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Modification of a Regge-Pole Representation*
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A recent representation by Cheng of the partial-wave scattering amplitude has been modified to display
the large-energy behavior explicitly in order to improve convergence in terms of Regge poles. The resulting
representation has the following properties regardless of the number of trajectories included: (a) It is unitary
for all l and s&0. (b) It gives the correct threshold behavior as s ~0 for the real and imaginary parts of
the amplitude. (c) It reproduces the appropriate analytic properties for the total amplitude in the cos 8 plane.
(d) It converges rapidly.

INTRODUCTION

S INCE the introduction of Regge poles, one of the
most crucial problems has been the correct contri-

bution of such a pole to the (total) scattering amplitude.
Upon assuming certain bounds for the scattering ampli-
tude in the angular-momentum plane, Khuri' was able
to obtain a representation in which the contribution of
a single Regge pole to the total scattering amplitude
had the desired analytic behavior. However, in order to
write the scattering amplitude as an infinite sum of
Regge contributions of the Khuri form he had to assume
certain bounds on the partial-wave amplitudes in the
lef t-half-angular momentum plane.

Cheng and Wu' have since shown that the bounds on
the partial-wave amplitudes assumed by Khuri were
incorrect. Here we modify Cheng's' product representa-
tion for the Smatrix to exhibit explicitly the asymptotic
behavior in energy. Since the resulting expression is
manifestly unitary for any number of trajectories
retained and since the real and the imaginary parts of
the amplitude have the correct threshold behavior, as
a by-product, we also obtain an amazingly fast con-
vergence in terms of only a few trajectories.

I. THE CHENG REPRESENTATION

more restricted class of potentials, Cheng' has shown
that Eq. (1.1) is rigorously correct.

For this restricted class of potentials, Cheng and Wu2

have found the following asymptotic form for the S
matrix:

S()(,s) - e" "ReX(0.
j&I-moo

(1.2)

By using this asymptotic form for S(h,s), Cheng' has
been able to eliminate the unknown subtraction con-
stants in (1.1) to obtain for the S-matrix

&n*(s)
t

(&'—&) $(s)

S(X,s) =g exp dX'

&n (s)
(1 3)

Ei(s) —=

where cosh((s) = 1+tt'/2s, and the product n runs over
all the Regge poles.

The representation (1.3) may alternatively be written
in terms of the exponential integral as

lnS(X, s) = 2ib(X,s)
=P LEi((X—X„(s))$(s))

—Ei(() —) -*(s))&(s))7, (1.4)
where

S(X,s) =g S (X,s), s)0,
n=l

Desai and Newton4 have given heuristic arguments, We may now identify each member in the sum of
on the basis of unitarity, that for potentials of the (1.4) with the contribution of one pole to the phase
superposition of Yukawa form (with exponentially shift and write
decreasing weight factor), the S matrix can be written
as a product of Regge poles: (1 ~)

S()t s) S(0 s)e
—2tx Ime (I)

- ).(s) )i—)(.*(s)
xg esax Im) ~—(8) (1 1)

-=~ ) .'(s) ) —)(.(s)

for s=k') 0 and X=l+-,'. Here (t(s) is some unknown
function and X„(s) are the Regge trajectories. For a

where

S„(h,s) =exp

&n* (s) g (~' ~) $ (s)
dX'

n(s) ()'—))

S„*P,*,s) =S„—'(X,s) . (1.6)

The important observation to be made here is that
not only is S(h,s) unitary, but each Regge-pole contri-
bution S„(X,s) is also unitary:

*Work supported in part by the U. S. Atomic Energy Com-
mission. This restricted class of potentials consists of the square well,'

¹ N. Khuri, Phys. Rev. 130, 429 (1963). the cut-off Coulomb potential, the single Yakawa potential, any
H. Cheng and T. T. Wu, Harvard University report (un- potential which has a power-series expansion Z„&"e„r" as long

published). as the potential is cut off at a Gnite r, and a superposition of' H. Cheng, Harvard University report (unpublished). Yukawas of the form Vef„"(e&"/r)e &'dy, ' The interested read. er
'B. R. Des~ai and R. G. Newton, Phys. Rev. 129, 1445 (1963). is referred to Ref. 2 for details of this proof.
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Xexp
as (e) i' —n (s)

II S ( s) (17)
an

where the trajectories n„(s) are expressed in i space
along with the S matrix. This couples the /3„ to all the

as in Ref. 7, but much more simply.
In an approximation scheme now it is simply a

question of how many terms in the infinite product are
to be kept. The inclusion of more trajectories in the
computation of the P (s) here is much easier than in
Ref. 7, because of the product representation.

