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We have studied the use of dispersive and unitary methods to calculate higher order corrections to the
weak interactions, with emphasis on the W-meson theory. As a first step, we have examined the ordinary
elastically unitary approximation techniques in the W theory of electron-neutrino scattering (namely, N/D
with one W-meson exchange, Mandelstam iteration procedure, and the strip approximation). We find
that these are incapable of generating a nonrenormalizable amplitude; instead, they simply neglect the
divergences of the perturbation theory at every order. This is a serious weakness of the methods. Our travail
leads to a prescription for the dispersive generation of the nonrenormalizability in the W theory: At least
some contributions from many-boson intermediate states must be included as input information. On the
basis of this prescription, we have made two distinct nonperturbative attacks on the dynamics. In the
first, we have summed the leading absorptive parts of the W-meson ladder graphs, using the Cutkosky rules.
These absorptive parts correspond to putting all the 7 mesons on the mass shell, and are finite at each order
of perturbation theory (although asymptotically ill-behaved), so that no regulator is needed in the sum-
mation. We find an exponentially increasing absorptive part, which contradicts the results of Feinberg and
Pais, whose solutions are bounded. In an attempt to discover the source of this discrepancy, we study
peratization from a dispersive point of view. This study throws serious doubt on the validity of the Feinberg-
Pais program. It is seen explicitly that their non-Hermitian methods (regulator, and an analytic continua-
tion in the coupling) have led them to solutions which violate the positive-definiteness of the mass spectrum.
In the second attack, a new family of exact solutions to the /D equations with singular inputs allows us to
propose, and to reduce to quadratures, a systematic, dispersive, unitary and regulator-free program for
calculation in nonrenormalizable field theory. We show how to use as input into the /D equations any set
of graphs (regardless of their divergence) whose left-hand absorptive part, although asymptotically ill-
behaved, is not itself divergent. The program makes calculation possible in a large variety of nonrenormaliz-
able contexts, including W-meson theory, Fermi theory, derivative coupling theories, and spin-§ and
higher spin theories in general (for example, linearized gravitational theory). This paper is intended as a
sketch of the main results of the work, whereas most of the details will appear in a subsequent series of papers.

I. INTRODUCTION

TTEMPTS to extract information from nonre-
normalizable field theories seem to have invariably

failed to stand the test of time. Notable among these is
the technique of analytic continuation in the coupling
proposed by Arnowitt, Deser, and Cooper,* which was
eventually shown to violate the positive-definiteness of
the mass spectrum.? Also of note are the conjectures
based on perturbation theory and the Lehmann repre-
sentation of Redmond and others,* which have come to
be viewed as outright distortions of the perturbation
theory. Perhaps the most ambitious attempt thus far is
that made by Feinberg and Pais,* whose regulator limit-

* Based in part on Ph.D. thesis, Harvard University, October
1964 (unpublished).

t During this work, the author was a National Science Founda-
tion Pre-Doctoral Fellow.

1 NATO Post-Doctoral Fellow.

1R. Arnowitt and S. Deser, Phys. Rev. 100, 349 (1955); L. N.
Cooper, Phys. Rev. 100, 362 (1955).

2 B. M. Barbashov and G. V. Efimov, Zh. Eksperim. i Teor. Fiz.
43, 1(;%7 (1962) [English transl.: Soviet Phys.—JETP 16, 748
(1963) 1.

3P. J. Redmond and J. L. Uretsky, Phys. Rev. Letters 1, 141
(1958). N. N. Bogoliubov et al., Zh. Eksperim. i Teor. Fiz. 37’, 805
(1959) [English transl.: Soviet Phys.—JETP 10, 574 (1960)]. In
Bogoliubov’s calculation, e.g., the chain graphs of the Fermi
theory are summed by adding the absorptive parts first. We know,
however, that the chain graphs themselves have no sum (except
of course the trivial vanishing one in a regulator limit—see Ref. 4),
so that it is difficult to view the calculation as more than a perhaps
suggestive distortion of the original perturbation theory.

1G. Feinberg and A. Pais, Phys. Rev. 131, 2724 (1963). G.
Feinberg and A. Pais, Phys. Rev. 133, B477 (1964). These articles
will henceforth be referred to as FP I and FP II.

ing process has remained sufficiently ill-understood to
guarantee interest in the theory.

We study the problem here (and in the subsequent
series of papers) within the framework of S-matrix
theory, using analytic and unitary methods.

We wish to point out that an analytic and unitary
context is a very natural one in which to study a theory
plagued with infinities.

(1). One is in general concerned with the calculation
of transition probabilities. The divergences yielded by
perturbation theory for these quantities are glaringly
inconsistent with unitarity, which demands essentially
that all probabilities come out between zero and one. It
is suggested then that one could rid the theory of
divergences by calculating with an approximation
scheme unitary at every stage.

