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The appearance of broad maxima and minima in the energy dependence of neutron-nuclear total and
scattering cross sections below 100 MeV is given a simple explanation. Within the framework of the Glauber
diBraction approximation, the general conditions for the occurrence of these maxima and minima are ob-
tained in terms of an integral, over impact parameters, involving a phase-shift function. A modi6cation of
the approximation is employed so that the formalism may be applied below 100 MeV. The assumption that
the average phase difference between that portion of the neutron wave which traverses the nucleus and that
which does not is equal to an integral multiple of m at cross-section maxima and minima is shown to be in-
correct. The approximations are illustrated with some optical-model calculations which indicate that the
positions of the maxima and minima shift to higher energies with increasing target mass number. Some
numerical calculations using the Schrodinger equation with square-well and Woods-Saxon potentials are
compared with cross sections calculated from the approximation. Near the maxima, appreciable contribu-
tions come from a number of partial cross sections. The appearance of these maxima implies neither a reso-
nance in any single partial wave nor a maximum in any single partial cross section. A brief consideration of
the energy dependence in the total, absorption, and scattering cross sections separately, reveals that the
principal qualitative features of the total cross section are manifest in the scattering cross section.

I. INTRODUCTION
' 'N 1921 Ramsauer' investigated the energy depend-
s ~ ence of the cross section for low-velocity electrons
scattered by argon atoms and discovered a rather sur-
prising result. As the incident energy of the e1ectron was
increased from very small values, the cross section de-
creased to a relative minimum near one electron volt.
As the energy was increased further, the cross section in-
creased until it reached a relative maximum, after which
it decreased monotonically. The relative minimum in
the cross section for argon targets was independently
found by Townsend and Bailey. ' These measurements
were not in agreement with classical predictions.

It was suggested that the observed phenomenon,
known as the Ramsauer-Townsend effect, might be ex-
plained. by means of a partial-wave analysis. This ex-
planation was confirmed quantitatively by Holtsmark'
who calculated the phase shifts for scattering of elec-
trons by argon atoms. A condition for the Ramsauer-
Townsend eBect to occur is that the field of the atom be
suKciently strong so that for zero incident energy the
phase shift of the zeroth-order partial wave is equal to
nm, where m is a positive integer. As the incident energy
is increased from zero, it is possible for this phase shift
to first increase and then decrease back through the
value em. At this nonzero energy at which the phase
shift equals Nm, the zeroth-order partial cross section
vanishes. If the other partial cross sections are negligible
at this energy, a cross-section minimum may then occur.
The appearance of a maximum in the cross section may
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be explained by somewhat similar considerations of the
phase shifts and partial cross sections.

Thirty-one years after the discovery of the Ramsauer-
Townsend eGect in atoms, Barschall4 and his collabo-
rators measured total cross sections for neutrons scat-
tered by a number of diferent heavy nuclei for the
energy range 0.1 to 3 MeV. They observed that the
cross section for a given target nucleus, instead of de-
creasing monotonically with energy as had beenpre-
dicted theoretically, exhibited a broad minimum and a
broad maximum. In addition, they noted that the posi-
tion of the broad maximum for different nuclei appeared
to shift to higher energies with increasing mass number.
The theoretical con6rmation of these low-energy-
neutron total cross sections was obtained by Feshbach,
Porter, and Weisskopf' ' with an optical model of the
nucleus. Since 1952, the energy domain in which these
broad maxima and minima have been observed has been
extended to 100 MeV. These broad peaks have often
been referred to as "neutron giant resonances, " and as
many as three such maxima have been observed for
many heavy nuclei. The incident-neutron kinetic
energies at which the maxima and minima are found
are shown in Fig. 1 as a function of A'I, where A is the
mass number of the target nucleus. '

It is our purpose to furnish, in the present analysis,
a simple explanation of the observed phenomenon. We
wish to describe the appearance of the broad maxima
and minima in neutron cross sections within the frame-

e H. H. Barschall, Phys. Rev. 86, 431 (1952); D. W. Miller,
R. K. Adair, C. K. Bockelman, and S. E. Darden, iNd. 88, 83
(1952).' H. I'eshbach, C. E. Porter, and V. F. Weisskopf, Phys. Rev.
96, 448 (1954).

s C. Campbell, H. Feshbach, C. E.Porter, and V. F. Weisskopf,
Massachusetts Institute of Technology Laboratory for Nuclear
Science Technical Report 73, 1960 (unpublished).

