
PHYSI CAI REVIEW VOLUM E 140, NUM 8 ER 6B 20 DECEMBER f 965
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The bootstrap of' vector and pseudoscalar mesons is considered. The self-supporting dynamics for an
arbitrary Qnite number of these particles is formulated in the analytic S-matrix approach, leading to a set of
bootstrap equations. From these, we obtain a set of algebraic relations for the coupling coefIjLcients, called
bootstrap algebra. This algebra includes the Lie algebra, whose structure constants are the coeKcients of the
trilinear coupling of the vector mesons. It is also shown that the pseudoscalar mesons belong to some repre-
sentation of the associated Lie group. Restrictions on the dimension of this representation are derived; in
particular, the pseudoscalar mesons must be in the adjoint representation if there exists a singlet vector
meson in addition to the multiplet in the adjoint representation. Physical consequences of the bootstrap
algebra, regarding the conservation of G and A parities, are discussed.

mesons in the scattering of two vectors produce the
same mesons in the direct channel. This yields the result
that the coupling constants for these vector mesons are
the structure constants of a compact, semisimple Lie
group. This is indeed a striking result, but the model
has the obvious shortcoming that it is oversimpliied
and unrealistic.

In the present study we pursue further the problem
of the induction of internal symmetry by considering
a more realistic model in which both the vector and the
pseudoscalar mesons are assumed to exist and interact.
That these vector and psuedoscalar mesons may form
a closed system is plausible within the framework of
low-mass approximation of the unitarity condition in
the S-matrix theory, and is perhaps suggestive of the
spin —unitary-spin symmetry. Though the introduction
of the pseudoscalars brings into the problem some
nontrivial coinplications, we And that not only are
Cutkosky's results retained, but some new and inter-
esting features emerge. The combined results consist
of a set of algebraic equations which we call the boot-
strap algebra. .From this algebra one deduces that in
addition to the vectors belonging to the adjoint repre-
sentation, the pseudoscalars must belong to some
representation of the group. We also obtain certain
restrictions on the dimension of this representation and
the strengths of the various interactions involved. It is
found, for example, that the bootstrap algebra demands
the vanishing of a certain coupling, a result which is
in agreement with the 6-parity conservation and which
offers an understanding of the empirical A quantum
number of Bronzan and low."

In the next section we formulate the bootstrap
dynamics of the problem with the view that as few
simplifying assumptions are made as possible so as to
see the minimum requirements that can lead to exact
symmetry. The bootstrap equations are then applied
in the following section to the speciic scattering system
of vector and pseudoscalar mesons, leading to the meson
bootstrap algebra. In the last section we discuss some
of the physical consequences of the algebra.

I. INTRODUCTION

'N the last few years, the philosophy of bootstrap for
- the strongly interacting particles' has led to con-

siderable success in the understanding of certain aspects
of the strong-interaction phenomena. The domain of
its success falls mainly into two distinct categories.
On the one hand, it has contributed, '—' qualitatively
and sometimes quantitatively, to the understanding
of the existence of certain particles, their multiplicities,
their masses and the strengths of their interactions with
the other particles. On the other hand, it has provided
a physical basis for the understanding of the internal
symmetries. However, most of the effort in this latter
category has been to show that the application of the
bootstrap hypothesis yields results that are compatible
with those obtained in the studies in which the sym-
metries are assumed from the outset. " The deeper
question as to how the bootstrap hypothesis could
induce the internal symmetry has been left largely
unanswered.

The 6rst major step in the direction of the inaction
of internal symmetry was taken by Cutkosky7 who
succeeded iri formalizing the results of a bootstrap
model in the language of the algebra of symmetry
groups. He consid. ered a world in which only the vector
mesons exist. Then, within the framework of the 5-
matrix theory and under certain simplifying assump-
tions, the bootstrap condition is imposed by requiring
that the forces due to the exchange of the vector
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II. DYNAMICAL CONSIDERATIONS

As is usual in strong-interaction physics, we assume
Lorentz invariance and the invariance under C, P, and
T. The mesons are represented by Hermitian fields,
and the coupling constants are real. The language of
fields is used only for the convenience of discussing
some properties of the coupling coeflicients. It is not
necessary in the pure 5-matrix theory.

In our model of a world consisting of only vector (V)
and pseudoscalar (P) mesons, there are only three
types of coupling: VVV, VPP, and VVP. Parity and
angular-momentum conservation forbid the PPP
coupling. Let us use Latin indices u, b, c, etc. , to denote
the vector mesons and Greek indices n, p, y, etc. , to
denote the pseudoscalar mesons. We do not fix the
number of V's or P's in the beginning. Let a, b, c=1,
2, ~, N and a, P, y=1, 2, M, where N and M are
some finite positive integers.