(2). Although the amplitudes themselves appear di-
vergent in perturbation theory, a great many of the
absorptive parts of these amplitudes are quite finite,
even in perturbation theory (although usually asymp-
totically ill-behaved). For example, in the W theory, the
absorptive part of any set of ladder graphs (with all the
mesons on the mass shell) is finite. (This follows because,
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after having cut all the boson lines, there are no more
closed loops, and hence no divergence. See Fig. 1.)
Hayving finite absorptive parts to manipulate gives one
something of a handle on the problem. For example,
one might hope that the amplitude has a form some-
thing like

A(s,g2)=fm cos(gs’)ds’/s'—s 1)

(which has no power-series expansion in the coupling g%);
if such were the case, one would need only to add up the
termwise finite perturbation expansion for the absorp-
tive part, and then Hilbert transform to obtain the
amplitude. Life does not turn out to be this simple, but
this indicates the sort of use to which we intend to put
the finite absorptive parts.

This paper is grouped into three parts. Part II givesa
discussion of the main results of the work. Part III gives
a brief amplification of some of our statements concern-
ing the Feinberg-Pais (FP) theory. Part IV sketches
the method of solution of the singular N/D equations
that arise in our dispersive and unitary calculational
program.

We emphasize that this paper is meant to give the
reader some idea of the nature of the work, and to sketch
some of the main results. We apologize to the reader for
the cavalier fashion in which we, of necessity, will
present most of the material. The bulk of the details
will be published in a forthcoming series of articles.

II. DISCUSSION OF THE MAIN RESULTS
S-Matrix Formalism and Preliminaries

We have set up the necessary .S-matrix formalism for
electron-neutrino scattering, with attention to maximal
nonconservation of parity, kinematical singularities in
the invariant functions, the crossing matrices, the circle
cuts in the partial waves, and the neutrino long-range
force. The main results of these essentially kinematical
considerations are these:

(1). There is no neutrino infrared divergence, so that
one can, in general, hope to use ordinary S-matrix tech-
niques in the problem. This comes about because of
the decreased phase space available to a neutrino-anti-
neutrino pair at low energies relative to that available
to a photon at low energies. For example, in the neutrino
pair “bremsstrahlung’ during electron-neutrino scatter-
ing (see Fig. 2), the probability of emission of the
neutrino pair at low energies (k,&") goes like

In|k+k'/k—k' | kdk B'dE’ )

to be compared with the usual dk/% emission probability
for a low-energy photon in bremsstrahlung.

(2). Although the Froissart high-energy upper-bound
proof’ breaks down in the presence of zero-mass parti-

5 M. Froissart, Phys. Rev. 123, 1053 (1961).
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F16. 2. Neutrino pair
“bremsstrahlung.”

cles, we are able, by combining the assumption of
Mandelstam representation and considerations like
those of Low and Greenberg,’ to establish bounds only
slightly weaker than those of Froissart. One sees ex-
plicitly that the long range nature of the neutrino force
is responsible for the weakening. The presence of the
neutrino force gives a Lehmann ellipse that goes for
asymptotic energies like

a(s)=1+4N/s? 3)

instead of the usual a(s)=1+4N\/s, which follows from
the Mandelstam representation in the absence of mass-
less particles. The relation (3) is, in turn, due to the
fact that, in the presence of neutrinos, double spectral
functions can be asymptotic to the real s axis (whereas,
usually the asymptote is s=s5,540).

(3). Although the Born term in the W theory exhibits
essentially the usual ¢?-type threshold behavior in the
e-v and e-# channels, there are serious reasons to believe,
even under the assumption of Mandelstam representa-
tion, that the full amplitude does not. This comes about
because the left cut in the partial waves of the e-» (e-9)
channel from elastic unitarity in the e-7 (e-») channel
comes all the way up to threshold, wrecking the usual
threshold-behavior arguments. This is of possible ex-
perimental consequence.

The Elastically Unitary Approximations—Prescrip-
tion for Dispersive Generation of the
Nonrenormalizability

Using this S-matrix formalism, we have discovered
that it is not possible to generate a nonrenormalizable
electron-neutrino amplitude from the (one-W-exchange)
Born term and unitarity statements that involve only
leptonic intermediate states (such as, for example,
elastic unitarity). In particular, we have found the N/D
equations (with elastic unitarity in s) for one-IW-meson

Fi16. 3. One-W-meson
exchange.
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6 0. W. Greenberg and F. E. Low, Phys. Rev. 124, 2047 (1961).



Fi1G. 4. The box graph
in the W theory.

exchange (see Fig. 3), the Mandelstam iteration pro-
cedure, and the strip approximation” powerless to gener-
ate the termwise divergent amplitude characteristic of
the problem. By Mandelstam iteration procedure, we
mean the single-channel problem assuming the Born
term, elastic unitarity in the e-» channel, and Mandel-
stam representation.