7 This plot is taken from Ref. 12.
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FIG. 1. Plot showing the measured
positions in neutron energy and
target mass number of the broad
maxima and minima in neutron total
cross sections.
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work of the Glauber approximation and the optical
model. We have by no means attempted to construct
a theory which will reproduce the measurements with
accurate quantitative detail. Since the Glauber approxi-
mation is asymptotically correct for high-energy scatter-
ing, we will find it convenient to use a modification due
to Riese. ' "This modification will enable us to calculate
cross sections, by means of an optical potential, for
incident neutron energies below 100 MeV with greater
accuracy than is afforded by the usual high-energy
approximation.

In Sec. II we brieQy outline two earlier theoretical
descriptions of neutron cross-section maxima. We begin
the present analysis in Sec. III by investigating the
neutron-nuclear total cross sections, within the frame-
work of the Glauber approximation, and obtain the
general conditions for the occurrence of maxima and
minima. In the next section we very brieQy consider
scattering and absorption cross sections. In Sec. V we
use the Glauber approximation, both with and without
the modification of Riese, to express the cross sections
in terms of an optical potential, and we illustrate the
theory with some simple calculations. In Sec. VI we
present some numerical results for the predicted energies
of the cross-section maxima and minima, and give some
quantitative comparisons of the energy dependence in
the cross sections obtained from the approximations
with that obtained from numerical calculations. We
then brieQy consider the energy dependence of the ab-
sorption and scattering cross sections separately. We
conclude in Sec. VII with a short discussion of the roles
played by the individual phase shifts in the appearance
of cross-section maxima and minima.

s R. I. Glauber, Lectures At Theoretical Physics (Interscience
Publishers, Inc. , New York, 1959), Vol. I, p. 315.' J. W. Riese, Ph.D. thesis, Massachusetts Institute of Tech-
nology, 1958 (unpublished).' The existence of Ref. 9 was pointed out to the author by
H. Feshbach (private communication).

II. SOME PREVIOUS ANALYSES

An early theoretical description of the appearance of
neutron cross-section maxima and minima at high
energies was given by Lawson. "The nucleus was repre-
sented by a uniform sphere with a potential well depth
of approximately 30 MeV. A maximum in the cross
section was assumed to occur when the average phase
difference between that portion of the neutron wave
which does traverse the nucleus and that which does
not was equal to an odd multiple of x. A minimum was
assumed to occur when this average phase difference
was equal to an even multiple of m. The energies for the
maxima corresponding to an average phase difference
of m were estimated for several target nuclei and were
consistent with experiment.

A more recent analysis of the neutron cross-section
maxima and minima was given by Peterson" who re-
ferred to the phenomenon as a nuclear Ramsauer effect.
In this analysis the nucleus was represented by a real
square well of radius E.. It was shown from geometry
and Snell's law of refraction that the average chord
length of a ray passing through a sphere of radius R is
43nR, where n depends upon the index of refraction of
the sphere. In the high-energy limit, where the ratio
of the potential strength V& to the incident energy E,
approaches zero, n approaches unity. Let us denote the
wave numbers of the neutron outside and inside the
well by k and E, respectively. Then "the average phase
difference 6 between the wave traversing the nucleus
and that going around"" was given by Peterson as

b, = sen(E —k)R.

