (M— m—)'7 [mz ' (—M+m)'5+mr'[M'/3+2m' 2—'(s+mr') 5}[yr/(mr' u—)5

F+++= {4 'mr'[mr' (M —m)'7—[mr' (M+—m)'5
+mz4[M2+m' —2 '(s+mz')7+k' cos8[3 '[mr' —(M—m)'7[mr' —(M+m)'7

+my'[3 'M2+2mm 2—'(s+mr2)5]}[yz/(mz 2 u)—5, (130b)

FQ++= —2'"( W/M) {4 'mr'[mz' —(M—m)'7[mr' —(M +m)' 5+mr'[ M'+m' —2 '(s+mr')7
+k'(cos8+E/W) [3 '[mz '—(M m) '7[—mr' (M+—m) '7+mr'[3 'M'+2m' 2'(s—+mr ')7]

—2 1~1/2k2m~2W —1(m 2+m2 M2) }[~~/(m~2 u)7 (130c)

Foo+= 2(W/M)2{ (cos8—k'W ') [4 'mr'[mr' (M—m)'—5[mr' (M—+'m)'5+mr'[M'+m' 2'—(s+m )r5]

+sk'mz'W '+k'(cos8+EW ')'[3 '[mr' —(M m)—'5[mr' (M—+m)'5
+mr'[3 'M'+2m' —2 '(s+mz')7] —s'I'k'(W cso8+E)mz'( mz'+m' M')—}[yz/(mz' u)7—, (130d)

Partial-wave projections to the states of J~=1+, 2-
from these exchange forces are explicitly given in the
Appendix.

VIII. PARTIAL-WAVE DISPERSION
RELATIONS

Having the Born terms of the transition amplitudes
determined, we come now to the method of solution of
the partial-wave dispersion relations. Dispersion rela-
tions are often used as a tool to impose the unitarity
condition on the partial-wave amplitudes in the physical
region when the driving forces are known. In the xm

scattering, one can assume that the driving forces are
given by the Born terms due to the p and 8 ex-
changes. The elastic unitarity condition on the partial-
wave amplitudes in this problem might be permitted
up to a considerably high energy because of the em-
pirical absence of signi6cant connection to the my chan-
nels. Once the Born terms are given, one can solve the
partial-wave dispersion relations by various methods.

The well-known E/D method" has been applied to
many calculations with various approximations. In some
cases, the integral equations have been reduced to
computationally simple forms. Also a cuto8 parameter
has often been introduced for all dispersion integrals
to avoid the difhculty of the well-known divergent be-
havior associated with forces arising from the exchange
of spin-one or higher spin particles. Indeed the Born
terms evaluated from the p and 8 exchanges (for both
possible J~ states of 8) of the last section behave like

~~ See the first reference of the footnote 4; additional references
on the X/D method can be found in G. Shaw, Phys. Rev. Letters
12, 345 (1964).

s lns for large s. Terminating the dispersion integrals at
a finite energy will yield a one-parameter solution for
all partial-wave amplitudes, provided unsubtraction
relations are used for both Ã and D equations.

In a recent paper" we have discussed another method
of solution (which we will call the L/F method) of the
partial-wave dispersion relations. The L/F method
gives a solution of the partial-wave amplitude A as

A '(s)=[LF '5-'

=L-'(s) —L—(s)— ,L(~')p(~')L(~')
dS

S —S

R(s) = ReA (s)—ReL(s) (133)

ImA —'(s) = —[R(s)+L*(s)7—'
X(ImL(s))[R(s)+L(s)7 '. (134)

The kinematic factor p(s) is given by the unitarity
condition

ImA —'(s) =—p(s), for s on Cg, (135)

Re[L(s') —A (s')7 ImF(s')
ds'— L-'(),

(131)

where L(s) is the left hand-cut contribution, and Cg
and CL denote the right- and left-hand cut, respectively.
This solution is free from any subtraction parameter and
is manifestly symmetric if one notices

Re[L(s)—A(s)7 ImF(s) =R(s) Im(A '(s))R(s), (132)

where for s on Ci,
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Li(~)=— ImLg(s')
Gs'

s —sI
(138)

and interchanging the order of integration in correct
manner, one gets the solution

-L.()-L ( )
A-'(s) =Lg-'(s)

$—Sy

1 L (s')p(s')L (s')
ds

X gg $ —s

1 E(s')(ImA '(s'))R(s')
+— ds' Lg '(s) (139)

$ —Sy $ —$

which is again symmetric and does not force A(s) to

"This approximation is suggested by J. Franklin, Phys. Rev.
139, 8912 (1963).

which has one element for transitions in states with
J=L, while it is a 2&(2 diagonal matrix, for the scat-
tering amplitudes in the triplet states with J/L One
can think of various approximations as was discussed
in Ref. 13.