The methods do yield amplitudes that are unitary and
dispersive, but they are regular at g2=0. In fact, we
show that these methods simply neglect the divergences
of the perturbation theory at every order. In order to
have any confidence at all in a solution, we feel that its
perturbation expansion must reproduce, at least in part,
the divergences of the original perturbation theory; that
is, we are interested in using the dispersive and unitary
techniques to sum as much of the original perturbation
expansion as possible. From this viewpoint, the failure
to generate nonrenormalizability on the part of these
methods is a very serious weakness, and for this reason,
we are forced to reject all the ordinary elastically unitary
approximations.

There are two equivalent ways of understanding this
failure. The more mathematical way is as follows: It
turns out that the important nonrenormalizability of
the ladder graphs is essentially contained in single
spectral functions in the cross channels which find their
source in many-meson intermediate states. For example,
in the case of the box graph of Fig. 4 one can establish
the Mandelstam representation

o (1)t
e t’2(t’—t)

at p(s )
4
im? S /;Mz T (s —s)(t'—~t) @

where  is the mass of the electron and M is the mass of
the W meson. The constants @, and a; are divergent in
perturbation theory (a, like some cutoff mass squared)
and p,(7), the single spectral function, goes asymptoti-
cally like # It is clear that elastic unitarity in the s
channel, such as is used, for example, in the N/D based
on the Born term, or the Mandelstam iteration pro-
cedure, will fail in fourth order to calculate the infinite
constants, or the asymptotically ill-behaved single spec-
tral functions. (Elastic unitarity in one channel is always
inadequate to calculate things like a single spectral

F(s,))=aytait+— /

7 As a general reference on these techniques, see S. Frautschi,
Regge Poles and S Matrix Theory (W. A. Benjamin, Inc., New
York, 1963).
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function in a cross channel.8) To calculate p,(z) in this
case from analyticity and unitarity, one would need to
use the two-meson intermediate state in the unitarity
statement for the 7 channel. This is essentially the situa-
tion in higher orders of the ladder graphs as well. One
finds in general that, when N mesons are exchanged in a
ladder graph, there are single spectral functions in the
cross channels (¢ and ), from cutting all the boson lines,
which go asymptotically like

o) (x)~xN-1, (5)

(For NV even, x should be understood as ¢, for NV odd, as
u.) In fact, the “leading” divergences® of the perturba-
tion expansion of the ladder can be understood as arising
from attempts to do cutoff but unsubtracted Hilbert
transforms over these asymptotically pathological single
spectral functions

A2 _(N) / d J
/ P vy ©

X —x

This is the dispersive mechanism behind the generation
of the most singular terms of the ladder. It is clear from
this that elastic unitarity in s (the e-» channel) will be
inadequate to generate the nonrenormalizability because
it is inadequate to calculate single spectral functions in
the cross channels in general. We emphasize that these
perturbative contributions to the single spectral func-
tions arise from many-meson intermediate states, so
that one would need to include many-meson intermedi-
ate states in the unitarity relations in the fand % channels
in order to have any hope of calculating the single
spectral functions from analyticity and unitarity. Be-
cause the single spectral functions are connected so
intimately with many-meson intermediate states, it is
not likely that they will be generated in a strip approxi-
mation either (which is really only an attempt to “add”
elastic unitarity in several channels in a consistent way,
and actually includes no explicit information about
multimeson unitarity).

There is also an equivalent but more intuitive
basis for expecting the elastically unitary approxima-
tions to fail to generate nonrenormalizability: the non-
renormalizability of the W theory is intimately con-
nected with the asymptotic pathology of the g,gx term
of the I¥ propagator

\ g#x—qm/ﬂﬁ
g @— M :

™

(The gugx term identifies the W as a transverse vector
meson.) In S-matrix techniques, however, we use the
Born term on the mass shell, that is (7) sandwiched
between spinors. Because

ku)(k)=0, puiy=m (8

8'S. Mandelstam, Phys. Rev. 115, 1752 (1959).
% As defined, for example, in FP L.
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the gupn=(ps'—p1)u(pe’—p)r part of the Born term
(Fig. 3)

ey (p1) 1" 1) (P2) ) (P2 )Y (0) (P1) Gugn
=my(p1 )y (P2) oy (P )ur(p1)  (9)

is really proportional simply to m?2. On-the-mass shell,
all the asymptotic pathology of the g,g, term has been
removed. The asymptotic behavior of the Born term is
no worse than if we had used a Gupta-Bleuler vector

meson
glgn/?—M?]. (10)

If all the information we have about the W meson is the
mass-shell Born term, we will have essentially failed to
distinguish the W, intrinsically a transverse vector
meson, from a Gupta-Bleuler vector meson, which in
general does not lead to a nonrenormalizable theory.
(For example, massive electrodynamics is certainly
regular at zero coupling.) Notice that the unitarity
statements usually assumed in addition to the Born
term do not give any further information about the
transverse-vector nature of the W. That is, elastic
unitarity in the e-» channel (see Fig. 5) only gives us
more information about the leptons, as only lepton lines
are cut. Adding, in a consistent fashion, elastic unitarity
in the e-7 channel, as in the strip approximation, does
not remedy the situation either. We see that the one-W-
exchange Born term and unitarity statements involving
only leptonic intermediate states simply do not provide
enough input information into a theory to distinguish
the transverse W meson from a Gupta-Bleuler meson
(and hence to distinguish the W theory from a com-
(and hence to distinguish the W theory from a completely
renormalizable one, like massive electrodynamics).