The condition for a maximum in the cross section was
then taken to be maximum destructive interference
between the two wave components. This condition, in

' J. D. Lawson, Phil. Mag. 44, 102 (1953)."J.M. Peterson, Phys. Rev. 125, 955 (1962).
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turn, was assumed by Peterson to be equivalent to the
condition that the average phase difference 5 be an odd
multiple of m, i.e.,

scattering angle, and P&(cos8) is the 3th Legend. re poly-
nomial. From the optical theorem the total cross section,
0, is given by

6=ms, n=1,3,5, . . ., odd. (2.2) o = (4s./k) Imf(0),
(3.2)

With n even, this expression was taken as the condition
for a relative minimum in the cross section. We wish to
question the validity of placing condition (2.2) on the
average phase difference in order to secure a maximum
in the cross section. Our reasons will be presented in the
next section.

Other analyses have been given by Nemirovskii"
who used a partial-wave expansion and a one-dimen-
sional W.K.B. method, and by Mandl and Skyrme"
who used a variational method. After the completion
of the present analysis, a Letter by McVoy" appeared
on this subject.

= (2s/ks) P (21+1)(1—Ress" &) .
l~

For kR&)1, many partial waves may be expected to
contribute to the cross section. If we let b denote the
impact parameter of any particular segment of the wave
front which sweeps over the region of interaction, the
surr1mation over the angular momenta l may be trans-
formed to an integration over b by means of the Euler-
Maclaurin suD1mation formula. The total cross section
may then be approximated by

III. NEUTRON TOTAL CROSS SECTIONS (1—Ree'" &'&)2s Mb, (3.3)

In this section we investigate neutron-nuclear total
cross sections and describe the conditions under which,
for a given nucleus, they may exhibit maxima and.
minima as the incident neutron energy is varied. The
formalism we use is the Glauber diffraction approxima-
tion. ' This approximation is asymptotically correct for
high-energy scattering at small angles, and is not ex-
pected to be accurate for incident energies and target
nuclei which together do not satisfy the condition
kR&&1.

We begin the analysis by obtaining an approximate
formula for the total cross section in terms of an inte-
gral, over impact parameters, of an expression involving
a phase-shift function. This function of course depends
in some manner upon the neutron-nuclear interaction
but does not require the existence of an interaction po-
tential. We then give the general conditions for the
appearance of cross-section maxima and minima and
show that the average value of the phase-shift function
need not be an integral multiple of m at a cross-section
maximum or minimum.

By virtue of the optical theorem, which relates the
total cross section to the imaginary part of the forward
elastic-scattering amplitude, an approximate expression
for the total cross section is easily obtained. If the inter-
action between the incident nucleon and the target
nucleus possesses azimuthal symmetry about the direc-
tion of the incident beam, then the elastic scattering
amplitude, f(8), may be expressed by means of the
familiar partial-wave expansion,

00

f(8)=—Q (2l+1) (1—e 's')P((cos8), (3.1)

where b~ is the phase shift of the 1th partial wave, 8 is the

» P. E. Nemirovshii, Zh. Eksperim. i Teor. Fis. 30, 551 (1956)
)English transl. : Soviet Phys. —JETP 3, 484 (1956)j; F. Mandl
and T. H. R. Skyrme, Phil. Mag. 44, 1028 (1953}."K.W. McVoy, Phys. Letters 17, 42 (1965).

where X(b) is a phase-shift function which depends upon
the interaction and is generally energy-dependent.

In the general case, where the interaction between
the incident nucleon and the target nucleus does not
possess azimuthal symmetry about the direction of the
incident beam, the total cross section is given by' "

o =2 (1—Ree'"& &)d's&b (3.4)

where the phase-shift function now depends upon the
impact-parameter vector b which lies in a plane per-
pendicular to the direction of the incident beam, and
the integration is over this plane.