Still another possible approximation" is to use a
zero-width form consistently to evaluate the second in-
tegrals of (131), that is, to approximate R(s) of (133)
by the same pole term as that used to obtain the Born
terms L(s); namely E~='(1+-+ 1)=D,(s) as defined by
(111)of Sec. VII, and

(D~(s) 0) (Dr(s) 0)
g 7=1,P=-I I—(-

!or

R~=' ~=—'=
(Eo 0) o 0)'

depending on the assumed quantum numbers of the B
meson. Again D~(s) and Dr(s) are defined in the last
section. In the sense of an effective-range calculation,
however, we may neglect the integral over Cz, in (131)
and try to obtain a one-parameter solution depending on
a cutoff introduced for the dispersion integral over C~
in (131).The solution given by (131) forces the partial-
wave amplitude A(s) to have zeros at the same position
where L(s) vanishes. There is likely to be zeros for L(s)
which is obtained by the exchange of spin-nonzero par-
ticles. In such cases, we propose to use instead a new

L(s) which is divided out by its zeros and evaluate a
new F(s) by a similar procedure as that of Ref. 13.
In particular, if L(s) has a zero on real axis of s at
s= s~, then we use Lq(s) = (s—sq) 'L(s) and write
A(s) =L~(s)F(s) ', where

1 p(s') Lg(s') 1 ImF(s')
F(s)= —— ds' +— ds' . (136)

x' t.& s —s x g& s —s

Here a zero of L(s) means a zero of detL(s) in general.
After putting the identity relation

ImLq(s) =LImA(s))LReF(s)g
+PReA (s))LImF(s) j (137)

into the definition

have the same zeros as those of L(s).It should be stressed
that in arriving at the solution (139) it is necessarily
assumed that A(s) is to be nonsingular. We would also
like to remark that one would get still the solution (139)
even if a once-subtraction dispersion relation was
assumed for F(s) instead of (136).This is not surprising
since the solution should not depend on the subtraction
parameter as we have discussed in Ref. 13.This method
can be easily generalized for the case of finitely many
zeros of L(s).

We feel that we have thus far prepared to understand
the m.or resonances which lie in the elastic region of the
en' scattering, and the procedure we have developed will
shed light in extending our discussion to the other
pseudoscalar-vector systems. In the next section, we
will outline the programs concerning the application of
our theory, and present the results of a model calculation
of the zm resonance.

IX. DISCUSSION

We have discussed the construction of the invariant
amplitudes in the case of the vcr scattering which is
the simplest example of the pseudoscalar meson and
vector meson scattering problem. These invariant ampli-
tudes are expressed by an approximate one-dimensional
representation. By the use of the Jacob-Wick helicity
amplitudes, the partial-wave expansions as well as the
partial-wave projections of the scattering amplitudes in
a de6nite parity state are obtained. A prescription for
obtaining the driving forces is discussed. The procedure
is checked to reproduce the same vector and axial-
vector exchange terms as those of the Feynman dia-
grams and is further applied to calcu1ate the 2 ex-
change terms of the B meson. Also we have discussed
the method of solution of the partial-wave dispersion
relations. Although we have considered mainly ~co

scattering, the theory can be extended to the other
pseudoscalar and vector system where more than one
isotopic-spin state is present.

