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By making a pole approximation to the spectral integral over the kinematical factor p&(s) it is shown that
the partial-wave matrix 1VD integral equations are reduced to algebra. The approximation depends only
on the particular partial wave and not the dynamics of the reaction, and it admits of systematic improve-
ment. The resulting scattering amplitude 7'&(s) is symmetric, is independent of the subtraction point for
the D function, has the correct discontinuities on the right- and left-hand cuts, and can moreover be ex-

plicitly expressed as an algebraic function of the driving term B~(s). This last feature enables us to directly

inspect the relation between the driving force and the scattering amplitude, and establishes the general use-

fulness of the method. We find, for example, that the solution imposes general conditions on Bt(s) for the
existence of bound states, resonances, or possible ghosts. The self-consistency property of bootstrap cal-
culations imposes additional explicit restrictions on acceptable Bt (s) for the existence of the bootstrap.

Baker" and including the methods of Shaw ' Fulton"
and Martin" have been proposed each of which enjoys
undesirable features. It is known that the exact solu-
tion Tt(s) is independent of the subtraction point for
the D function" and is syxnmetric, ""a reQection of
time-reversal invariance, for a symmetric driving term
Bt (s). The determinantal method yields solutions which
have neither of these features. The other approxi-
mation methods while they have the property of
independence of the subtraction point and symmetry
of Tt(z) proceed by approximating and modifying the
driving term Bt(s). This last feature implies that a
different approximation must be found for each scat-
tering problem with a different Bt(s) and no general
insight as to the relation between Tt(s), the scattering
amplitude, and the driving term, representing the
forces, is obtained. Hence much of the physics can
remain obscure,

In this paper we present another approximation
scheme which admits of systematic improvement. It
has the desired features of providing a solution that is
independent of the subtraction point and has a sym-
metric Tt(s) for a symmetric input Bt(s). Moreover
since we approximate only a spectral integral over pt (z),
the kinematical factor on the left, by putting a pole on
the right, the dynamical term B&(z) remains unchanged
and we are able to establish an explicit algebraic ex-
pression for Tt (s) in terms of Bt(s), Eq. (21), which has
the correct discontinuities across the right- and left-
hand cuts. With such an explicit algebraic solution
available we may investigate directly the dependence
of the scattering matrix on the parameters appearing
in Bt(s) as the coupling constants and mass ratios.
For applications such as bootstrap calculations, this

I. INTRODUCTION

'N partial-wave dispersion relations for multichannel
~ - processes the matrix ED—' method'' has come to
assume a major role in obtaining solutions to the non-

linear integral equations arising out of the demand of
unitarity on the partial-wave scattering amplitude

T&(s). More recently many of the dynamical models' —"
based on the bootstrap hypothesis" have appealed to
the ED ' integral-equation formalism as a means for
obtaining self-consistent solutions to the coupled
integral equations which arise from the dynamics
imposed by unitarity and analyticity. "' Although
some understanding of the nature of the exact solutions
to the ÃD ' equations has been obtained, '~' par-
ticularly in the single-channel case, no general solution
to the ED ' equations has been found. Consequently
one is motivated to find approximations to the integral
equations which admit of systematic improvement
towards the exact solutions. Various approximation
schemes beginning with the determinantal method of
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method, since it involves only algebra and no inte-
grations, provides a reduction of computing time and
alleviates the characteristic "curse of dimensionality. ""
More importantly it overs a very direct method for ob-
taining physical insight into the bootstrap mechanism.

one obtains
S—Sp

dy Z(s, y,sp) 1m' (y, sp), (7)D(s,sp) = 1+

where the kernel depends only on the kinematical factor
and is symmetric in s, y, and sp.

dx p(x)
E'(s,y, sp) =— . (8)

ii (x—sp) (x—s) (x—y)

II. APPROXIMATION METHOD

1 1 1 ) s Sp

x—s x—sp s—spkx(x —s) x(x—sp)

zF (z) yF (y)
E(s,y, sp) = +

(.—y) (s—s,) (y—.) (y—s,)