The general conditions for a relative maximum or
minimum in the total cross section for a given nucleus
are given by

Ree'""&d &s&b =0 (3.5)

and
B2

Ree'"& &d"&bao.
BE'

(3.6)

"A derivation of the elastic-scattering amplitude for this
general case is given in the high-energy approximation by
V. Franco and R. J. Glauber (to be published).

In the present analysis we will be concerned primarily
with condition (3.5). We must, however, always keep
condition (3.6) in mind.

To demonstrate that the average phase diGerence
need not be an integral multiple of x at cross-section
maxima or minima, we begin be letting r be the position
vector of the incident neutron with respect to the center
of mass of the target nucleus. If the interaction vanishes
identically for ~rj )E, then the phase-shift function
&(b) will be zero for impact parameters greater than R
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and Eq. (3.4) becomes

R

o=2xE.' 1—
lbl-o

VICTOR

Ree'*"'d"'b) . (3.7}

F RAN CO

The slopes of these loci are then given by

dR (8'/BZ')0 (E,R)

dE
2 Re(B'/BEBR) e'"~ ~ ~}d"&b

(3.12)

The negative of the second term in the bracket in
Eq. (3.7) may be interpreted as the average value of the
real part of e'x'h&, which we shall denote by (Ree'"&"}),.
The equation may then be written as

a =2''(1—(Ree'"& &)») . (3 g)

This means that all portions of the wave traversing the
nucleus interfere destructively with the incident beam.
The condition (3.9) implies, of course, that the average
of the phase-shift function, (X(b)). , must also be an odd
multiple of m., i.e.,

(X(b)). =n}r, n=1,3,5, . . . , odd. (3.10)

Now this condition corresponds to Eq. (2.2) of the
present paper or Eq. (2) of Ref. 12. However, X(b)
generally will not be independent of b, and the average
value of —Re expLiX(b)] will generally be less than
unity.

In summary, then, the condition for a relative maxi-
mum in the cross section is a relative maximum in the
average value of —Re expgiX(b)]. This generally does
not imply that the average value of X(b) is an odd
multiple of m. In general, it is incorrect to place condition
(2.2) on the average value of the phase difference in
order to secure a maximum in the cross section.

It is interesting to note from Fig. 1 that the measured
energies at which the maxima and minima occur tend
to increase with increasing mass number. It is therefore
of interest to investigate theoretically how the energies
at which the maxima and minima occur vary with
nuclear size. If we assume that the phase-shift function
depends in some unspecified manner upon the incident
energy and the nuclear radius, the equation of the loci
of maxima and minima in the E,R plane may be written
B,s

eix(b, z, B}d(2}b—. 0 (3.11)

In general, the phase-shift function X(b) is complex.
Since particles are not being created, the imaginary

part of the phase-shift function is non-negative. The
absolute maximum value that the cross section may
attain is then 4~R' and occurs when the average of the
real part of —expt iX(b)] is unity. If we assume that
X(b) is a continuous function of the impact parameter
for values of the impact parameter smaller than R, then
the necessary and sufhcient condition for the cross
section to attain this absolute maximum is that the
phase-shift function be an odd multiple of x for aO

b&R, so that

X(b) =nor, for b(R, n= 1,3,5, . . . , odd. (3.9)

where the expression on the right is to be evaluated at
those values of R and E for which maxima or minima
occur. At a relative maximum the numerator is nega-
tive, and at a relative minimum it is positive. Therefore
the sign of the slope is basically determined by the sign
of the denominator. An application of Eq. (3.12) wi!1
be illustrated in Sec. V.

