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A further extension of the multiplet structure of broken U(12) is proposed. The "kinetic supermultiplets"
are represented by reducible tensors and group together separate nondegenerate multiplets. The example of
the lowest kinetic boson supermultiplet is treated in detail. Such a supermultiplet has already been shown

by Borchi and Gatto to provide for a classi6cation of the higher boson resonances. The mass relations are
derived including erst-order SUI breaking. Comparison with the data shows a remarkable accuracy. The
predicted equidistance relation &Lm'(Az)+m'(A&))=nP(B) between the squared masses of the resonances
Ag A2) and B is satisfied to &1.5%. A T=1,Pc=0++ meson at (970+50) MeV and a T=O, J o=1+
meson at (1215&15) MeV are directly predicted. If Z*(1430), x(725), and f'(1253) are included in the
supermultiplet, as suggested by their quantum numbers, and the assumption is made that f has a maximal
mixing with another particle of the same T and J~&, one can predict in addition the following resonant
masses: (1560+50) MeV with T=O, Pc=2++; (1270+30) MeV with T=O, Pc=1+; (1180+190)MeV
and (990&200) MeV both with T=O, P~=1++.The supermultiplet also includes two mixed Z resonances
Z' and Z" with J =1+.One of thein could be Z*(1175) or Q (1215), the other resonance being then pre-
dicted at (1100&40) MeV or (1050&40) MeV, respectively.

1. INTRODUCTION is accurately verified, within the reported experimental
errors (&1.5%). The relation is: —',(As+At) =8, where

As, Ar, and 8 are the squared masses of As(1320),
Ar(1090), and B(1215).In addition, the various mass
relations derived allow for the prediction of resonant
masses and for a consistent quantum number assign-
ment. In particular, we predict a T= 1 scalar meson with
negative G-parity with a mass around 970 MeV and
two strongly mixed, axial-vector resonant states with
T=O and negative G-parity, one of them with a mass
around 1215 MeV. More powerful predictions could be
derived by including some less established experimental
results, but at this time they can only be of rather
tentative character.

&' 'INSIJCCESSFUL attempts to employ symmetry
theories beyond their reasonable limits of validity

have provoked a widespread skepticism about the use-
fulness of the whole approach. In spite of the unfavor-
able current views, we shall propose here a further exten-
sion of the U(12) multiplet structure' by discussing the
properties of possible "kinetic supermultiplets" of
broken U(12).

We shall consider in particular the lowest boson
"kinetic supermultiplet" in view of classifying the
higher boson resonances.

The present work is an extension of a previous
proposal by Borchi and Gatto. ' The "kinetic super-
multiplet" is described by reducible tensor and groups
together separate nondegenerate multiplets.

The quantum number assignment to the component
multiplets reQects the properties of a model of bound
quarks. 3 The mass formula, derived up to first-order
SU3 breaking, accounts for the possible mixing effects
inside the kinetic supermultiplet.

The application of the results to a classification of the
higher boson resonances seems to be very promising.
For the best established resonances, a mass relation,
connecting particles of different component multiplets,

1A. Salam, R. Delbourgo, and J. Strathdee, Proc. Roy. Soc.
(London) A284, 146 (1965);B.Sakita and K. C. Wali, Phys. Rev.
Letters 14, 404 (1965); M. A. B. Beg and A. Pais, Phys. Rev.
Letters 14, 26'7 (1965).' E. Borchi and R. Gatto, Phys. Letters 14, 352 (1965).' M. Gell-Mann, Phys. Letters 8, 214 (1964).

2. KINETIC SUPERMULTIPLETS

We describe a "kinetic supermultiplet" in terms of a
reducible tensor obtained by multiplying a basic U(12)
tensor of an irreducible representation with a "kinetic"
tensor belonging to the 143.