Our integral-equation formalism is based on the XD '
matrix formulation of Bjorken' and we assume an
unsubtracted dispersion relation for the symmetric
scattering amplitude Ti(s):

1 Ti*(s')pi(s')Ti(z')
&(s) =B&(s)+ dz, (1) we may write for K(s,y, sp)

7l g 8'—s

Here R stands for the integration over the right-hand
unitarity cuts, s is the energy variable, pi(z) is a diagonal
matrix of kinematical factors containing the 0 functions
for the two-particle thresholds, and Bi(z) represents the
forces arising from the dynamical singularities on the
left. We assume Bi(s) admits of the Hilbert represen-
tation,

ds' ImBi(s')1
B,(s)=- (2)

D(s,sp) = 1—

1V(z,sp) =-

s—sp dx p(x)iV(x, sp)

7r g (x—sp)(x —s)

dx ImiV (x,sp)

where
Im1V(x, sp) = ImB(x)D(x, sp) . (6)

The solutions to this inhomogeneous linear system of
integral equations will then be a solution of the original
nonlinear Eq. (1).

Substituting Eq. (5) in (4) and interchanging orders
of integration, which causes no additional terms to
appear since the integrations are over different ranges,

'~R. Bellman, Dynamic I'rogramming (Princeton University
Press, Princeton, New Jersey, 1962).

3 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956).

where the integral extends over the left-hand cuts.
Dropping the subscript l we assume next that the
solutions to Eq. (1) are of the form

T (s) = iV(s)D—' (s),

where D(s) has cuts only on the right and T(z) has no
Castillejo-Dalitz-Dyson poles." Since both iV(s) and
D(s) can be multiplied by an arbitrary constant matrix
without affecting the solutions T (z) we have the
freedom to normalize D(s) to 1 at some point s= sp. 1V(s)
is assumed to have cuts only on the left and we assume
lV(s) —+ 0 as

~
s~ —+ pp. We thus obtain from these de-

mands and the unitarity condition, ImT '(s+i p)
= —p(s), the representations'~

where the diagonal matrix

spF (sp)+, (9)
(so—-)(»—y)

S
Fi(s) =— dx pi(x)

x'(x—s)
(10)

Fi(s)/s =ai(s)=Ci/(s —u,), (12)

where C~ and u~ are constants which are chosen to
reproduce P&(s), which is known exactly once pi(s) is
given, as best as possible. The constants C~ and a~ are
completely determined once the partial wave is speci-
fied. The one-pole approximation is rather good (see
Fig. 1) reproducing the exact Hi(s) within 8% over a
large range. If greater accuracy is desired one may add
more pole terms or double poles to Eq. (12) more
closely approximating the exact Hi(s). However, for
most applications, for which one assumes the nearby
singularities dominant, Eq. (12) will suffice and repro-
duces the main features of the exact solution. Of course,
no finite number of pole terms can ever reproduce the
exact H&(s) with its branch cut. This is the only ap-

depends only on s and the kinematical factor pi(x).
Substituting Eq. (9) in (7) and doing algebra, there
results

D(s, sp) = 1 sF(s)1V(s,s—p)+spF (sp) V (sp, sp)

1 S Sp

+— dy F(y) Im V (y, sp) — . (11)
7i g—S g—Sp

In obtaining Eq. (11) no approximations have been
made. Our approximation now follows from the obser-
vation that to obtain D in terms of g we need to know
F(y) given by Eq. (10) on the left-hand cuts. The
function Hi(s) =Fi(s)/s is a spectral integral over the
positive-definite kinematical factor pi(s) )0 and hence
on the left will have all its derivatives positive,
H&("i(s)&0, and can be quite accurately approximated
on the left by a pole on the right



MULTI CHANNEL /V D ' EQUATIONS 8 1601

-15 -IO
I I 1 1 I

-5 -4 -3 -2 '-I 0 I

Z/4

0.7

0.0

and one finds from Eq. (17) setting z= u

N(u) = {1+CuLB(u)+uB'(u)])—'B(u), (19)

where B'(u)=dB(u)/du. For 8 waves, l=0, because
of the asymptotic behavior of the kinematical factor, we
find that it is better to approximate F(z) =C/(z —u)
instead of H(z) (see Appendix III). Then Eq. (18) is
replaced by