IV. SCATTERING AND mSORPTION
CROSS SECTIONS

Thus far we have restricted ourselves to an analysis
of only the neutron-nuclear total cross section. It is of
interest to also consider the scattering cross section and
the "absorption" cross section separately. The absorp-
tion cross section, 0-„ is given by the familiar expression

~.=—Q (21+1)(1—~e'"&~'),
k2 l~

(4.1)

where 8E is the complex phase shift for the /th partial
wave. In the Glauber approximation the absorption
cross section is given by the analogous expression

0 = (1—~g'«»~2)d&»b (4.2)

The scattering cross section o-„may be obtained by sub-
tracting the absorption cross section, given by Eq. (4.2),
from the total cross section, given. by Eq. (3.4), and
may be expressed in terms of the phase-shift function by

(4.3)

(
1—g'"&"& )2d& }b. (4 4)

V. CALCULATIONS WITH OPTICAL
POTENTIALS

We now illustrate the theory developed in the pre-
ceding sections by considering optical models for the
nucleus. We wish to emphasize that these models are
extremely simple. Accurate agreement between the
observed measurements and the predictions should not
be expected. First of all, the approximations we have
used may be inaccurate at the lower energies. In addi-
tion, the optical model is an incomplete description of
the nucleus. Finally, the results will, of course, be sensi-
tive to the shape and magnitude of the optical potential
used. We have used only the simplest of shapes and we
have not varied the magnitudes to obtain better Qts.

We shall consider two approximate expressions for
the relationship between the phase-shift function and
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the optical potential. The erst is a high-energy approxi-
mation, and is suAiciently accurate only if the mag-
nitude of the potential is much smaller than the incident
energy. Although this requirement is not satisfied. very
well for energies below 100 MeV, the approximation
does give an indication that the general methods we
have used are valid since the fit near 100 MeV is not
unreasonable. %e then consider a modification of the
high-energy approximation which requires that the
magnitude of the potential be only approximately
smaller than the incident energy and consequently
allows us to apply the results of Secs. III and IV to
energies below 100 MeV.

Let us begin by writing the position vector r of a
particular point on the wave front in terms of its impact
parameter vector b and a vector z parallel to the direction
of the incident beam so that r=b+z. We then repre-
sent the scattering nucleus by an optical potential V(r)
which in general may be complex. If the magnitude of
the potential is much smaller than the incident energy,
then the phase-shift function is given in the high-energy
approximation by'

00

x(b) = —— V(b+z)ds.
he

(5 1)

In this formula v is the relative velocity between the
incident particle and the target nucleus. In obtaining
Eq. (5.1) it is assumed that in passing through the
region of interaction the nucleon is not deQected by the
potential, and therefore this expression is a small-angle
approximation.

We have used Eq. (5.1) with square-well potentials
and have calculated the loci of the maxima and minima
of the cross section 0 in the E,A'~' plane. Anticipating
the results presented in the next section, we find that
these loci are in rough qualitative agreement with ex-
periment for energies greater than approximately 50
MeV. %e note also that the calculated maxima and
minima all occur at energies below 110 MeV, as indeed
do the measured maxima and minima, In Sec. VI we
shall discuss in more detail the various optical potentials
we have used in the calculations. SufFice it to note, for
the present, that in the energy range considered, the
optical potentials used are such that

~
V

~
/8 is not much

smaller than unity. Consequently Eq. (5.1), which is
based upon the assumption that

~
V~/E((1, is not ex-

pected to be very accurate in the energy range of
interest.

A modification of Eq. (5.1) has been made by Riese. '
His result replaces the condition

~
V~/E((1 by the less

restrictive one
~
V~/E&1. The condition kR))1 is un-

changed. For the case of a square-well potential, which
was a case treated explicitly by Riese, the phase-shift
function is now given by the expression

where

x(b,.)=z, r&z,
=k r&E

This we recognize as the classical expression for the
phase difference between that portion of a wave which
traverses the sphere along an undeQected path and that
which bypasses the sphere. It was obtained by ex-
plicitly taking into account the reQection of the incident
wave at the first surface of the potential well. The same
expression for the phase-shift function was obtained by
Riese for a wide spectrum of potentials, ranging from
the square-well potential to very slowly varying
potentials.