It follows from space-time symmetry and Bose
statistics that there are actually two kinds of VVV
coupling: Ii,~' and Ii,q". The former is totally anti-
symmetric under the interchange of any two of the
three indices, while the latter is antisyninmtric in only
two indices. In our present investigation, we shall
consider only Ii &' and ignore Ii,&" completely. We use
G p' to denote the VPP coupling and D q", the VVP
coupling. The same consideration of space-time sym-
metry and Bose statistics leads to the properties that
t"

p is antisymmetric under the interchange of o. and

p, while D, p~ is symmetric under the interchange of
a and b.

We consider in our model only those angular-
momentum and parity states that communicate with
V and P, i.e., 1 and 0—.The problem involves three
channels: VV, VP, and PP. The orbital angular-
momenta l of these channels in the 1 state can be 1 or
3 for VV, but just 1 for VP and PP. In the 0—state l
can only be 1 for VV and VP; the PP channel cannot
be in the 0 state. We shall neglect the f wave VV
interaction with the consequence that all channels are
in the p wave.

Thus in each channel the phase space vanishes as
j'p"+' (=k') at the threshold where k is the momentum
in the c.m. system. There are, however, additional
kinematical factors in some channels due to the spin
of the vector mesons. We shall absorb these factors in
the definition of the amplitudes and coupling constants
such that the unitary condition can be written in the
form

T9'&—T9& = 2ZPTI6 T (2.1)

where the phase-space factor p= j'ps/s'I' is independent
of the channel indices. Here s=4(k'+m'), m being the
mass of any of the mesons. It is an assumption in our
model that all the mesons have the same mass. The
consequence of this definition of the amplitudes T;; is
that some of them acquire kinematical branch points
or zeros (but not poles) at s=0. These complications,

along with some other dynamical singularities, are not
expected to manifest in an essential way under the
approximation which we shall adopt.

The channel indices i, j, and k stand for (ab), (arr),
or (nP) according as to whether the channel is VV, VP,
or PP. For J"=1,we consid. er all three channels, so
T;; is an element of a matrix of dimension
r = (M+N+1) (M+N)/2 Fo.r J~=0-, we do not
consider PP system since it does not communicate
with P; hence the matrix T is of dimension
r=MN+ N(N+ 1)/2.

We use the usual multichannel XD—' method. to
describe the analyticity and unitarity properties of
the scattering amplitudes within the framework. of the
analytic S-matrix theory. We write in matrix form

T(s) =N(s)D '(s) (2.2)

Let P(s) be the potential term which specifies the dis-
continuity across the left-hand cut. Then, as usual, the
integral equations for N(s) and D(s) are'4"

1 ds
N;, (s)=P,,(s)+-

4m' s —s

s—$0
X P,'(')—, P'() p(')N ('), (2.3)

(s' —sp)

(s—sp)
" ds' p(s')N;, (s')

D,, (s) =3;,—
4„~ (s' —s) (s' —sp)

(2 &)

(2.5)

where I";;& depends on the coupling coefficients F, G,
and. D, and the spin crossing-matrix elements, and is
independent of s, while g(s) is the universal function
independent of the channel indices. This assumption
is reasonable since the masses of all particles are
assumed. to be equal and, all (direct and. crossed)
channels are in p wave, so that the locations of the
dynamical singularities are the same in all amplitudes.
Furthermore, (2.5) has been found to be approximately
valid in some specific examples which we have examined.

Using (2.5) we now have

P"(s) =+ P' "(s)= V'A (s)
' J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960).
~5 G. F. Chew, S-3Eatrix Theory of Strong Interactions (W. A.

Benjamin, Inc., New York, 1961);Phys. Rev. 129, 2363 (1963).

The asymptotic behavior of P;;(s) is assumed to be
such that the integrals converge.