D(s) = 1—zP (s)N (s)
+(Cs/(s —u)}LN(z) —N(u)], l,=0 (20)

FIG. 1.Pole fit to the P wave spect-ral function H&(z). The solid
line is 4nHx(z) and the dashed line is the single-pole fit with
ar=143 and C~= —1.71/z. .

proximation we sha)l make and it does not presume a
modified form for B(z). This approximation, moreover,
has the advantage of reducing the ED—' equations to
algebra.

Substitution of Eq. (12) in Eq. (11) yields D in
terms of X:
D (z,sp) =g (sp) —sP (z)N (z,sp)

+ (Cs/(s —u))LzN(z, sp) —uN(u, sp)], (13)
where

g(sp) = 1+spF (sp)N (sp, sp)
—(Csp/(sp —u))fspN(sp, sp) —uN(u, sp)], (14)

g(0) =1.
This expression LEq. (13)] has the properties of the
original integral Eq. (4):"D(z,sp) —1=—D(sp, z)+1 and
unitarity ImD(z, sp) =—p(s)N(z, sp). Using F(z) Cz/
(s—u), Eq. (13) becomes

D(z, sp) =g(sp) —LCuz/(z —u)]N(u, sp), (15)

which, within the limits of our approximation, is an
accurate expression for D(s) along the left cut. This is
what is required to solve for N(s) from ImN(z, sp)
=ImB(z)D(z, sp) and Eq. (5). From Eqs. (5), (6), (15)
and the identity

x/(x —u) (x—z) = s/(z —u) (x—s)—u/(s —u) (x—u)

there results

N(z, sp) = B(z)g(sp)
—LzB (s)—uB (u)]CuN (u, sp)/(z —u) (16)

for N(z) in terms of B(z). Since D(z, sp) given by Eq.
(13) and N(z, sp) given by Eq. (16) imply T(z) =N(z, sp)
&(D-'(z, sp) is independent of sp (Appendix I) and sym-
metric T(s)= Tr(z) (Appen. dix II) we may set sp ——0
without loss of accuracy and with a gain in simplicity.

Then from Eq. (16)

N(z) =B(z)—LzB(z)—uB(u)]CuN(u)/(z —u) (»)
and Eq. (13)

D(s) =1—zP(z)N(z)
+(Cz/(s —u) }t zN (z)—uN (u)] (18)

and Cu replaced by C in Eqs. (1/) and (19).The addi-
tion of more pole terms and double poles to our ap-
proximation does not affect the method for obtaining
N(z) and D(s) as explicit algebraic functions of B(s)
although the inversion going from Eq. (17) to (19)
would now involve the solving of a linear system of
algebraic matrix equations which can be solved using
standard techniques.

Our solution for T(z), the scattering amplitude, as
an explicit function of the driving terms B(z) is

T(z) = [B(z)—LzB (s)—uB (u)](Cu/(s —u) )N (u)]

Czu r Cz
&& 1— N(u) —

z~ F(z)—
S—8 8—8

r Cu
&&i B(s)—LzB(z)—uB(u)] N(u), (21R)

S—8

where N(u) is given by Eq. (19). On the left cut Eq.
(21R) becomes, since F (z) Cz/(z —u),

Ca
T(z) = B(z) fsB(z) uB—(u)] N—(u)

Csa
X 1— N(u) . (21L)

This solution has the correct discontinuities since
(21R) implies ImT—'(z) =—p(s) and (21L) implies
ImT (s) = ImB (s). Hence we expect many of the features
of the exact solution are reproduced by Eq. (21).