Instead of dealing here with the most general case
we shall discuss the simplest case of the lowest boson
"kinetic supermultiplet. "Let us consider the reducible
U(12) tensor

~&&cD—P (~~)&c(+r 1)~

where (M„)~c belongs for each v to the 143 representa-
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tion of U(12) broken by the Bargmann-Wigner equa-
tions of motion. The amplitudes CR,' satisfy

Thus (A„„,A„„b) together describe a spin-one field.
Similarly, with the definition

pyC& v —0 (2) S Ilbv= @ vIl, b A Ilvb s (gvbC Ila, gIlbItIya, )

pIlC 5, b bmCIl5

p%5Il, b Lm45

(3)

(3')

p' being the particle four-momentum. The notations
are the same as Delbourgo, Salam, and Strathdee':

(R= 1, ~ ~, 16) are the Dirac covariants;
(«.=1, ~ ~, 4) are in particular the Dirac matrices;
T; (i=0, ~, 8) are the unitary spin matrices; A, 8, C,
D are U(12) indices decomposed in U(4)SU(3) ac-
cording to A= (a,a) etc.

We note that the "kinetic" tensor p' plays here the
role of an internal orbital angular momentum and there-
fore is required to carry on one unit of spin in the rest
frame of the particles, which is assured by the trans-
versality condition Eq. (2). Furthermore considering
only states at rest, we could phrase our model entirely
in terms of the nonchiral U(6)U(6) subgroup of
U(12), and the use of y' simply implies that such
orbital angular momentum belongs to a (6*,6) (6,6*)
representation of this group. This is also the behavior
of the kinetic term in a simple quark model. The
imposition of the equations of motion' produces two
sets of equations. The first set is

we obtain

pIlSyb pySIlb bmSIlyb I

p&S„„b= im—S„b

(10)

(1o')

PyTyb PyTIlb= z—mTIvvb I

P"T„yb= imTyb—.
(12)

(12')

The tensors (T„„,T„„b) together describe a spin-zero
field. The reducible tensor 3f~~~, satisfying the condi-
tion Eq. (2), has thus been decomposed into one spin-
zero, two spin-one, and one spin-two components. The
normalized wave functions are given in Table I. The

TABLE I.Normalized wave functions. Each multiplet is specified
by the notation Jpc, where J is the spin, P is the parity, and Q is
the charge conjugation. All amplitudes must satisfy the Klein-
Gordon equation.

Thus (S„„,S„„b) together describe a, spin-2 Geld. Finally
defining

TIlvb 3 (gvbCIla, gIlbCva, )

we obtain

with the supplementary conditions

P'C'b, b=o, P'C', S,b=0

From Eqs. (3), (3'), and (3") we see tha. t (C5 &,C'„b, &)

together describe a spin-one field. The second set of
equations is

pIl@y, b pyC Iy, b lmC Ily, g

2++ Sv„*[(1+p/III) ~y g «(p")p'(T;) o''p b"

A „„'L(t+p/mba. «(p ),b (7',):s,&
A p.' = —A vp') p"A p.i=0

v'lc'fL(t+p/~)~ 3- (v.)p'
—L(t+p/~) 3;"(p/~) p') (T'*).'s "

~+.'t:(t+p/ )~ 3-"(v )p'(T';). s '

with the conditions
p"C'„„,b = imC'„—

P&„,b=0, P'C„,b=0.

We decompose the tensor C„~ according to

C', ,&=S, +Ab, +Tb,a,

(4') notation J denotes a multiplet with spin J, parity I',
and charge conjugation C (C is the charge conjugation
number of the isotopic singlets). All multiplets have
positive parity, as can immediately be seen by directly
applying the parity operation to the tensors. Applica-
tion of the charge conjugation operation4 gives

where (we use the notation
a —@a gapCy )

'(C' . +C', ) -'(g pp /—-')@ .— (6)

Aab 2( Il b @b iv) I

T„b ', (g„b p„pb/m——'—)C—
(6')

(6")

The conditions p&S„b 0, p&A„b————0, and p&T„b Oare-—
each separately satisfied. We define