Both of these explanations for the failure of the
elastically unitary approximations to generate nonre-
normalizability point unequivocally to a prescription for
the dispersive generation of nonrenormalizability. To
generate dispersively a nonrenormalizable lepton-lepton
amplitude, at least some contributions from many-
meson intermediate states must be included as input
information. This further information about the W
meson, obtained by cutting W lines, will then fully
specify the transverse nature of the W meson, and auto-
matically generate at least some nonrenormalizability.
In particular, to generate the leading ladder divergences
in the solution, it is necessary to include the full single
spectral functions as input.

We have used this prescription to launch two distinct
nonperturbative attacks on the dynamics.

The Single Spectral Functions and the
Feinberg-Pais Programme

In the first attack, we have used the Cutkosky rules
to sum the leading absorptive parts of the ladder graphs
in order to obtain the single spectral functions men-
tioned above. These absorptive parts involve cutting all

B 1573

e v e v e v
]m % : % x %
e v e v e v
Fi1G. 5. Elastic unitarity in electron-neutrino scattering.

the W lines, so that, as explained in the Introduction,
they are finite even in perturbation theory, and no
regulator is needed in the summation. Although, as
shown in (5), the perturbative contributions to the single
spectral functions are increasingly pathological at high
energies for larger V, one might hope that (as discussed
in the Introduction) the perturbation series sums into
exponentially decreasing or oscillating single spectral
functions. If such were the case, one could use these
single spectral functions as input into a Mandelstam
iteration procedure (in the e-» channel), finite at every
order of the iteration (because of the good asymptotic
behavior of the input). This would systematically con-
struct a unitary double spectral representation which
would contain all the nonrenormalizability of the ladder
graphs, as explained in the section immediately above.
Acutally things do not turn out so simply. We find that
the single spectral functions are exponentially increasing.
This is the first subject discussed in Part IIT of this
paper. We are thus forced to give up any simple hope
of constructing a double spectral representation for the
amplitude.

We notice, however, that we are really only trying to
ask for the absorptive part of the Feinberg-Pais solution,
whose modulus, after the regulator limit, is certainly
bounded. In the latter section of Part III we discuss
this obvious discrepancy. A brief study of the analytic
structure of the FP solutions will reveal the following
properties:

(a) The perturbation expansion of the imaginary part
of the FP solutions does not, in general, agree
with the imaginary part of the original perturba-
tion expansion—even though the latter is well
defined at every order.

(b) The FP solutions violate the positive-definiteness
of the mass spectrum, in that they include a con-
tinuous spectrum of imaginary masses.

Further details (beyond Part IIT) of the calculations,
and further calculations, will be given in the forthcoming
papers. In particular, we will point out that this break-
down of field-theoretic principle can be thought of as
arising from the use of non-Hermitian intermediate
steps (regulator, and an analytic continuation in the
coupling) in their program. The less one learns is that,
once the Hermitian structure of a theory is damaged
(such as, for example, with a regulator), one is not
necessarily guaranteed the ability to regain a Hermitian
theory (for example, on taking the regulator limit). The
fact that there is an intrinsic analytic continuation in
the coupling in the calculation allows us to draw an



B 1574 M.

que% Y \(‘/ \/

\
{ ] + (:}

0

+ 4 oo

-

/\

Fi1c. 6. The Feinberg-Pais leading singularity approximation.

analogy between, on the one hand, the methods and
shortcomings of peratization, and, on the other hand,
the methods and shortcomings of the previously pro-
posed program of Arnowitt, Deser, and Cooper.