To this end, we want to make some remarks about
the m.or resonance. Since the discovery of the Bparticle, ~

several authors'~ "have discussed its possible quantum
numbers, using a dynamical scheme in analogy with
the pion-nucleon scattering. A static-model calculation'8
for the 8 meson in the mm elastic scattering as well as a
relativistic calculation" suggested a 2 state, while
another relativistic calculation" favored a 1+ resonance.
Recently the existence" of a reciprocal bootstrap mecha-
nism" between the p and a 2—state of the B meson has
been discussed in a static-model calculation, in analogy
with the reciprocal bootstrap between E and E*

27 W. Frazer, S. Patil, and L. Watson, Phys. Rev. Letters 11,
231 (1963).

~ R. F. Peierls, Phys. Rev. Letters 12, 50 and 119 (E) (1964)."E. Abers, Phys. Rev. Letters 12, 55 (1964).
'o T. K. Kuo, Phys. Rev. Letters 12, 465 (1964).
~1 J. Franklin, Phys. Rev. 137, 3994 (1965).
32 G. F. Chew, Phys. Rev. Letters 9, 233 (1962).
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in the xÃ scattering. " It should be noticed that the
relativistic calculations" 0 assumed the dominant force
from the p exchange only and the force due to the ex-
change of the 8 meson itself was absent. We feel that
the 8-meson exchange is very important even in a quali-
tative discussion of the nor scattering. Furthermore, if
one wants to accept the analogy with pion-nucleon
scattering, the 8 exchange must be brought into the
calculation; namely, the exchange of the 8 meson in the
wee scattering may give rise to a su%ciently strong
attractive force to produce the p meson as a mes bound
state. The static-model calculation, on the other hand, is
limited to providing relations between the pm-co coupling
constant and the width of the 8 resonance, as the cal-
culation of Ref. 31 indicates. This is due to the fact that
in the static theory, the masses of the p meson and
the 8 meson are each separately controlled by a cuto6
parameter. Thus a fully relativistic calculation including
the 8-meson exchange itself will be necessary to discuss
the quantum numbers of the 8 meson. In order to
treat the p-meson pole and the 8 resonance on an equal
footing in the calculation of xm scattering amplitudes,
the t-channel contribution may need to be considered,
recalling our experience with the p exchange in t channel
of xE scattering. We have also sketched the possibility
of taking into account the exchange of a two-pion reso-
nance in the s-wave state of the t channel. However, the
experimental information on the existence of a scalar
resonance of the two-pion state is not yet very con-
clusive. "If this is a nonresonant state, then one can
expect the e8ect to be absorbed in the other parameter,
such as the cutoff, of the scattering amplitude, in the
sense of the Cini-Fubini approximation.

As a preliminary step to understanding the quan-
tum numbers of the 8 meson, we have made a simple-
minded low-energy approximation to the driving forces
and solved an approximate relation for the partial-wave
amplitude in the Appendix. The scattering amplitudes
in the states of 1+ and 2 are electively represented
by the transition amplitudes in the s and p states,
respectively, so that we may have to solve a one-
channel relation only. Furthermore, the driving forces
are used by the threshold approximation, and the con-
tributions from the two-pion states of the t channel are
neglected in this estimation.

An axial vector exchange of the 8 meson gives a
very weak repulsion to the J~=1- state, while a 2
exchange of the 8 meson shows an attractive force to
the 1 state. The p exchange gives an attraction to the
1+ state but much smaller than a 1+ exchange of the 8
meson. The 2—state gets the most attractive force from
the p exchange. Thus the existence of the reciprocal
bootstrap mechanism between the p meson and a 1+

» A relativistic calculation on the reciprocal bootstrap between
N and N* has been carried out by J. S. Ball and D. Y. Wong,
Phys. Rev. 133, 8179 (1964).

'4 See Ref. j.7.

state of the 8 meson is very unlikely, and 2 appear to
be favorable quantum numbers for the 8 meson.

From the approximate solution of the function
(ssi'k'/87r) cot8' obtained in the Appendix, we have
set the phase shift to be zero at the experimentally
observed energy of the 8 resonance. Then by varying

(y,/4s. ) between the values 0.35 and 0.50, corresponding
to the observed width of the eu meson, ""we have tried
to compute the width of the 8 meson. It was seen that
for (y,/4s. )=0.4869 0.4970, the quantity yz turned
out to be in reasonable agreement with experiments
(=122 MeV). In particular, for (y,/4s) =0.49692,
we have Vr =3.0789&(10 which gives the width
of the 8-resonance I'=128 MeV from the relation
I'= (yr/12'-)s~k~'. We have also noticed that (y,/4s. )
&0.52 in order to have a positive yp.