The one-trajectory approximation would now read

P„(s)= s '/' Imn„(s)

Xexp

~~*(8) e t&'—~~(8)] $ (8)

dl'
t' —n„(s)n(s)

(1.8)

If we expand the integral in (1.8) in powers of
Iinn„(s), we find that to lowest order

P„(s)=s-'/' Imn„(s),

In this respect it differs from the Khuri' and Inodified
Khuri" representations. This fact is of great impor-
tance in any approximation based on a fi.nite number of
trajectories, such as is proposed in Ref. 7.

KVith A ()t,s)—= (1/2i)s '/'LS()i, s)—1], the residue'
P„(s) of the amplitude at the izth Regge pole is easily
found with a minimum of algebra to be

P„(s)=s '/' Imn„(s)

it is of paramount importance to have the "full"
contribution of the poles which are included. In other
words, a representation is needed which converges
rapidly in terms of the trajectories close to the physical
right-hand. l plane. Rapid convergence is likely only
when the contribution from each Regge pole reQects the
analytic properties of the total amplitude, so that it is
not necessary to depend on infinitely many terms to
produce the correct cuts, unitarity, and asymptotic
behavior.

The question of convergence is the motivation in
obtaining a modification of the Cheng representation
in the same spirit as the previous modification' ' of the
Khuri representation. '

Ke consider for the case of a Yukawa potential, the
integral

// 1 ) d)' exp@,'g(s)]

~2iri) a

XLlnS(X', s)—ig's '/2Qq;(cosh/)], (2.1)

(2.2)&= (lnS()i,s)—ig's '/'Qi x(cosh/)]

is bounded by )i '/'expL —)t$(s)]. For Re)~(0, from
(1.2) and

where cosh)(s) = 1+@,'/2s and cosh)(s) = 1+2/s'/s, with
g' the strength of the Yukawa coupling. For a distribu-
tion of Yukawa potentials, the single Q function is to be
replaced by the integral over the weight factor. The
contour C is an infinite circle in the X plane.

Defining a function F, we note that for Rek&0,

and the next term gives

P (s) s—1/2 Imn (s)e e~[iman—(~1 is(s1 (1.10)

)1/2e—ig

lim Qi(s) =
ir sinhr)i

(2.3)

The equa, tions (1.9) a,nd (1.10) correspond, respec-
tively, to what are called "Universal" and "Khuri"
one-trajectory approximations in Refs. 7 and 8.

As will be seen in the next section, using (1.8) to
compute the top P„(s) with an exact n„(s) input does
not materially improve upon the one-trajectory Khuri
approximation (1.10). This provides the primary
motivation for the modification discussed in the next
section.

II. THE MODIFIED CHENG
REPRESENTATIOÃ

In a phenomenological fit in terms of Regge trajec-
tories at high energy, or in a self-consistent calculation,
as is proposed by Chew and Jones" or Frautschi et al, '

6 A. Ahmsdzsdeh, Phys. Rev. 133, B1074 (1964).
7 S. C. Frautschi, P. K. Kaus, and F. Zachariasen, Phys. Rev.

133, 81607 (1964).
The notation here is the same as in Ref. 7 and D. Hankins,

P. E. Kaus, and C. J. Pearson, Phys. Rev. 137, B1034 (1965).
r. O. Binford and B.R. Desai, Phys. Rev. 138, $1167 (1965);

B. R. Deeai, iNd. 138, B1174 (1965); N. N. Khuri and B. M.
Udgaonkar, Phys. Rev. Letters 10, 172 (1963)

&
R. Majumdar,

Nuovo Cimento 23, 1734 (1964}.
"G.F. Chew and C. E. Jones, Phys. Rev. 135, B208 (1964).

where s=coshp, we have F bounded by P
—'/'e "&(').