A Unitary, Dispersive and Regulator-Free
Calculational Program

From the asymptotic behavior (in perturbation
theory) of the single spectral functions, that is, Eq. (5),
one can show that, in the partial waves of the e-» (or e-7)
channel, the left-hand cuts associated with multiple-
meson exchange increase like powers of the energy far to
the left. Moreover, the asymptotic behavior is pro-
gressively worse for the cuts associated with more
mesons. It turns out that the left-hand imaginary part
associated with the exchange of V mesons goes asymp-
totically like

(11)

where » is the three-momentum squared in the center-
of-mass frame. In Part IV of this paper, we show how
to use such singular left-hand absorptive parts as inputs
into the N/D equations. The solution to such equations
can be found in closed form. This allows the proposal,
and the reduction to quadratures, of a unitary, dis-
persive and regulator-free program for calculation in
nonrenormalizable field theory. In general, we can use
as input into the N/D equations any set of graphs (re-
gardless of their divergence) whose left-hand cuts,
although asymptotically ill-behaved, are not themselves
divergent. For example, in the W theory, we can use as
input the left cuts of the ladder graphs corresponding to
any finite number of 7 exchanges. Some nonladder-type
graphs can also be used as input. Similarly, one can
calculate in Fermi theory, theories of higher spin in
general, and theories with derivative coupling.

a@® (—p)~ VL

III. THE SINGLE SPECTRAL FUNCTIONS AND
THE FEINBERG-PAIS PROGRAM

Exponential Increase of the Single Spectral Functions

The first thing we want to do in this part is find the
single spectral functions mentioned above.

In their first paper, Feinberg and Pais make a “most
singular” approximation on the ladder graphs of Fig. 6.
This pictorial representation emphasizes the fact that,
in this approximation, the only surviving imaginary
parts are those associated with many-meson intermedi-
ate states. The fact that it also reduces to a one-dimen-
sional integral equation hints that the approximation

B. HALPERN

is an ideal short-cut to the single spectral functions.?
To do this, we need only cut all the meson lines (see
Fig. 7).

The equation for the trace of the amplitude in this
approximation of Fig. 6 is'!

4—q2/M2:|

() (g2) = o2
T =g

ig? A4’ T®(q'?)
g /q (g 12)

Temar) (-

in which all the propagator denominators, and hence all
the absorptive parts, are from W exchange. We are not
at present concerned with the solution of Eq. (12). In
fact, it was pointed out in FPI that the equation is ill-
defined without some regulator limiting process. We are
interested in it only as a convenient short-cut to the
perturbative contributions of each ladder graph to the
single spectral functions.

Thus, we want to calculate the absorptive part of
each term of the (termwise divergent) perturbation
expansion

4_q2/M2

E(2)= o2 —————
rew=¢(— )
ig* dq

/4-— qYM 2)
Cemae ) (g—gp-ue\ -

) 2 a4’ 407
(o) ) e ] o
(2m)im? (g—9)—M*J (¢—q")—M*

(13)

The discontinuity across the positive ¢* axis of each of
the graphs of Fig. 6 is obtainable from Eq. (13) by the
usual Cutkosky rule

[o*— M +ie] — —(2ri)0(g0)5(¢*— M%),  (14)

This gives us the (finite) discontinuities (above axis

v \ \ / Nt/
{ \ // \\{// v
q"’T Im = + ( + X+
! /\ AN
e | / \ FARTAN

F1G. 7. The finite-imaginary parts of the perturbation series
in the Feinberg-Pais approximation.

10 That the most singular approximation of FP should lead to
the single spectral functions is not surprising. Remember we have
shown that the leading divergences of the ladder can be thought
of as Hilbert transforms over the single spectral functions.

1 Qur notation, to be given fully in the forthcoming papers,
does not differ appreciably from that of FPI.
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minus below axis)
DTH(¢7]
=3g%(—2m1)0(0)0(¢°—
1g?
:r_'
2r)M?
Xd[(g—¢)— (15)

We can sum the discontinuities in the integral equation

g2
4,/
(2r)3 M2 / ¥

= 2] ImT® (g'2),

M?)

(3¢")(—2mi)? f dq’ 0gi—av)

G ICHTCC IO R

ImT (g2) = —3g%(q0)3(¢*— M) F

X 0(q0—g0")8[(g—¢") (16)

where we have introduced the imaginary part on top of
the ¢? axis D[TH) (¢2) =2 ImTE)(g?). In the function
ImT &) (¢%) we are summing, simultaneously, the single
spectral functions in both the e-» and »-5 channels.
Substituting

+00
/ dtg — / &g f AN (NP —g?)

ImT®(g%) =0(go)[y+(s)—3g°md(s— M?) ],

where s=g¢? we obtain a one-dimensional integral
equation for y,(s), the high-energy form of which is

7

sy+(8)=TF3gkmwsTF g% / ds’ (s—s")y.(s");
0 (18)

k=m2/Q2m)M?.

This can be solved immediately by Laplace transform
and we obtain

J1
yi(s)=3g21r(g21<)”2s_1/2{I }EZ(ZgZKs)“"’]. (19)

We find, in particular, that Im7") exhibits exponential
increase at high energies.

Actually, the integral equation for the absorptive part
[Eq. (16)] can be solved exactly at all energies. The
equation is algebraic in (4-dimensional) Fourier trans-
form space, and we obtain simply!?

—3g% dty e WAD (y, M?
T (g?) = g / y (,M?) . @0
2 1=(g%/ MA) AP (y,M?)