It is important to examine the limitations of our
approximation and see how errors in approximating
F(s) on the left are reflected in the approximation for
the scattering amplitude T(z). Equation (21R) satis-
fies unitarity exactly; however, if we continue this
expression for T(z) to the left-hand cut and compute
the discontinuity across the left cut, we find ImT(z)
= ImB (s)(1+s(z) ), where e (z) is proportional to
~()= LP()—C/( —)]:
e(s) =6(z){ReT(z)+ReB(z)

+B(u) Ca'N (u}/$1 CaN (u)z u])— —
and can be computed exactly once B(z) is specified.
In writing (21L) for T(z) on the left we have set
P(z) —Cs/(s —u)=0 on the left so p(z)=0. Hence
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e(s) &0 is a measure of the error in ImT(s) on the left
compared to the exact amplitude which satis6es
ImT(z)=ImB(s). We see that the error introduced
depends on the strength of the dimensionless coupling
constant g'. To be speci6c, let us take as a typical
driving force the S-wave Born approximation amplitude

B(s)= 2g' InL(z —3)/(z —4)]

for two scalar mesons of mass=1 scattering via the
exchange of a scalar meson of mass=1 and compute
c(s). One finds near the beginning of the left cut,
3)s)—30, for g'&20 that e(z) &0.08. On the left cut
e(s) slowly approaches a maximum near s= —400 and
then decreases to zero at z= —~. We find for g'=5.0,
&, =0.1; g =15.0; e, =0.3. These values of the
coupling are strong enough to produce a resonance
behavior on the right cut. We find that the error
increases roughly linearly with g' so that a large value
of g' can introduce large errors. Moreover, the single-
pole approximation can only be expected to yield
reliable results if one assumes the nearby singularities
of B(s) dominate.

Although we have not explicitly introduced a cutoff
parameter it is clear from the nature of our approxi-
mation for F (s) that a logarithm has been approximated
by a constant. Hence a cutoff is at least implicitly
present since for large values of z the difference between
the exact T(s) and the approximate T(z) will be greater
than for small z. This difference may be made arbi-
trarily small by including more poles in the approxi-
rnation of F(s).

Comparing the approximate solution (21R, L) with
the exact solution obtained numerically, we find the
approximate solution will be within 20/G of the exact
solution for

~

z
~

& 100 and Born terms characterized by a
maximum dimensionless coupling g'=25. A two-pole
approximation to F(z) increases the accuracy con-
siderably. For this case with a maximum g'=25 the
approximation is within 4'po of the exact solution for
~z~ &200. Hence for any accurate work, a two or more
pole approximation is to be recommended; however,
the single-pole approximation can still serve to check

the general features of the scattering process, i.e.,
whether or not bound states or resonances exist, and
it has the virtue of algebraic simplicity.

B(G)—(.,—G)B'(G))0, (24)

the equality holding in the limit of infinite coupling.
Equation (23) may admit solutions with zp(0 which
implies the existence of a ghost state. Qne may, of
course, use Eq. (23) to obtain the location of the bound
state in terms of g', B(z).

If we furthermore employ the bootstrap hypothesis,
then this bound state corresponds to the exchanged
particle producing the force B(z,zp) and the residue of
T(z) at s=zp is the coupling constant —g'. From the
condition 1/g'= —D'(zp)/N(zp) and Eqs. (22) and (23)
one obtains

III. BOUND-STATE AND BOOTSTRAP
CONDITIONS

For simplicity we restrict our attention to the single-
channel S-wave case and we scale the energy so that
the threshold is at z=4. Let us suppose the forces are
attractive in this channel and suKciently strong to
produce a bound state with energy 0(zp(4. In this
energy region, to the left of the unitarity cut, we
approximate F( z) ~C/( z a) an—d from Eq. (20) and
Eq. (19) (with Ca replaced by C) we have

D(z) =1—LCz/(z —a)]N(a)
=1—CzB(G)/(z —G)(1+CLB(G)+GB'(G)]) (22)

Factoring the couphng constant from the driving term
B(z) —+ g'B(z) the condition that T(s) have a simple
pole at z= zp corresponding to the bound state implies
D(zp) =0 which imposes the restriction on the form of
B(z):

1/g'=(C /( —))LB( )—( —)B'( )] (23)

This condition has its basis in the unitary condition;
it is understood to be approximate.