Hence the integral taken along C vanishes.
The integral (2.1) then yields the following repre-

sentation:

lnS(l, s) =P exp((i' —i)i(s)]
dl'

l —l

expL —(1+/z) &(s)]—zg's '/' P i(cosh))
l

Pig's '/'Qi (cosh/) . (2.4)

where

S„(l,s) =exp
expL(i' —f)k(s)]

dl'

expL —(1+~)i(s)]
zg2$

—1/ P„ i(cosh/) . (2.6)
Q

In the product form the modified Cheng representation
can be written as

S(l,s) =Lexp{ig's '/ Qi(cosh)))] Q S„(l,s), (2.5)
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X exp
expal' —a„(s))((s)g—1

6U
l' —a (s)

-p(-(-.+1)n»—
gg2g

—1/2 II S-(~-(s),s) (2.7)

The order of approximation again depends simply on
how many terms in the product of (2.7) are to be kept.
In the one-trajectory approximation, the product is

put equal to unity.
The representation (2.5) has several remarkable

properties:

(a) S(l,s) is unitary at each level of approximation;

The residue of a Regge pole in the amplitude analo-
gous to (1.8) now is

P„(s)=s '" Imo. „(s)/exp(ig's '~'Q „i,~(cosh&)}g

S(o,s)
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FxG. 1. The S matrix S(0,s) for l =0 and g'=1.8 is plotted as a
function of the energy s. Exact ( ) (Ref. 6), modified Cheng
(one trajectory) representation (- - -) and the unmodified Cheng
representation ( ~ ~ .). The point marked s is the energy at which
Reap (s) = —0.5.

S*(l*,s) =S '(l, s) (2.8) The total amplitude

b(l, s) ~ s'+'", (2 9)

independent of how many terms are kept in the infinite
product.

(b) With the correct threshold behavior of the cr„(s)
assumed,

A'(s, cos8) =g (2l+1)A (l,s)Pg(cos8).
lM

With the help of"

it follows that both ReA (l,s) and ImA (l,s) will have the
correct threshold behavior s' and s"+'j"" respectively

t independent of the approximation. The multiplicative
factor in (2.9) is suppressed. j This implies the correct
boundary for the double spectral function. "

(c) For the single Yukawa potential, the amplitude
given by (2.7) has a pole in the cos8 plane at cos8=1
+ps/2s from the Q function and a cut starting at
cos8=1+2p'/s from the $(s), contributed by each
trajectory. This is the correct analytic structure of the
total amplitude A (s,cos8). For a distribution of
Yukawas with maximum range 1/ps, the Born pole
becomes a cut, which will be correctly given by the
generalization of (2.5) from cos8=1+ps'/2s to cos8
= 1+2@os/s.

It may at first seem surprising that the Born term
in (2.7), being of the exponential form, does not
introduce a cut or a di6erent residue at the Born pole
position. However, consider the "zero-pole" approxi-
mation in (2.5):
S'(l,s) = exp(ig's ' ~'Q~(cosh() }

= 1+ig's '~'Qg(cosh))
—-',-g's 'QP(cosh))+ ~, (2.10)

A'(l, s) = —',g's 'Qg(cosh/)
+x'ig's sQP (cosh/)+ ~ . (2.11)

"The behavior of ImA (l,s) is not correctly given by the Khuri
representation; see discussion in Ref. 7.

' S. C. Frautschi, Regge Poles arId S-Matrix Theory (W. A.
Benjamin, Inc. , New York, 1962), p. 47.

and

Qts(s) = Qifss+ (s' —1) coshygd y,

g (2l+1)Qi(s)Pi(cos8) = (s—cos8) ',
lM

+ (2 12)
cos8 —[coshs) —sinh'$ cosh@]

The first term has the usual Born pole and the second
term has a cut starting at cos8= 1+2@,'/s+p4/2ss. In
an approximation with trajectories included, the cut
will start at cos8=1+2y'/s because of the $(s) in the
traj ectory terms.