Putting M =0 in AD)(y,M?), i.e., taking

)
A (9, M?) — —
4m? y2—ieyo

(21)

12 A (y,M?) is defined as in S. S. Schweber, Relativistic Quan-
tum Field Theory (Harper and Row, New York, 1961)
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gives the solutions Eq. (19). (Putting ¥ =0 in A™ is
equivalent to asking for the high-energy behavior.) - {

We want to emphasize that the perturbation expan-
sion of the solutions (20) reproduces exactly the leading
absorptive parts of the perturbation theory [i.e., the
iterative solution of Eq. (16)]. The structures (20) each
contain a 6 function at M? and an infinite series of
branch points, the first at 432, the second at 912, etc.,
with the cuts going to the right. There are no contribu-
tions from s<M?2 For reasons which will become clear
below, we make the following obvious statement: the
fact that there is no imaginary part for s<0 is simply
the positive-definiteness of the mass spectrum. All this
is just what one would expect of the absorptive parts of
such many-meson intermediate states; in this simple
approximation, the scattering amplitude has one-dimen-
sional, propagator-like analyticity propertles In the
approximation where we take M =0 in the meson
propagators (high energy), all the cuts begin at s=0and
go to the right. Of particular note is that the iterative
solution of the equation for Im7', Eq. (16) is, at least
in the high-energy (M =0) approximation, a series of
positive-definite terms, and could hardly help but add
to an increasing exponential.

We emphasize that, at least in the case of 7¢, there
is an obvious discrepancy between our results and those
of FP. Their T, after the regulator limit, is bounded
at high energy and yet our calculation certainly sums
the absorptive parts of the perturbation theory, each
term taken in the FP leading divergence approximation.
What then are the imaginary parts that FP obtain in
place of the correct (20)?

Analytic Structure of the FP Solution

The equation for the trace (12) has the immediate
solution by Fourier transform?!?

g / dty’ e [4+ (/M) JAr(y)

T (g2) ==
@ 2 14 (g%/2M*) Ar(y)

(22)

This is not well defined, but we formally introduce, with
FP, the identity ((*+M2)Ap(x,M?)=—2i6(x) in
order to rewrite

3g? e WAp(y)dty
) (¢2) =—
rew= | TR

where we have set, with evident lack of rigor,

/ etavy @ (y)d4y (24)

16 (822D Ar(y)

We know from FPI that this is equivalent to their

limiting process. For simplicity, we make the zero-

18 Ap(y,M?) is also defined as in Schweber.
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boson-mass approximation
Ap(x,M?) — —(1/202)1/x2—ie (25)

and use the FP reduction formulas to rephrase (23) as

3g2 2 yd(y?) J
T(i)(qz)z_g_/ yd(y?) 1(yq)’ 150
29 Jo  ¥*FN—ie
—3g% °yd(y?) J1(y9)
= » ¢#<0 (206)
ZQ 0 —y2:':)\2’—’i6

where ¢=(¢?)!/? when ¢2>0, §=(—¢2)'/? when ¢2<0,
and \=g2/(2w)*M2 The imaginary parts of the solutions
are then simply

3g2mA
ImT®)(s)=—23g%rs(s)+

ImT ) (s)=—3g2rd(s)

sTU2T (AsV)0(s)
o))
3g*mA
2

(=) - LN =) 30—,

where again, s=¢2 We see that the imaginary part of
T for positive s, found above to be a series of positive
terms which summed to an exponential increase, has
been replaced by zero after the regulator limit. [The
imaginary part of T™ agrees with what we found
above.] Worse still, we know that the original perturba-
tion expansion had, in both cases, imaginary parts only
for s>0. This reflected the positive-definiteness of the
mass spectrum. Thus the vanishing of the right-hand
imaginary part and the appearance of one on the left
in T(s), indicates not only a serious distortion of the
original perturbation series, but also a violation of the
positive-definiteness of the mass spectrum.

It can be shown that, also in the case where we keep
nonzero M in the propagator, an imaginary part arises
on the left in 76