In our model we shall consider only the potential
that arises from the exchange of single particles in the
various allowable crossed channels. Let us d.enote the
exchanged particle by ri and. write P;;(s)=P„P;ip(s).
P@p(s) is generally a complicated function of s on
account of the kinematical factors. We now make the
basic assumption of our dynamical model; that is, the
potential P;p(s) can be approximated in the low-energy
physical region by the separated. form

P;; (s)=I';; y(s),
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where
Vg=g„ I;p. (2.7)

From (2.9), (2.15) and the real orthogonality of R, it
follows that

Since E,;(s) is symmetric on account of the time-
reversal invariance, the reality of V;; guarantees that
V can be diagonalized by a real orthogonal trans-
formation. Let R be the constant orthogonal matrix
that e6ects this diagonalization:

R-'VR=~,

lim (m' —s)T@(s)=y g p'p ~. (2.17)

If we use g,' to stand generically for coupling constants
proportional to F,~', 6 p, or D q, then we have

A.g=);6@. (2 g) (2 18)

Then the columns of R form the eigenvectors of V, i.e.,"
R= (4' 4' " 4") (2.9)

This implies, in fact,

i/i'=y '"g'— 1&t&q (2.19)

(s—ss) " ds' p(s')N" (s')
(s)—

4 2 (s'—s)(s' —ss)

Then the diagonalized form of T(s) is

T"(s)—=R-'T (s)R= N'(s) (I—E (s)j-'.

(2.12)

(2.13)

Now we apply the bootstrap condition which requires
that X (or M) of the eigenamplitudes T;"(s), for
scattering in the 1 (or 0 ) state, have degenerate poles
at s=m'. Moreover, we require that no other poles
corresponding to other composite states of the system
can occur at any higher mass. If we use q to denote Ã
(cV) according as 7~=1 (0 ), then the bootstrap
conditions may be stated as follows:

E((m') =1, 1&l&q, (2.14a)

@(s)(1, q+1(l(r, s)0. (2.14b)

Using (2.13) and (2.14) we have

lim (m' —s) T~"(s) = V,~(m')/E~'(ms), 1&l&q,
(2.15)

=0, q+1&l&r,
where E~'(s) is the first derivation of E4(s). The right-
hand side of (2.15) is, by definition, the residue of the
pole term in each of the eigenamplitudes. Because of
the identity of the particles, these poles must not only
be at the same position but also have the same residue,
for otherwise these particles would interact with
different strengths to the other particles. Thus, the
residue must be independent of the index l. Let us then
write

(2.16)

Vg'= X,Q' 1(l&r. (2.10)

We now show that the same matrix R diagonalizes
N(s) and D(s). It is clear from (2.6) that R diagonalizes
P(s). Thus N"(s), defined as R 'N(s)R, must satisfy,
according to (2.3), an integral equation whose inhomo-
geneous term and kernel are diagonal. This implies
necessarily that the solution N~(s) is also diagonal. By
inspection of (2.4), it is obvious that D(s) can similarly
be brought to the diagonal form. Let us write

R—'D(s)R= I—E(s), (2.11)
where

so that, from (2.10), the coupling constants g,' form
the first q eigenvectors of V

V;;g,'= a&g, 1&l(q. (2.20)

E ( 4)=sN("( m) (r4)s, (2.22a)

for 1&l(q, where n(s) is the universal function inde-
pendent of the channel indices. Now, using (2.22a) in
(2.12), we see that E~(s) for 1&l&q is of the form
V&"(m') multiplied by a universal function. Equation
(2.14a) then implies that 1V4"(m') is independent of l;
let us denote it by S; To guarantee that (2.14b) be
satisfied for all positive s, it is necessary that X4"(s)
&&gn(s) for q+1&l&r. We make the approximation

E(~(s)=0, q+1&3&r.
Thus from this and (2.22a), we get

X;,(s) =IV;, (m')r4(s) .

(2.22b)

It is now easy to see from (2.3) that, in order to have
this separable form for N(s), the potential P(s) must
be such that

VV=) V, (2.23)

"We note that the form (2.22) for N;;(s) includes the results
of certain special assumptions such as the determinantal approxi-
mation Lwhere the integral in (2.3) is ignoredj and the linear
approximation for the D functions.

This result has also been obtained by others' "under
more restrictive assumptions.

We now develop further consequences of (2.16).
Using (2.12), we have

1 " ds' p(s') Ã4'(s')—
v '=-, (221)

,„*(s' m')'—N 4(m')

Although, in general, this integral equation has more
than one solution, i.e., the quantity inside the square
bracket may depend on l, we choose to consider here
only the case for which the integrand is independent
of /. This amounts to making the reasonable assump-
tion that all the eigenamplitudes, which have bound-
state poles at the same position with the same residue,
are in fact the same throughout the complex plane.
Thus we have"
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where P is a constant. This implies that the eigenvalues
X~ of Pare either) or 0. This result must, of course, be
consistent with bootstrap. The application of (2.23)
to (2.3) and then to (2.12) yields the result that
E(s)=lie(s), where e(s) is some universal function.
The bootstrap conditions (2.14) demand that

cg/i c d d

'b a b

Fxo. 1. Diagram for bootstrap equation of VV scattering
in the 1 state.