In deriving Eq. (5.2), the reflection of the incident
wave as it arrives at the nuclear surface is considered
explicitly. All reQections of that portion of the wave
which is refracted at the nuclear surface are neglected.
The validity of this approximation will depend. on
having

~
V)/E not too large, so that not many reflec-

tions occur, and on the small-angle approximation, so
that those rejections which do occur do not contribute
appreciably to the forward scattering. In addition, the
actual refraction of the incident beam is neglected, i.e.,
the wave is assumed to traverse the region of inter-
action in an undeviated path along the direction of the
incident beam, suffering only a position-dependent
change of phase. As we have noted earlier, this approxi-
mation is valid if only small-angle scattering is treated.

Since we shall carry out our calculations for incident
neutron kinetic energies as high as 100 MeV, where
relativistic corrections tend to become significant, the
wave number of the neutron in the potential well will
be de6ned by means of the relativistic energy-momen-
tum relation

(E+mc' V)'= O'Z'c'+m'c4 — (5.3)

where nz is the mass of the incident particle. Then the
phase-shift function X(b) given by Eq. (5.2) may be
expressed in terms of the optical potential V(b, s) by

2V(b, s) 1 V(b, s)
x(b)=k 1— 1—— — —1 ds.

kkv 2 E+mc'
(5.4)

By expanding the integrand we see that for
~
V t(/L'((1

this expression reduces to Eq. (5.1).
Let us now examine some simple specific nuclear

models. These models have been chosen, in part, to
obtain manageable analytical expressions for the various
cross sections which we calculate. Our use of them does
not, of course, imply their accuracy or our endorsement
of them as being realistic descriptions of the
interactions.

Ke first consider a nucleus represented by a real
square-well potential with range R and depth Vo, so that

x(b) f/'(b, s) 4j=4E, —(5 2) V(r) = —Vo, r&E,
=0, r&E. .

(5.5)
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In general, Vo will be energy-dependent. It will be con-
venient to introduce the abbreviation

If the optical potential is tak.en to be a complex
square well, so that

V22Vo
P=kR 1+ +

hler hko(E+mcs)

—I/2

—1 . (5.6)
V(r) =—(Vp+iWp), r(R,

=0, r&E, (5.14)

Then the phase-shift function, as expressed by Eq. (5.4),
is given simply by

x(b) =2P[1—(b/R)']'is b(R
=0 b&E.

It is interesting to note that the average phase-shift
function is given by

(X(b))-= s (&—&)R.

We recognize this to be simply the average phase dif-
ference 6 given by Eq. (2.1) when refraction is neglected,
i.e., when n is unity. The cross section, as given by
Eq. (3.8), may be written as

o =s.R'(2+P '—P ' cos2P—2P ' sin2P) . (5.9)

In the high-energy limit as
~
V ~/E approaches zero, the

total cross section becomes identical to that obtained
by Glauber. 8

A maximum or minimum in the cross section may
occur when p satisfies

where V0 and t/t/'0 are generally energy dependent, then
the phase-shift function is complex and is given by
Eq. (5.7), with Vp in the Eq. (5.6) for p replaced by
Vp+iWo If.we let i ='A+ip, where X and p are given by

X Re 2(Vp+iWp)
=kR 1+

Im

(Vo+iW p)' —1, (5.15)
hko (E+mc')

2 JllX'—p'
o=s.R' 2+

()2+~2)2 ) 2+~2

(X'—fi') cos2X+2)ip sin2X

) 2+ps

then the phase-shift function is given by Eq. (5.7) with

p replaced by i, and the total cross section may be
written as

(1—2P') cos2P+2P sin2P =1. (5.10) +2 (X sin2X —p, cos2X) . (5.16)

R= rpA'~', (5.11)

then the loci of maxima and minima in the E,A'~3 plane
are given by

A'~s=P„R/Pro (5.12)

If we had. used the high-energy approximation (5.1) for
the phase-shift function, the loci would have been given
by the simple expression

A'I'= P „hv/ro Vo (E) ~ (5.13)

Some numerical results obtained with Eqs. (5.12) and
(5.13) are presented in the next section.