It is clear that in finding solutions, FP have (a) dis-
torted the original absorptive parts and (b) ended up in
a space without a positive-definite mass spectrum. How
can such things come about? In the forthcoming papers,
we will show that the violation of the mass-spectrum
constraint arises through the use of non-Hermitian steps
(regulator, etc.). As we shall show, once the Hermitian
structure of the theory is broken (a regulator introduces
particles with imaginary coupling), one has, in general,
no guarantee of being able to regain it (e.g., by taking
the regulator limit, etc.).
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In particular, we shall show that one can obtain the
(nonexponential but mass-spectrum-violating) FP ab-
sorptive part from our (exponentially increasing) ab-
sorptive part by an analytic continuation in the complex
regulator plane. The two absorptive parts are each
other’s analytic continuation in complex regulator.
Another way of phrasing the situation is that the regu-
lator-limiting process exploits a lack of analyticity in the
complex regulator plane. Roughly speaking, there is a
branch point on the real axis in the complex regulator
plane (see Fig. 8). That is, the ladder graphs start at
A=+ o0 +1e on top of the cut where the absorptive part
is exponentially increasing (and the real part is ill-
defined). The peratization prescription turns out to be
equivalent to the following: lower the regulator mass
along T past the branch point at Ao, solve the integral
equation there, and then come out of the regulator plane
along the dottom of the cut. Unfortunately, although the
limit on the bottom of the cut is defined and bounded,
it violates the mass spectrum constraint. We learn how
dangerous regulators can be. The fact that a limit exists
on the bottom of the cut does not automatically
guarantee Hermiticity of the resulting theory.

Further details, parallel calculations, and further
comments will be given in the forthcoming papers. In
particular, we shall show that the breakdown of the
mass spectrum constraint can alternatively be thought
of as arising from another type of non-Hermitian inter-
mediate step, an intrinsic analytic continuation in the
coupling. (This is the small imaginary part FP are forced
to give to the coupling in order to find a path around the
pole they find near the light cone in coordinate space.)
In this way we will be able to draw an analogy between
the methods and shortcomings of, on the one hand,
peratization, and, on the other hand, the methods and
shortcomings of the previously proposed program of
Arnowitt, Deser, and Cooper. We shall also discuss the
rotation of the FP solutions into Euclidean space where
they turn out to be complex rather than real as they
should be.'* This is another manifestation of the break-
down of field-theoretic postulate after the regulator
limit. Finally, we will make some comment on the break-
down of field-theoretic postulate in calculations which
have obtained the FP low-energy modification in an
ostensibly regulator-free manner (with the Bethe-
Salpeter equation). One is led to wonder whether in fact
any of these solutions is really free of field-theoretic-
postulate breakdown (and non-Hermitian intermediate
steps).

IV. A DISPERSIVE, UNITARY, AND REGULATOR-
FREE PROGRAM FOR CALCULATION IN
NONRENORMALIZABLE FIELD THEORY

It was mentioned in Part II that the left cuts (in the
partial waves of the e-» and/or the e-# channel) corre-

14 J. Schwinger, Proc. Natl. Acad. Sci. 44, 956 (1958).
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sponding to multiple-meson exchange, grow like powers
of the energy far to the left [see Eq. (11)7]. We want to
indicate briefly here how to go about solving N/D
equations with such singular left-hand discontinuities
as input.

Arguments will be presented in the following articles
for taking the N/D equations in the particular form,

N@p)=-

T J—0

H

1 (") D()dv
i

28
NG )p()dv' =

D(v)= W/; —;'(_V:T,

where » is the 3-momentum squared in the center-of-
mass frame, a(v) is the input imaginary part of A=N/D
on the left, and p(») is the density-of-states factor. This
latter has the property p(v) — 1 as y — . We are con-
cerned with the solution of these equations when

a(—v)~N™ as y—o» (29)
(m a positive integer and A a constant). It is quite clear
that solutions to (28) cannot be regular at A=0, as the
“iterative” solution diverges term by term. For sim-
plicity here, we will take

a(—v)=Nn"00)(v,=0); pl)=1.

This clearly corresponds to a ‘“most singular” approxi-
mation to the N/D Egs. (28), in that we keep the most
singular (large ») parts of a(v) and p(»). In the forth-
coming article on this technique, we will show how to
use this “most singular” solution as the first step in an
iterative approximation scheme to solve (28) in general
[i.e., for inputs like (29) in general rather than only the
restricted (30)7].

In this “most singular” approximation, then, the
equation for the D function is

P (.

0 V(' —v) v

(30)

D(—y)= ].—I—i
2

The substitutions

a(—v)=Nm; D(—»)=®(%), v=ef, »>0 (32)
yield
—+00 nmq;.
()= 14 / e (nf)(n E)dn. 33)
e”l—_

In Fourier transform space, this goes over into the
finite difference equation

P(w)=8(w)—\ cschr(w—ie)B(wtim);
(34)

m

1 e
fb(w)=§—- / e oB(£)dE.
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A necessary condition that the inverse Fourier trans-
form of a solution to the difference equation ®(w)
actually solve the integral equation (33) is that ®(w) be
analytic in the “period strip” 0<Imw<m. We shall
develop a technique for solving (34) that guarantees
this.

Toward this end, we first consider the homogeneous
equation

®y(w)=—\ cschr(w—ie)Pu(wtim). (35)
If we look for a solution in the form
Pp(w)=expF(w), (36)
we find the difference equation for F(w)
F(w+im)—F(w)=—In[—\ csch?r(w—ie)]. (37)

In Fourier transform space this is algebraic and we

obtain
00

dw In[ —X\ csch?m(w—1ie€) Je™«®
F(x)=— ;

1—em=

. (38)
F(x)= / e'*F(w)dw.