'b

X,=a= p-'(m'), 1&l&q,

X(——0, q+1&3&r,

(2.24a)

(2.24b) IIL BOOTSTRAP ALGEBRA

V,,=g R,;AI,)R,g (2.25)

whereupon, using (2.18) and (2.24), we get

the latter being necessary to guarantee that E&(s) is
small for a,ll positive values of s.

From (2.8) and (2.9) we obtain

In this section we consider more specifically the one-
particle exchange potentials for the scattering of vector
and pseudoscalar mesons in the 0- and 1 states. We
shall show that, when applied to the bootstrap equation
(2.27), they lead to a set of algebraic relations on the
coupling coeKcients free from undetermined dynamical
constants.

In the following we shall write the potential term
(y/X)F;p arising from the exchange of a particular
particle in a particular crossed channel (g), in the form

v' =(~/v) 2 g"g'. (2.26)
(3.1)

Finally, combining this with (2.7), we have

q

2 g"g'=
/=1

(2.27)

Z AV,'=&~i, (2.28)

This will be our basic equation from which the bootstrap
algebra is to be derived.

The orthogonality of R implies that

where g,'7 is the generic symbol for F,q', G po, and D ~+.

The index p does not necessarily correspond to the
superscripts of Ii, 6, and D. The constants r„, which
vary with each triplet (i,j,p), depend on such quantities
as kinematic factors, spin crossing-matrix elements, etc.
They can, in principle, be calculated from the dynamical
considerations of the problem. However, in our investi-
gation we shall not have need to calculate them
explicitly.

Consider irst the vector-vector scattering in the 1
state. We have

F,g'F, d' rg (F„'Fgd' ——F,d'F g,')—
+r2(D, Dgd —D,d D(„), (3.2)

(2.29)Z O'V~'=&v
l=1

The use of (2.19) then yields

Z g~ g~ =4''
for 1&k,l&q.

The main assumptions that have been used in the
derivation of (2.27), apart from the bootstrap con-
ditions, are those embodied in (2.5) and (2.22). We do
not pretend to imply that they are necessarily good
approximations of the actual situation. The sole rea,son
for making these assumptions is to show, in the next
section, that they lead to exact symmetry. They appear
to us to be the weakest assumptions possible, though
we have no proof for this. It is reasonable to expect
that as the dvnamica, l calculation is improved, such as
when these assumptions are eliminated and the mass
degeneracy is lifted, what emerges will be a broken
symmetry as observed. Our purpose here is only to
establish the "minimum" requirements for exact
synunetry.

D.a D.d =»(F-'Fad'+F. d'F o.')
+s2(D«~Dqd +D,d D&,~). (3.3)

There are seven other equations for the remaining
scattering processes.

Pv-+PV (1 ):
D«~DIP= re p'F, q'+r4Dq, ~D«P+rqG „~Gp~& (3.4)

pv pv (0-):

G~~ Gp, =s3G~p'F, ~'+$4D a, D„P+s~G~~'Gp„o (3.5)

PV —+ VV (1 ) .

Dud Fba re(Dbd F«D d F 5 )
+r; (G p'D, p Gp'Dorp) (3.6)—

where repeated indices are summed. The diagrammatic
presentation of this equation is shown in Fig. 1. The
relative signs of the terms in the parenthesis are
dictated by the antisymmetric properties of the F's

(2.30) on the left-hand side. Similarly, for VV scattering in
the 0 state, we have
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Pv vv (0-):
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(3.5), and (3.10), we obtain

G, G,p' G—«bG«p =t~F,b'G p', (3.17)Gap Dbc =&b(Du Fa.'+Des Faa")

+s, (G.paD..P+G.p D.bP) (3.7) D„~D,bp D, —pD, b t2F,——a'G, p', (3.18)PP~PP (1-):

(3 8)G.p'G, b =ra(G-«Gpb' —G-b'Gp«')

PP~PV (1 ):
(3.9)G.p'D. a'= rb(G-«'D. a' Gp—«'D. a )

G «G«pb G«—bG«p F,b'——G~p', (3.17a)

D„D,bp D„pD—b =F b'G p'. (3.18a)
PPb VV (1-):

where tj and t2 are some constants depending on r„and
s„.Since we have never dehned the normalization of the
coupling coefficients, we may rede6ne G and D so as to
absorb t~ and t2 (if nonzero) in these equations, getting

G.p F.;=r,o(D..DaÃ Da:D—-')
y.„(G., G„—G.„G„.). (3.»)