A „„b
———', (C„„b+C„b„+Cb„„)+i/m(pbA „„), (7)

and obtain, from Eqs. (4), (4'), and (4"),

PlvA y$ PvA Ilg fmA blvd I

&D ~ —
«) g lyly vga(y&) «(7y)pb(T ~) y$b& (13)

iRr

where «) is a phase-factor and eii ———1 for V, T, cia ——+1
for S, I', A. With &=+1, the multiplets described by
(S„„,S„„b), (A„„A„„b), and (T„„,T„„b) are even under
charge conjugation, whereas the multiplet described by
(Cyb, b,Cyb„, b) is odd. The quantum number assignments
are consistent with a model of a bound quark-antiquark
system in relative p wave. ' The resulting multiplets
would in fact have J=l+s, P= (—)', C= (—1)'+I (in
our case /=1). The bound quark-antiquark model thus
provides for a simplest interpretation of our formalism.

p&A „„b
———imA„b. (8')

J. M. Charap and P. T. Matthews, Phys. Letters 13, 346
(1964).
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3. MASS FORMULAS

We shall now derive the mass formula. We first ignore
the SU3 symmetrv breaking, that is we assume the
(mass)' operator to be U(12)-invariant. We can form a
"central" mass term

[0)—Mt A cM BD

equal coefficients, and similarly for [5) and [6). The
"central" term [0)gives a contribution proportional to

1(St.pvS i)+X(gt.yves 4)+ (@t@i)+(@t.siva 4) ~ (14)

the sum [3)+[4)gives

—', (At;~A „„')+8 (I;tC ')+-,'(It;5&,„');

(which defines the normalization of the wave functions)
and the mass terms

the sum [5)+[6)gives

X (St .pvS i) 7 (@.t(yi)+1 (@t.siv4v 4) ~ (16)

[1]=MtpA"BMBggp,

[3)=Mt EAABM pg gp

[5)=Mt pg"BMABgp

[7)=Mt ABM

[2)=MtBDABM pADF

[4) MtBFABMAEEF

[6)=Mt gp"BMBAEF,

[8)=MtBAABMF gEP.

Note that, since we are dealing with a reducible tensor,
saturation of an upper with a lower index in the same
tensor does not always give a vanishing expression. The
couplings [1) and [2) do not contribute, [3) and [4)
by Hermiticity and C invariance must be summed with

the coupling [7]gives

-', (Stp&"S„„')—-', (Atp&"2 „„')+-', (4 ptC');

and, finally, [8) gives

(17)

(4ptCp) . (18)

We now include erst-order breaking of SU3 assuming
that the complete (mass)' operators may be written as
ms= (451+bhs)1 in its SU(3) U'(4) decomposition.
It is easy to see that, in correspondence to the "central"
term [0), one can form two SUs-breaking couplings

[np]=M CD" (hs)A M EB [Pp]=M CD (hs)g MAB

Furthermore, corresponding to each of the couplings [1),[2), ~ [8],one can form four SUs-breaking couplings:

[ng]=Mt FA"'(hs)c MBEE',

[y7]=Mtpc" (hs)A MBg

[ns] MtBDAB(hs)CDMEACE

[Vs]=M'cD" (hs)B'MzA

[ns) M EC (h8)A MFB

[vs]=M'cA" (hs) E'M FBgp,

[n4]=M Bp" (hs)A Mcg

fy4)=M Bp" (hs)z MAC

Mt„EAB(h,)„cMcggp,

&ys)=M pg"'(hs)c MAB'
v

[up)=Mtgp" (hs)A MBC F

(ys) =Mt gp" B(hs) cEMBACF,

[ut) M'F g"'(hs)A—'MBC ",
[y7)=Mt " (hs)c MBA

[ns]=M Bc" (hs)A Mpg

&vs) =M'BA" (hs) E'M Fcgp,

[Pi)= M'F
A "B(hs)BCMCE'p,

[hg]= Mt pA"B(hs) cEMBgcp,

[Ps]=MtBD" (hs)A Mzc

[ps]=M BD" (hs) gcMcA

[Ps]=M'gA"C(hs)c M'FB

[bs)=M EA" (h )c Mpg

[P4]=M CF" (hs)B MAE

[h4)=Mtgp" (hs)c MAE

[P )=M' z"B(hs)BCMAc EP,

[bs]=M' pEAB (hs) CFMAB gc,

[P ]=MtEFAB(hs)BCMCA gp,

[ps]=M gp" (hs)C MBA

[P7]=Mt pE (hs)BCMCAE

[87]=M'p g"B(hs) CEMBAC",

[Ps]=Mt CA"B(hs) BCM p ggp,

[bs]=MtBA"B(hs) pcMC ggp.