Although a numerical result of solving the matrix
equations for the amplitudes in the state of 2 with a
correct form of the driving forces may be taken more
seriously, it is nevertheless of some interest to perform
a qualitative computation such as the one in the
Appendix that can be solved algebraically. It should be
noticed that we have no arbitrary parameters in
the calculation and that we have ended up with a
resonance whose width is in good agreement with
experiments.
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APPE5DIX

I. Partial-Wave Projections of the Exchange Forces

In Sec. VII, we developed a prescription to obtain the
Born terms from the one-dimensional representation of
the invariant amplitudes. This procedure was applied
to the p and 8 exchanges. In this Appendix, we will

just state the partial-wave projections of those ex-
change forces to the partial-wave states of J~=1+
and2 .

A. 1 State

The p exchange in the I channel yields

T,~-'(1~ 1)=y, (4sk') —'{
C

Es—(4EW+ks) d,
+(E'+2W') d '+k'd ')Qe(d, )+(4EW+k')

—(E'+2W')d —ksd '—ks/3}, (A1)

'5 The authors of Refs. 24 and 29 used the value 0.35 in the units
of A=c=ns=1, while the authors of Refs. 28 and 30 used 0.45
after the analysis of Refs. 36 and 27.

36M. Gell-Mann, D. Sharp, and %'. D. Wagner, Phys. Rev.
Letters 8, 261 (1962l.
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Q„(x)=2 ' ln[(x+1)/(x —1)), (A3)

and

T;s='(1+-+1)=Ts='(14—) 1)/(sk') (i=p) A) T). (A4)

Ke have mentioned in the text the removal of the
kinematic factor sk' from this transition amplitude.

An axial vector exchange of the 8 meson in the u
channel gives

T s=z(1+-+ 1)
A(2qk2)

—1([(2mA2)—1(dA2 1) k—
2dA]Q (d )

+k-' —(2mA')
—'dA}, (A5)

while a 2 exchange of the 8 meson contributes

Tr ='(1+-+ 1)
=yr(4sk4) '([k'31(dr' —1)—232dt)Qp(dr)

+2A 2 k'I4, dr }, —(A6)

where

d;=(4k ) [s—2(M +m2 —m )—{M tn'—) /s]
(i=p, A, T), (A2)

B. 1+ State

The transition amplitude in the 1+ state can be
written as

where

t T11
T ./=1

&T12* T22 )
(z=p ~) (A9)

T11'——T;s='(0 4-) 0),
i T.s-l(0 ~ 2)

4 —T.s=l(2 +-+ 2)

The p exchange gives

(A10)

(A11)

(A12)

+1—3 1[—mr {M tn) )[mr (M+m) ]
+mr2[M'/3+2m' —2 1(s+mr )) (A7)

A2 ——4 'mt'[mr' —(M—m) )[mr' —(M+m)2)
+m, 4[M2+m2 —2-'(s+m, ')). (A&)

T»'=3 'y ( [2 '(k'+2W—I':)+M'EW ']Ip(d )+[2 'W 'M4 M' 2'(W—'+2E)—'))I1(d )
+.[M2E)W—1 2—1(2WE k2))I2(dt)+[M2 2M4W-2 2—1W2)I2(dt)} ) (A13)

T„=(2 /3)yp([ —4—'(k2+2E)W)+4 —1M2EW—1)Ip(d ) [4—1k2+2—1E'+2—13II4W—)I1(d,)
—[4 '(2WE —k')+4 'M'EW —')I (d )+[2 'M'W ' O'W' O—'M')Iz(—d )}, (A14)

T22&=3 'y ([—4 '(k'+2WE)+M'EW ')Ip(d )+[M'W '—4 '(W'+2E')+M')I1(d )
[4 '(2EW —k')+M'EW—']I2{d ) [M'W '+4 'W—'+M']Ip(d )} (A15)

while a 1+ exchange of the 8 meson gives

T11A =3 VA( [3(2k ) +E(WtnA ) ]Ip(dA)+2 1[W mA E (WmA) )I1(dA) } (A16)

T12"=(2"'/3)y A( E(4WmA') 'Ip(dA)+[2 'mA ' 2'W '+E—"(2W'mA') ')I1(dA)+3E(4WmA') 'I2(dA)}, (A17)