Using the identity

Lo
f dw e# In[ cschr(w—1¢) ]
- P2

——————+ (v Ind+72%)8(x) (39)
x(l )

e—z

we find in the end

iw
®y(w)=exp ’—— In(4\)
m .
dx etz

+2P/:° x(l—e—z)(i—em)} -0

Now we turn to the inhomogeneous equation. To
solve this, we guess a variation of parameter solution of
the form

B(w)=bx(w)G(w). 41)

Substituting this into Eq. (34), and using Eq. (35), we
find that G(w) satisfies the “Green’s function” difference
equation

G(w+im)—G(w)=—P51(0)6(w). (42)
As it turns out, one can show that
» oo dx
q>]1 (O)=exp{ *“2P[w m} =m. (43)
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\\, Fi16. 9. Simplest input for a possible
W-meson bootstrap.

Equation (42) can be solved immediately by Fourier
transform, and one obtains

m 00 eiwz
Glw)=— / .
2t J_ 1—e™®

We can take, of course, any of three prescriptions at the
pole x=0. We choose the prescription in the following
way: In order to guarantee that D(v) is real on the left,
as it should be, ®(w) must have the symmetry property

(44)

B(w)=d*(—w) (45)
for real w. It is clear on inspection that ®x(w) already
has this symmetry, so to guarantee Eq. (45) we must
choose the Green’s function with this symmetry as well.
Thus we use the principal value prescription in evalu-
ating Eq. (44). We obtain finally, doing the inverse
Fourier transform,

oo r
D(—v)= %’L/ e dy coth—(w+1ie)
o m

dx e—izw

s o
Xexp {— IndN+2P / (46)

m o 21— (1—em) |

Notice that the final ®(w), that is Eq. (40) times Eq.
(44), is transparently analytic in the period strip, as
required. The exponentiated Fourier transform in Eq.
(46) can be evaluated in terms of logarithms, diloga-
rithms, and hypergeometric functions, so that, really,
only the final inverse Fourier transform remains to
be done.

In the forthcoming papers on this technique we will
prove that Eq. (46) is a solution of Eq. (31) in a less
cavalier fashion and explore in detail the properties of
the solutions. Of particular interest will be the lack of
uniqueness of the solution and the fact that the solutions
contain ghosts. In the case of the former, we will show
that the solution exhibited here [Eq. (46)] has the
distinction of being the (smooth) regulator limit of the
(regulated) perturbation expansion of (31), and we will
advance reasons why we feel, for this reason, it is to be
preferred over any other solution.

Because of the ghosts in the solutions, our program
is evidently having some of the same sort of trouble as
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we have found in the FP program (and which was pre-
viously found in the Arnowitt program). We shall ad-
vance arguments as to why our ghosts may be less
serious than the failures in the other theories, and even
try to interpret the ghosts as indicating an oscillatory
left-hand cut in the full theory. However, when faced
with repeated breakdown of field-theoretic postulate
like this, one cannot help but also wonder if it is even
possible to require all the postulates of local-field theory
in the presence of nonrenormalizability. We will briefly
discuss this point as well in the coming papers. Of
interest also will be the discussion of whether or not one
has a principle of the dominance of nearby singularities
in nonrenormalizable field theories.

The method of solution outlined here allows one to
use any asymptotically ill-behaved set of left-hand dis-
continuities as input into the N/D equations. This
makes possible dispersive, unitary, and regulator-free
calculation in a wide variety of nonrenormalizable con-
texts. For example, in the W theory, the left cuts (corre-
sponding to multiple-meson exchange) of any finite
number of ladder graphs may be used as input. Some
nonplanar graphs can also be included. In much the
same way, we can also calculate in the Fermi theory
(e.g., by exchange of some number of two-lepton
bubbles), theories of higher spin in general, and theories
with derivative coupling. For example, the program
makes possible the use as input of one (or multiple)
gravitaton exchange, or one (or more) spin § particle(s).
The natural advantage of this approach over that of
summing the ladder graphs is that we obtain mass-shell
solutions for all energies. Possible applications include,
e.g., low-energy (elastic) lepton-lepton scattering with
exchange of some finite number of W mesons or lepton
bubbles. A W-meson bootstrap is possible in principle
with the technique, using, for example, the graph of
Fig. 9 as input in the /=1 wave of the e7 channel. These
applications are presently in progress.

We emphasize that, in this program, one calculates
the weak interactions on the same footing as the strong.
The program provides a natural framework in which to
study strong and weak forces together and their mutual
interaction. To do this, one need only use inputs in-
cluding both strong and weak forces. For example, one
might study the higher order weak corrections to the
lowest order 7 to u decay coupling ratio. This calculation
is also in progress.
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