The explicit computation is simplified by noting that
(i) the couPlings [n~] [b7] and [ns] [Bs] cannot
contribute and (ii) the following pairs are related to each
other by Hermiticity and charge conjugation: (up, pp),
(us,P4), (P»~4) (Ys,n4), (~»v4), (ns,vs), (Ps,~s), (vs,P6)

(85 ns) (n7 P7) (P7 87) (ns P8) (rs 88). The terms [up),
[Pp) simply give a contribution

give the following contribution to the mass matrix:

(us+Ps+vs+&8) [-'(~'""& ')+-'(C 'C")

+-,'(Ct;5& „&)]Tr[hsfh;, h;)]
+-'.~(us+Ps —Vs+&s)[pv~zs(ps/m)g'& "Ct ,'5

+6&6 "g &, (p~/777) 4~is'At»'] Tr(hs[hi h;)) (20)

np Tr hsfh;, h; 19
where we have indicated by ns the coefficient of

The terms [ns] [88] and fn4] [b4] are found to the coupling [ns], etc. The terms [ns] [85] and
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[as]. [0p] similarly give a contribution

(~,+P,+~,+0,)[-', (St;"S„„')——', (C,tC ')

+-', (C't;s&Cp ')] Tr(hs(~', 4))
—,'V—2(n'p P—s y—p 8p) [p...~'(P /m) C'ps'A;"~

—s ".(P.1'~)g,/t„, ~C; 7»(~sP., 4]). (21)

The terms [ny]. [0q] give

cr7[', (S';-~"S„„') ,'(A—t—~"2 ')+ (C tC')]
X[Tr(A~As) Tr(&;)+Tr(X;Xs) Tr(X;)]. (22)

Finally the terms [ns] ~ [0s] give

ns(C" C' )[Tr(A~As) Trg, ;)+Tr(XAs) Tr(X;)7. (23)

From the above expressions (14)-(23) we cari derive
the complete form of the mass matrix. The following
parameterization turns out to be the very convenient:

(8 2
i
OR i

8 2)=Mp+3a+ (1V+3P)X (24a)

(81 iOR'i8, 1 )=Mp+2n+(1V+2P)X, (24b)

(8,1+iORsi8, 1+)=up+~+(1V+ p)X, (24.)

(8,0 i
ORs [8,0)=m, +1VX, (24d)

(8,2 i
OR'i 1,2)=v2 (1V+3p+3c), (24e)

(8,1
—

i
OR'i 1,1 )=42(1V+ 2P), (24f)

(8,1+
i
OR'

i 1/1+)=V2 (IV +P 3c), — (24g)

(8,0 i
ORs

i 1,0)=42 (1V+3d), (24h)

(1,2 i
ORs

i 1,2)=Mp+3u+D, (24i)

(1,1-iORsi 1,1-)=up+2~, (24j)

(1,1+iORsi 1,1+)=~p+~—D, (24k)

(1,0iOR'i1, 0)=Mp+D+E, (24 )

(8,1-iOR iS,&+&=8m. (24m)

In the above equations X=[T(T+1)—pl '—1];Hap, u,
IV, P, c, d, D, E, and 8 are unknown parameters and the
matrix elements of the (mass)' operator are between
octet (8) or singlet (1) states of the multiplets 2++, 1++,
0~, 1+, briefly denoted as 2, 1+, 0, and 1 . For each
multiplet 2, 1+, 0, and 1 there will be possible mixing
between the isospin singlet of the SU3 octet and the
SU3 singlet. In addition there will be a possible mixing
among the T=-', states of 1+ and 1 . The multiplets 1+
and 1—have opposite behavior under charge conjuga-
tion. However, for the T=xp states (E resonances) the
opposite behavior under C does not prevent possible
mixing effects. We also note the following general
relations satisfied by the matrix elements of the (mass)'
operator:

(y, 1-iORsiy 1-)
=xs[(X,2 i

OR'i 9~2)+p ~1+ i
OR'

I
&',1+)], (25)

where ), ) '= 1 or 8 and

—',[2(8,0IOR'I8, 0)y(8 2IOR'I8, »7
= (8,1+

i
OR'

i 8,1+). (26)

IC'= (cos8')E(1+)+ (sin0')IC(1 —),
E"= (—sin0')E'(1+)+ (cos0')E(1 ) .