T22 =3 YA([3(4'k ) +E(WmA ) ]I (dA)+ [5(4mA ) +W E2(WtnA) )Iz(dA)
—[9(4k') '+3E(WmA') ')I2(dA) —9(4mA') 'Ip(dA)}, (A18)

where we have defined
I ~n

I.(x)= —— ds
2 1 x+s

so that one obtains in terms of the I.egendre function of the second kind Q1(x)

(A19)

The coefficients a& are given by

I-( )=Z(-)' ' Q(*)
l-o

(A20)

a„=2"(n ~)2/(2n)!,

4z = [(2m+1)2 n!(n/2+m/2)!]/[(n/2 —m/2)!(n+m+1)!],
(A21)

when n —m, is even and positive, 42 =0, when n m is odd—or negative. In writing down (A20), we have used the
relation

(A22)

As it was pointed out in Sec. VII, T;s '(0~0)/s is a kinematic singularity-free amplitude. However, T;s '/s
does not make (A9) completely free from the kinematic singularities. One can easily verify that in our definition
T-s='(0 ~ 2)/s'k' is free from kinematic singularities.
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C. Z State

As in the case of the 1+ amplitude, we can write the scattering amplitude in this state as

Tu')
(z=n, T)

Tpp')
where

T ~= T ~=P(1+-+ 1)

Tgp' ——Tpg' ——T ~='(1 ~ 3)

T '=T ~='(3&~3)

(A23)

(A24)

(A25)

(A26)
The p-exchange contributions are

Tn'=5 'y ([—M'(2W') '+4 '(3E'))Ip(d, ,)—[4 '(3k')+3M'Ew ']Ig(d, )+[2M'W '—4 '(9E')—3M )Ip(dp)
+[3M'EW '+4 '(3k') —3WE)Ip(d )+[3M'—2 '(3W') —3M'(2W') ')I4(d )) (A27)

T~,&=(6'"/20)yp(/E~'+M4W ')Ip(dp)+[M'Ew ' k']Ij(dp)—
+[M' 3E' 4M—'W —']I (d,)+[k' 4WE —M'EW —')I (d,)+[3M'W ' 2W' —M')I (—d,)}, (A2S)

T &=5 'y (4 [2E'—3M'W']Ip(d )+[3M'J~W '—2 'k']Ig(d )+[3M'—2 '(3E') —3M'W ']I (d )
+[2 'k' —2WE —3M'EW ')Ip(dp)+[3M +W'+9M'(4W ) ']I4(dp)) . (A29)

A 2 exchange of the 8 meson gives, on the other hand,

Tn ———10 'yr{[W 'A p smz'W ' 5'—'l4' 'Ag+s'—"I'W 'A +2 '(3Az))Ip(dr)+[5k 'Ap+4EW 'Az
—2s'z'W 'Ap]I&(dr)+[ —3W 'A +3smr W '+3E'W ~Aq 3s'z'Ew A—p+2 'Aq)Iq(d )r}, (A30)

u = (6' '/1 )0y —(r2'[Ag W-"Ap+sm—z W '+F'W 'A s'"I W A )I—(dr)
+4 '[2EW 'A g

—s' 'W 'Ap]Ig(dz) —(3/2)[—W 'A, +gW 'mr'+E'W 'A j
——g'I'EW 'A +Ag]I, (dr)

+[5(4W) 's"'A —5(2W) 'EAi)Ip(dr)), (A31)

Tpp = —10 'yr([ —(3/2)( —W 'Aq+smr'W '+E'W 'Aq s'~'Ew 'A )+A—q]Ip(dr)
+[9s'I'(2W) 'Aq —9EW 'Aq —12(2k') 'Ap)I, (dr)
+[(9/2)(—W 'A +smr'W '+E'W 'A~ s'z'Fw 'A )——(21/2)Aq)Ip(dr)

+[25(2k') 'Ap+15EW 'A~ 15s'"E(2W) 'Ap—)Ip(d~)+2 '(25Aq)I4(dr)). (A32)

Here, A& and Ap are given by (A7) and (AS) and

A z
——mr'(mr'+m' —M') (A33)

Again we ment:ion that although T,~='(1 ~ 1)/s'k' is free from kinematic singularities, the same factor does not
eliminate all the kinematical singularities in (A23). One can see that all of these partial-wave projections have the
correct threshold behavior.