Properties (a) and (b) are shared with the unmodified

Cheng representation. ' Property (c) is shared with the
modified Khuri representation. '~

The final test of the usefulness of the modified Cheng
representation (2.5) is the convergence to the exact
amplitude in terms of number of trajectories included.
For Yukawa potential trajectories, ' ' g'= l.8 and p= 1&

we compare the one trajectory approximation with the

"V. DeAlfaro, T. Regge, and C. Rosetti, Nuovo Cirnento 26,
1029 (1962).

"A.Ahmadzadeh, P. Burke, and C. Tate, Phys. Rev. 131, 1315
(1963).

we can now evaluate the zero-trajectory amplitude to be

g2 1 z

A'(s, cos8) =—
2s (1+p'/2s) —cos8 4s'
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FIG. 2. The residue for the top trajectory p&(s) for g'= 1.8 is
plotted in the P plane with the energy as a running parameter.
Modi6ed Cheng with one trajectory (- - -), modi6ed Khuri
(Ref. 8) (- ~ - — ) and unmodi6ed Cheng ( ~ ). Corresponding
points on the modified Cheng and modified Khuri curves are taken
at the same energy.

exact S matrix, using the exact top trajectory as input
for the Cheng representation (1.5) and the modified
Cheng representation (2.5). The coupling is just strong
enough to cause one bound S state. The results are
given in Fig. 1. For reference, the energy at which the
top trajectory retreats to the left-hand X plane is
marked by 8. It is seen that at 8 the S matrix is not close
to the Born limit, which would set ReS=1. It therefore
seems plausible that if only the low-s pa, rK of the
trajectories is to be kept (strip approximation), the
large-s part of the amplitude should be represented by
the relativistic analog of (2.10), rather than by the
nonunitary Born term.

In a suggested method~ of bootstrapping trajectories,
as well as a new proposal, '5 in which the background
term in a Sommerfeld-Watson transform is to be ex-
plicitly evaluated, the residues p must be eliminated in
favor of the trajectories n Equations . (1.8) and (2.7)
do just that, as did (3.10) in Frautschi et al. r The first
two equations are for the Cheng and modified Cheng
representations, respectively; the third, (3.10) in Ref. 7,
is for the modified Khuri representation and is obtained
by demanding somewhat arbitrarily that unitarity be
satisfied at l=a in a representation otherwise non-
unitary at any level of approximation. Again success of
the bootstrap method will depend largely on rapid

"W. J. Abbe, P. E. Kaus, Pran Nath, and Y. N. Srivastava
(to be published).

Fro. 3. The residue for the top trajectory IS~(s) for g'=1.8 is
plotted in the P plane with the energy as a running parameter.
Exact ( ), modified Cheng with one trajectory (- - -), and
modified Cheng with two trajectories (- - ~ ~ —- ~ ).Corresponding
points on all three curves are taken at the same energy.

convergence of p„ to the correct value in terms of
trajectories 0. .

Some results for a single Vuk. awa potential are given
in Figs. 2 and 3. The residue Pr(s) is comPared to the
one trajectory approximation with exact nr(s) (top
trajectory) input, using modified Khuri L(3.0) in
Ref. 7j, unmodified Cheng (1.8), and rnodified Cheng
(2.7). The resulting Pr(s) is given in the P plane in

Fig. 2 with s as a running parameter.
The convergence of the modified Cheng representa-

tion is shown in Fig. 3. There the exact nr(s) and ns(s)
input were used for the second curve. It should be
mentioned that calculating p is a very severe test as it
is most sensitive to input. Amplitudes, at least in the
physical region, are not nearly as sensitive. This can be
seen by comparing Fig. 3 with Fig. 1.

In summary we can say that the modified Cheng
representation is unitary, gives us very fast convergence
to the "exact" result and has all the desired asymptotic
and analytic properties. It, therefore, may provide a
powerful tool for bootstrapping trajectories (or, particle
systems) in a more realistic manner, "without being
forced to mutilate either unitarity~ or to abandon a
trajectory after a certain point (the "strip-width").

The computations were carried out at the Computer
Laboratory, University of California, Riverside.