(28)

(28')

We note that the states s-(2), m (1+), m. (1 ), ~(0), E(2),
E(0) do not undergo any mixing and they can thus be
identi6ed with the physical particles. The following
relations must however be verified, as a consequence
of Eqs. (24):

-', [s-(2)+s-(1+)7= 7r (1-),
s.(1+)+s.(1-)=~(0)+sr(2).

(29)

(3o)

In Eqs. (29) and (30) and in the following, the particle
symbol is used for its (mass)s. The parameters Mp, n, P,
IV in Eqs. (24) can be expressed in terms of the two
independent masses and of E(2) and E'(0). We next
discuss the states which undergo mixing. We erst note
the relation

It'+E"=E(2)+E(0), (31)

quite analogous to Eq. (30).The Yap
—'gs mixing in the 1

nonet has a peculiar feature. It is uniquely predicted,
from Eqs. (24), to be of the pp-y type, i.e., Eqs. (27) and
(27') are solved, for Jc=1, with cos0= gxs and
sin0=+sp, for any value of the parameters. The squared
masses of g(1 ) and X(1 ) must furthermore satisfy
the relations:

s[X(1 )+~(1 )]=sE(2)+sE(o)

~(1 )=~(1 ).
(32)

(33)

The mass matrices for the qo —qa mixing in the nonets 1+
and 2 are obtainable, from Eqs. (24), in terms of the
parameters Mp, n, P, 1V [which are linearly related to the
two independent vr-masses and to E(2) and E(0)] and
of c and D. Elimination of D (by comparing the two
equations for the traces) gives the relation

[&(1+)+X(1+)+v(2)+X(2)7=xs[2E (2)+E(0)7. (34

Elimination of the parameter c from the quadratic
equations for the determinants leads to an additional
nonlinear relation. The verification of such a compli-
cated nonlinear relation is unfortunately much more
subject to experimental errors than is the veri6cation of
the linear relations (29)—(34).

Before exploiting the detailed consequences of the
above equations we introduce a suitable nomenclature.
We call gp(J ) gs(J ) 7r(Jc) E(Jc) the components of
the singlet + octet with spin J and charge conjugation
C, before any mixing. The mixing between pp(Jc) and
qs(Jc) leads for any Jc to the physical particles

X(Jc)= (cos0)gs(Jc) (si—n0)rip(Jc), (27)

g(Jc) = (sin0)gs(Jc)+ (cos0)gp(Jc) . (27')

The mixing between E(1+) and E(1 ) leads to the
physical particles
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4. COMPAMSON WITH EXPERIMENTAL DATA

TABLE II. Possible assignment of higher meson resonances.

JPC X, g

0++

f(1250)

?

0(390)r
e'(730) 7

As(1310)

8 (1215)

A i(1090)

Ee(1430)?

E,e(1220) 7

E, (1175)7

K(725)

5 A. H. Rosenfeld, A. 3arbaro-Qaltieri, W. H. Sarkas, P. I"
Bastien, J. Kirz, and M. Roos, UCRL-8030, 1964 (unpublished)
R. Armenteros, in Proceedings of the International Conference on
High Energy Physics, Dgbna, 1964 (Atomizdat, Moscow, 1965);
S. Y. Nikitin, ibid. ; G. Goldhaber, Report of the Second Coral
Gables Conference on Symmetry Principles, 1965 (to be
published).