We now emphasize that although the constants r„
and s„are dynamical quantities which can in principle
be calculated, but are in practice here undetermined,
many of them are, however, restricted to special values

by the stringent requirement that the coupling co-
eKcients have definite symmetry properties under the
interchange of their indices. These properties, we repeat,
are as follows: Ii,&' totally antisymmetric, G p anti-
symmetric under u~P, and D, b symmetric under
a~ b. We now show that these properties facilitate a
reduction of Eqs. (3.2)—(3.10) to simpler algebraic
relations.

Consider, for example, Eq. (3.2). Interchange of the
indices b and c in that equation leads to

F.;Fb~ r~(F.a'F,p'——F.~'F.b')—
+r2(D.b D.a —D.p D.b ), (3 11)

whereas the interchange of a and c yields

F,b'F, p'= rg (F„'Fbg' F,g'F a,')—
+r~(D„Dbd —D, q Db ) . (3.12)

Making use of the (anti)symmetry properties of F's
and D's, we obtain from (3.2), (3.11), and (3.12)

(1+2rq) (F,b'F,q'+F„'Fqb'+F, q'F b, ') =0. (3.13)

Since rq depends upon the spins and masses of the
particles and need not be Axed at —2, we have, in

general,
F a'F.p'+F-'Fpa'+F p'Fb '=0 (3 14)

From Eq. (3.3) and by similar considerations we get

D, b D,d +D„Dgg~+D, g Db, =0. (3.15)

A different consideration arises in the case of (3.8).
There the permutation of the indices and the anti-

symmetry of the G's demand that ra= 1. In cases such

as this, we allow the constants to take on special values,
as they are required by general arguments. The con-

sequence of rs being unity is

G p'G«b'+G «Gap +G b Gp, =0. (3.16)

We state below the results of the reduction of the
remaining equations in the set (3.2)—(3.10). From (3.4),

F ~'F a+Fdb'F. :+Fa 'F ~ =0 (3.22)

or in the matrix form
C
where (F,)a is regarded as the

element at the ath row, bth column of the matrix F,]
LF. F~jb =F.p'(F.)b . (3.23)

It is clear then that the F's are the structure constants
of a Lie algebra. It dehnes a Lie group up to a, local
isomorphism. The vector mesons being coupled by the
F's must therefore be in the adjoint representation of
the group. The number of vector rnesons 1V is thus
fixed, depending upon the group. If it is SU(n), then
N = rb2 1. Just wh—ich local Lie group it is, the bootstrap
algebra cannot determine uniquely.

We should add that the rank of the internal sym-
metry group is not expected to be specified by bootstrap,
no more than the dimension of space-time can be ex-
pected to be determined by any physical theory. The
question here is, of course, whether the bootstrap
algebra for a more complete system might select a
particular group from the many of a, given rank. .

Another parenthetical remark to be made is that the
problem of nonuniqueness of bootstrap" does not enter
here. The possibility of ambiguity was eliminated from
the very beginning when we assumed tha, t the exchange
of V and I' produces V and I'.

Equation (3.17a) indicates that the G's are also
elements of the Lie algebra characterized by Ii,&'

LG, 3G- =p.F'a.G'. p (3.24)

The matrix representation of G is of dimension 3f, since
there are M pseudoscalar mesons. Thus the pseudo-
scalar mesons also belong to some representation of the
same Lie group. The discussion on the dimension of the
representation will be deferred until the next section.

Finally, from (3.6), (3.7), and (3.9), we obtain

D,&~F„p+Db&~F„"+D&~F a"——0, (3.19)

G p'Db, P+G p'D„P+G p'D aP=O, (3.20)

G~p Dab«+Gp«D~a~+G«~aD~bP=0 ~ (3.21)

We call these equations, (3.14)—(3.21), the &00tztrpp
algebra.

Since F,b' is totally antisymmetric, (3.14) can be
written in the form of Jacobi identity
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The fact that the bootstrap algebra includes the Lie
algebra and that the vector and pseudoscalar mesons
both belong to some representation of the associated
Lie group strongly suggests that the bootstrap dynamics
may provide the physical basis for the existence of
internal symmetry.