TABLE I. Positive solutions to Ect. (5.10) for Ie„at cross section
maxima and minima. The values of o' (I+so)v are given for com-
parison. The values of sin2p„are also shown.

2.04
3.81
5.40
7.00
8.58

10.16
11.74

io (I+-,')~

2.36
3.93
5.50
7.07
8.64

10.21
11.78

-', (I+-,')s.

sin2p„

—0.81
0.97—0.98
0.99—0.99
0.99—0.99

( )a

The seven smallest positive solutions are given in
Table I. The Nth solution, P„, approaches —,'(ts+-,')s for
large n.

If we assume that the radius of the nucleus is given by

Some numerical results for a complex square-well
potential, showing the eGect of the addition of an
imaginary part to the potential on the positions of the
maxima and minima, are given in the next section.

Since a complex optical potential gives rise to ab-
sorptive processes, we may now calculate the absorption
cross section for a complex square-well potential. Sy
means of Eqs. (4.2) and (5.7) we find

o =~R'[1+', fi 'e '& sfi '(1-e '—
&)7—.——(5.1—7)-

The scattering cross section may then be obtained from
Eqs. (4.3), (5.16), and (5.17).

The expression (5.16) indicates that the total cross
section tends to be an oscillatory function of the incident
energy. On the other hand, Eq. (5.17) indicates that the
absorption cross section tends to be a rather slowly
varying function which possesses maxima and minima
only if p possesses maxima and minima. Therefore the
scattering cross section, which is the diGerence between
0 and O„also tends to be an oscillatory function of the
energy with maxima and minima at energies close to
those of the corresponding maxima and minima in the
total cross section. To illustrate this explicitly we shall
present some numerical results for these cross sections
in the next section.

We have noted, in Sec. III, that the measured
energies at which the cross-section maxima and minima
occur tend to increase with increasing target mass
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number. We have obtained an expression, given by
Eq. (3.12), for the slopes of the loci of the maxima and
minima in the E,R plane. To obtain some simple theo-
retical implications of the observed relation dR/dE&0,
we shall apply Eq. (3.12) to the case of a real square
well whose depth may be energy-dependent. Using the
phase-shift function for a square we11 given by
Eq. (5.7), we find that the sign of the denominator on
the right-hand side of Eq. (3.12) is that of

(cI'/cIEcIR)I R'P (cos2P+2P sin2P —1)j . (5.18)

—50—
E
cn +0
CL

50

o 20—
C

4- IO

I I I I I I I I I I
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If we consider the high-energy limit, then P becomes
VoR/he and the sign of the expression (5.18) reduces to
that of

—
sin2p (d/dE) (I Vo I /e), (5.19)

where this expression is to be evaluated at those values
of R and E corresponding to maxima and minima in the
total cross section. At cross-section maxima, sin2P is
always negative (see Table I), and at cross-section
minima it is always positive. Thus the signs of the slopes
dR/dE are opposite to those of d(I VoI/o)/dE. If we
require positive values for dR/dE, as the experiments
tend to suggest we should, then we must have

(d/dE) (I V, I/. )&o. (5.20)

This condition is always satisfied, for example, by a po-
tential well whose strength

I VoI remains constant or
decreases with increasing incident energy.

If we consider the modified high-energy approxima-
tion, Eq, (5.4), then p is given by Eq. (5.6). Some
algebra shows that the condition dR/dE) 0 then implies

Vo ( dVo 2Vo —1/2

I
1+ II 1+ I«+ +

E+mc'I I dE I hks hks(E+mc')
(5.21)

If the square well is attractive, i.e., Vc&0, then the in-
equality (5.21) is satistmd, for example, if dVo/dE&0.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section we present some numerical results of
the calculations for the loci of cross-section maxima and
minima in the E,A'~' plane. We also compare total cross
sections obtained from the approximations we have
used with those calculated from numerical solutions of
the Schrodinger equation. We conclude by brieQy dis-
cussing the energy dependence of the scattering and
absorption cross sections.