The experimental status of the higher boson reso-
nances is still very incomplete. s However, some remark-
able features already seem to emerge giving support to
our predictions. Table II summarizes some possible
assignments. The strongest support comes from the
column of the T=1 mesons (tr) in Table II. Our pre-
diction, Eq. (29), becomes -', (As+At) =8, and it turns
out to be very accurately verified. From Eq. (30) we
can predict the existence of tr(0) around 970 MeV
(&50 MeV). The existence of such a meson will be a
crucial test of the theory presented here. Such a meson,
with J"0=0+—and T=1, cannot decay strongly into
less than 5 pions. It may be observable as an p-m reso-
nance. Its production cross section may be rather low
because of the smallness of the g-nucleon coupling which
would account for production via g exchange. The rather
preliminary stage of the experiments prevents us from

definitely deciding on a complete particle assignment,
The assignments of the better known particles f(1250),
As(1320), B(1215), and A i(1090), within the proposed
multiplet structure, appear to be on a more secure
ground than the other assignments. The other suggested
assignments in Table II will have to be reviewed when
more complete data are available. We note that, in
contrast to the almost complete lack of experimental
information about possible candidates for the T=O
spin-one mesons, there are a number of possible
candidates among the E resonances. Accurate study
of these resonances, and definite conformations of their
existence, would be very useful. In spite of the rather
unclear experimental situation we have decided-
dira mecessitas —to make full use of the available in-
formation and of our mass formulas to arrive at a
tentative complete scheme of predictions. Such a scheme
is exhibited in Table III. The input data relevant for
the predictions are underlined. Arrows indicate the
predicted resonant masses. Also indicated is a possible

TABLE III. Tentative predictions for higher boson resonances.
The predictions in this table contain an additional assumption:
that the mixing between the two T=O, 2~ mesons is maximal
(like &o-y). The masses are in MeV. The input data are underlined.
Arrows indicate the predicted masses. A possible completion of
the 0~ nonet with o.0 and &0 is also indicated.

Ee (1430+15)

1+ (1270+30) + 8 (1215&15)(1215+15)~
(1180&190)+—

A (1090~1 5)(990+200) +-

0- "(390)' (970~50)e'(730) 7

JPC T=O r=1

2++ ( ) A s(1310&15)f0(1253~20)
Two possibilities:
(i) E'=Ee(1175)

E"(1100&40)

(ii) E'= C(1215)
E"(1050a40)

e(725)

completion of the 0++ inultiplet by including a'(390)
and ee(730). The additional assumption essential to
the tentative predictions of Table III is that the mixing
between the two T=O particles of the 2++ multiplet is
maximal (like the to-|o mixing). On this assumption the
otherwise dominant mode of decay into 2x of the
predicted T=O, 2++ particle at (1560+50) MeV would
be weakly suppressed. As for the T=-,', 1+ and 1++
resonances, we consider in Table III two independent
possibilities, according to the choices of Z*(1175) or
C(1215) as possible inputs. The predictions of Table III
are obtained by using the mass relations that we have
derived. We note that, apart from the (970+50) MeV
T=1, 0++ particle, directly predicted from the assign-
ments of ~2, 8, and A&, and of the two strongly mixed
(mixing of co-io kind) T=O, 1+ particles at (1270~30)
MeV and (1215&15) MeV, there is now a definite
prediction of a T=O, 2++ meson at (1560&50) MeV
and of the two T=O, 1++ mesons at (1180&190)MeV
and (990&200) MeV. However, our hypothesis of
maximal mixing in the 2++ nonet is essential for these
last predictions, and the predicted mass spectrum could
be modified by removing such a hypothesis.

Note added in proof Since the c.ompletion of this work.
a number of new resonances has been reported which
seem to fit quite well the multiplet proposed here. The
predicted T=O meson at (1560+50) MeV decaying
into EE may be identified with the f'(1520) Lsee V.
Barnes et al. , Phys. Rev. Letters 15, 322 (1965)j.

The D meson at 1280 MeV LD. Miller et al. , Phys.
Rev. Letters 14, 1074 (1965); Ch. D'Andlau et al. ,
Phys. Letters 17, 34'7 (1965)] could be identified,
according to the suggested quantum numbers, with the
J ~= 1++, T=O meson predicted at 1180~190 MeV.
Furthermore there seems to be evidence about the
existence of the J~~= 0++, T= 1 meson predicted at
(970+50) MeV LW. Kienzle et al. , Oxford Conference
on Elementary Particles, Oxford, England, 1965, Abstr.
A. 96 (unpublished); CERN—College de France —Institut
du Radium —University of Liverpool Collaboration if'.,
Abstr. A. 143 (unpublished). $