II. A Model for the mu Resonance

By making the threshold approximation of the driving forces given above, we get

T, ' (1+-+ 1)~(y /3)(2m'+M')[m '—(M—m)')k'

T~' (1~ 1)~—(y~/3)(m~ '+2[m~' —(M—m)'] ') [m~' —(M—m)') 'k'

Tz' (1~1)~—(y&/3){A&(k'=0)+2A (k'=0)[mr' —(M—m)') ')[mr' —(M—m)') 'k'

4 2'~'
~Tp~='~(y /3)Mm[m '—(M—m)') 'k' i=o(kz)

2~~P O(kz))

(A35)

(A36)

(A37)

I
T~z=l~yA[mA2 (M m)2]—I

—0(k')

—O(kp)

O(k')
(A3S)

3-~Mzk2 O(k4)
p, [mp' (M—m)'] '—

0(k4) O(k')
(A39)
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and

~[Aq(k'=0) —2[mal' —(M—m)']-'A2(k2 ——0)]k' O(k')~
Tr~-'~(yp/3)[mr' (—M m—)'] '!

o(k4) o(k4))
(A40)

One observes that an axial vector exchange of the 8-meson gives a repulsive force to the 1 state and a 2 ex-
change of the 8 gives an attraction to the 1 state, i.e., T~' (1~1)(0while Tp' (1~1))0.The p exchange
gives T,~=' O(k') compared to T~~='. The 2 state gets attractive forces from both the p exchange and the 2
exchange of the 8 meson. Thus we may conclude that the 2 state is more favorable quantum number for the 8
meson.

Since the p-wave driving forces in (A39) and (A40) are dominant to the other f-wave mixing, we shall represent
T4~='(i=p, T) by their p-wave interactions and solve effectively a one-channel problem. We shall ignore the
t-channel contribution. We solve for A~='(s)/s'k' by employing an approximate form of (131), i.e., one in which
we neglect the second integral that is over Cr, . The function I.(s) and p(s) are given by

where
L(s)=(sk) '(T, -'+Tp =')=nyps —', (A41)

3—1M2[yg 2 (M ~)2] I+(rT/y ) [ypzT2 (M ~)2] 1

&& {3 'A ~(k'=0) —(2/3)A (k'= 0)[mr' —(M—m)'] —'} (A42)
and

Thus we obtain

where

p(s) = (s'I'k'/8m) . (A43)

ds'k'(s')s' 'I'(s' —s)
—'. (A45)

In order to evaluate the integral I(s) algebraically, we approximate k'(s') by

k'(s')~8 's~ '14(s' —M2)2[1—3m'(s'+M )(s~—M') '] (A46)

which is suKciently well enough for our purpose. [At s =m~', k' = 14.626m'I' while (A46) gives 14.545 m'~'. ] From
(A46), the integral (A45) becomes

I(s)=8 &s ~(s—M2)4[1—3'&(s+M&)(s—M2)2]II(s)+8 &s (M+nz)
&&{3(M'+m') 3s 'm'—M' m'M'—(M-+m) ' (3m'M—' M')[s—'+2 's '(M+nz) '+3 '(M+m) ']} (A47)

where

and therefore
H(s) =s—'{in[(M+nz)'/(s —(M+m)')]+in. } for s) (M+m)'

(s'"k'/8n. ) cot5' (s)= (s'/Oy, )[1 (ay, /87—r')s' ReI(s)] .

(A48)

(A49)

By adjusting (A49) to give a resonance at s=4I&', one obtains

n(y, /4m) = 2~ms 4[ReI(ms')]-' (A50)

From (A42) and (A50), we obtain a relation between y, and yz when the experimental masses of the p, 40, m, and 8
mesons are used for nz„M, m, and mz= mz, respectively. The relation (A50) gives yz in reasonable agreement with
the experimental width of the I3 meson for (y,/4m) =0.49692. Moreover we see that

in order to have a positive y~.

(y /4~) (7~[m ' (M m)'][M—'ms4 R—eI(mg')]-' (A51)