A similar condition may be obtained for the existence
of a resonance using Eq. (20) for D(s) instead of Eq.
(22). Since g') 0, C&0, 0(zp(4(a, Eq. (23) implies
that for there to exist a bound state

I I I I I 2.0 1/g'= Cat B'(a,zp)+B—'(a,zp)] (25)

Co=

ao =7.6

I
I
I
I

- I.O
O

-06 g
—0.6
- 0.4

along with Eq. (23);

1/g'= («/(zp —G))LB(G,zp) —(«—G)B'(G,zp)]- (26)

If the bootstrap is to work and the exchanged particle
is to correspond to the bound state, we have an addi-
tional restriction from Eqs. (25) and (26)

- 0.2 B(a,zp)(u —zp) =1. (27)
"I5 -IO 0.0

~ Z/4

FIG. 2. Pole Gt to the S-wave spectral function Pp(z). The solid
line is 4z.tp(z) and the dashed line is the single-pole Gt with up= 7.6
and Cp=-1.8/z. .

These bootstrap conditions for the single-channel case
have appropriate generalization to the multichannel
case. If we use an improved approximation for F(s)
including additional pole terms, then the conditions do
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not take the simple form above; in fact, there may be
more than one solution for g'.~

From Eqs. (25) and (26) one can obtain the self-
consistent solutions for g' and zo if the bootstrap con-
ditions are satisfied. In the bootstrap example of two
pseudoscalar mesons of mass=1 scattering in the 5
state via the exchange of a scalar meson of (mass)'= zp

to produce an 8 state with (mass)'=sp, the Born term
is given by

B(z zp) = E2/(z —4)1»(1+(s—4)/zp) (28)

Using a one-pole fit to Fp(s) with C= —1.8/s and
a=7.6 (see Fig. 2 and Appendix III), one finds from
Eq. (27) zp ——4.5 and Eq. (25) implies g'=2. 7 which
serves to indicate a self-consistent solution exists. To
obtain accurate values for zo and g' we use a two-pole
fit to P, (s)

Fp(s)=Ci/(s —ai)+Cs/(s —as), (29)

where Ci———2.31/s. , Cs ———0.128/~, ai ——16.8, as ——4.4.
We then find for the self-consistent solutions zo ——3.5,
g'= 5.3 in agreement with Sall."

The multichannel-pole-approximation method can be
expected to reduce self-consistency-type calculations to
matrix algebra prior to any specification of the input
forces in the crossed channels. The driving terms can
then be solved in a self-consistent manner. "
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APPENDIX I
Here we demonstrate the in.dependence of T(s) on

the subtraction point. Our solution is

N (s,sp) =B(s)g (sp) —[sB(s)—aB (a)j
XCaN(a, sp)/(z a), (I1)—

D(z, sp) =g(sp) —sP(z)lV(s, sp)

+(Cs/(s —a))t zN(s, sp) —aN(a, sp)$. (I2)

Equation (I1) with s= sp implies

N(a, sp) =R(a)g(sp), (I3)

with R(a) independent of sp. Then Eqs. (I3) and (I1)
imply

N(z, sp) = R(s)g(sp), (I4)

with R(s) independent of sp. Substitution of Eqs. (I3)
and (I4) into (I2) implies

D(s, )=Q()g( o), (13)

with Q(s) independent of sp and hence from (I4) and
(15) T(s) =N (s,sp)D '(z, sp) = R(s)Q '(s) independent
of so.