We close this section with some remarks on the
nature of the Lie group characterized by F &'. Our
model assumes that the number E of vector mesons
is finite, so that the Lie group must be compact. Also,
we tacitly assumed that every meson interacts with
some other mesons, for otherwise that particle would
have no place in the bootstrap dynamics. (There is
one exception which we shall come to presently. ) Thus
there is no value of a (apart from that exception), for
which F ~'——0 for all other values of b and c. This
implies that the Lie group must be semisimple. The
exception is, of course, associated with the identity
element of the group, which is the only permissible
invariant subgroup of a semisimple Lie group. This
allows for the existence of a singlet vector meson, which
we shall consider in the next section. We see, therefore,
that our bootstrap model can only induce Lie groups
that are compact and semisimple.

IV. PHYSICAL CONSEQUENCES

In this section we consider the consequences of the
bootstrap algebra when the internal symmetry is SU (2)
or SU(3).

The vector mesons, being in the adjoint represen-
tation, form a triplet in SU(2), which we may identify
with the p meson. The coupling coefficient F q' is
proportional to the totally antisymrnetric tensor of
rank 3, e,~,. Although the dimension of the represen-
tation to which the pseudoscalar mesons belong is as
yet unspecified, it is bounded from above on account
of (3.16).This can be seen if we transform the Hermitian
fields to non-Hermitian ones so that (3.16) may be
written in the basis of charge states. Then the resultant
algebraic equation, when combined with the require-
ment of charge conservation, restricts the pseudoscalar
mesons to carry charges &2. Thus the dimension of
the representation for E in SU(2) is &5.

The same considerations applied to SU(3) place the
vector mesons in the octet representation and the
pseudoscalar mesons in a representation no higher than
the 27-dimensional one.

Concerning the coeKcients D,&, it is easy to see
from (3.15) that all the D's must vanish. This follows

mainly from the fact that D & =D&, , so that if the
lower indices on the left-hand side of (3.15) are all

taken to be the same, say, then D, =0. Other cases
can similarly be established. The vanishing of D requires
that tm in (3.18) be zero. Thus the condition for re-
writing (3.18) in the form (3.18a) is not satisfied. All

the remaining relations of the bootstrap algebra are
consistent with D= 0.

For V in the adjoint representation the implication
of D=O in SU(2) is in agreement with the requirement
of 6-parity conserva, tion. Thus, for example, the cou-
pling between pps is forbidden. In SU(3), this result
gives the theoretical foundation for some aspects of the
empirical A-parity conservation of Sronzan and Low."
The problem of introducing a singlet vector meson into
the bootstrap will be discussed shortly. We note here
that under the equal-mass assumption the a&-P mixing
is arbitrary. The result D=O forbids only the coupling
of P to the two V's in the octet representation.

We now turn to the question of whether our bootstrap
allows for the existence of a singlet vector meson V~.
Since the coupling of V~VV is symmetric under the
interchange of the two V's, it does not affect the anti-
symmetric coefficient Ji ~'. Furthermore, Vj does not
couple to PP, though it does to PV. Thus it can readily
be established that the introduction of V~ in the inter-
mediate states of both the direct and crossed channels
of the bootstrap does not alter the Lie algebra (3.23)
and (3.24). Hence the symmetry group characterized
by F &' admits the introduction of the singlet vector
meson. The requirement that V& is, in fact, bootstrapped
in the scattering system of V and P gives rise to new
algebraic relations involving the V~UP' coupling. Since
V~ is a singlet while V is in the adjoint representation,
it follows that P must also be in the adjoint repre-
sentation. We see, therefore, that in SU(2) the m. meson
is an isotopic triplet if there exists a singlet vector
meson ~ beside the p meson. In SU(3) there is an octet
of pseudoscalar mesons if the vector mesons form a
nonet. All these results are in accord with the physical
situation.

In conclusion, we remark that the bootstrap algebra
for mesons not only leads to a Lie algebra describing
the symmetry of the system, but also restricts the
representation to which the mesons can belong. It has
consequences that agree with the conservations of G
parity and A parity. Although the results do not justify
the dynamical assumptions made, they suggest the
usefulness of studying further, as a guide to S-matrix
calculations, the relationsip between certain dynamical
approximations and the resultant symmetry, exact or
broken. Whether or not it is possible to show eventually
that (almost) exact dynamics leads to the brok. en sym-

metry as observed, it is clear that the bootstrap phi-

losophy cannot be entirely empty in its claim to provide
the dynamical origin of internal symmetry of strongly
interacting particles.
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