APPENDIX II

Here we shall show that T (s)= Tr(z) for a symmetric
driving term B(s)=Br(z). Since the solution is inde-
pendent of sp choose sp

——s so that D(s,s) = 1 from (I2)
and T(s) =N(s, s). Hence we must demonstrate N(s, s)
=Nr(s, z). Writing

g(s) = 1+Af (s),
where

A (s) = sN(s, z)P(s) —(Cs/(s —u))
XPN(z. z)—aN(a, .)) (I11)

and F(s)=Fr(z) and C= Cr are diagonal matrices, we
find from (I1)

N(s, s) =B(s)+B(s)A (s)
—LzB(s)—aB(a))Ca/(s —a)N(a, s), (II2)

the first term of which is obviously symmetric. Solving
Eq. (II2) for the f'(rst term B(s), taking the transpose
of the resulting equation and substituting this ex-
pression for B(s) into the second two terms of (II2)
there results:

Cs' q Cza
N(s, s) =B(s)+Nr(s, s)i sF(s) — iN(s, s)+Nr(z, s) N'(a, s)

s—ai Z—a

Cu
(s)B(Az) (s)+ A(u s)A[ss (E)—aB (s)j(zp (z)—

Cz ' Cza
~yN&(a, z)

z—a Z—8

Cz'
N(z, s)

Z—Q

+Nr (a,z) LsB (s)—aB (a)g N (a,s)+ aB (a) N (a,s)

Ca' (=s(s) Nr(a, s) B(a)~ z—F(s)—
s—a

Cz' Cu'
N(s, s)+B(a) N(a, z), (II3)

'A J. S. Ball, Phys. Rev. 137, B1573 (1965)."G.F. Chew and S. Mandelstam, Nnovo Cimento 19, 752 (1961).
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where s(s) is a symmetric matrix consisting of terms of the form WOW, W~BX+XrBW. We must still show
that the remaining terms of Eq. (II3) are symmetric. Setting s= a and sp ——s in Eq. (I1) there results

Q( )1'(, )=B( )g( ), (II4)

with Q(a) =1+LB(a)+B'(a)a]Ca. Multiply Eq. (IIS) with Er(a,s)Ca'/(s a) —so that

1vr(a, s)(ca'/(s —a))Q(a)Ã(a, s) =1vr(a, s)(ca'/(s —a))B(a)+X (a,s)(ca'/(s —a))B(a)
X(sF(s)—(Cs'/s —a))X(s,s)+X (a,s)(ca'/(s —a))B(a)(C«/(s —a)) V(a,~). (113)

Substituting the second term of Eq. (IIS) into Eq.
(II3) there results

Ca' Cza
1V(s,s) =s'(s)+Xr(a, s) B(a)

[B(a)+B'(a)a)Ca X(a,s), (II6)

we find for H&(s) from Eq. (III1)
1 t' a a+1

Hi(s) =—-', +2a'~ 1——ln
s~ i 2 a—1

H,+, (s) =a H, (.)y2/s(21+3),

u'= 1——, l) 1.

(III3)

where s'(s) is symmetric. So X(s,s) =s'(s) —1Vr(a, s)Ca'
&& (B'(a)/(s —a))Ca'1V(a, s) and X(s,s) =1tl ~(z,s).

APPENDIX III

Here we consider the details of the pole approxi-
mation to the spectral integral. The function Fi(s)
depends only on the kinematical factor

dx pi(x)F)(s) 1
=Hi(s) =-

s s g x'(x—s)
(III1)

pp(s) = L(s—4)/s J",l= 0

p (s) (s 4)I,'2l+1)/2/s( l i)/2 l) 1
(III2)

Setting the beginning of the unitarity cut at s=4 and
writing for the kinematical factor

From Eq. (III3) we have Hi(s) —+1ns/s; s —+ —~.
For 5 waves we shall use F (s) instead of H(s):

2 a a+1
Fp(s) =—1——ln +const,

xs 2 8—1
(III4)

where we may set const= 0 since the addition of a
constant to F(s) does not change the solution. The
single-pole approximation then consists of writing

H, (s) Ci/(s —a,), l) 1

Fp(s) Cp/(s —ap), l=0

and the constants C~ and u~ are chosen to reproduce the
behavior of Hi(s) and Fp(s) given by (III3)—(III4) for
—60&s&4.

For S and I' waves the results of a single-pole 6t are
shown in Fig. 2 and. Fig. 1. %e reproduce the exact
function to the accuracy shown with Cp ———1.8/~,
ap= 7.6 and Ci ———1.71/s ai= 14.3.