For the calculations presented in this section we have
taken the depths of the various potential wells to be
energy-dependent. Their dependence upon the energy
is represented by simple assumed analytical forms which
approximate the energy variation of the well depths
obtained by Bowen et al."The assumed forms for the

Fxo. 2. The depths used for the real and imaginary parts of the
potential wells as a function of neutron energy. The values ob-
tained by Bowen et al (Ref. .16) for the real part Vo are shown as
points with +5% error bars. The broken curve is the imaginary
part 8'0 used by Bowen et al. , and was obtained from neutron ab-
sorption cross sections. The solid curves represent assumed ana-
lytical forms for the well depths used in the present calculations.
For energies greater than 55 MeV the broken and solid curves are
identical.

real and imaginary parts of the potential well depths are
plotted as solid curves in Fig. 2. Since it is not our aim
to calculate optical potentials, we have not attempted
to vary the potential depths to yield better Qts to the
cross-section measurements. In Fig. 2 we also show the
corresponding energy dependence obtained by Bowen
et a/. For both the real and imaginary parts of the po-
tential, they use the Woods-Saxon radial dependence

p(r) (1+s&rrr)la) 1-—(6 1)

with 8=1.25A'~' F and a=0.6 F. Relativistic correc-
tions would decrease the magnitudes of their well
depths by a few percent at higher energies. We have
estimated this eGect by taking the magnitude of the real
part of the assumed analytical potential to be slightly
smaller at higher energies than the magnitude which
they have given.

The loci of cross-section maxima and minima in the
E,A'I' plane, calculated from the usual high-energy
approximation, Eq. (5.1), are shown in I ig. 3 for a
square-well optical potential. We have taken
8=1.25A'13F. In Fig. 4 we show the loci curves
obtained when the phase-shift function is calculated
from the modified high-energy approximation, Eq. (5.4).

A comparison of Figs. 3 and 4 shows that the modi6ed
high-energy approximation improves the results both
quantitatively and qualitatively. If we had shown the
calculated loci for all e, then Fig. 3, in which the usual
high-energy approximation is used, would have ex-
hibited an infinite number of maxima and minima in the
total cross section for any given nucleus. On the other
hand, Fig. 4, in which the modification is used, would
have shown that the cross section for any given nucleus
has only a 6nite number of maxima and minima. To see
this more explicitly, let us de6ne a wave number at
zero energy, Eo, to be

"P. H. Bowen, J. P. Scanlon, G. H. StaGord, J.J.Thresher,
and P. E. Hodgson, Nucl. Phys. 22, 640 (1961). II.o= t'2mb-s Vo(0) jr~a, (6.2)
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FIG. 3. Plot showing the calculated
loci of maxima and minima (curves),
together with the observed values
(points} taken from Fig. 1.The phase-
shift function is given by the high-
energy approximation Eq. (S.l). The
broken curves are obtained by using a
real square-well potential, and the
solid curves by using a complex
square-well potential. The well depths
used are shown in Fig. 2.
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FIG. 4. Plot showing the calculated loci of maxima and minima
(curves), together with the observed values (points) taken from
Fig. 1. The phase-shift function is given by the modified high-
energy approximation, Eq. (5.4). The broken curves are obtained
by using a real square-well potential, and the solid curves by using
a complex square-well potential. The well depths are shown in
Fig. 2. The dot-dashed curve for the n =1 locus is calculated with
S'0 given in Fig. 2 for E&40 MeV and with the linear extrapola-
tion of that segment of the curve for energies greater than 40 MeV.

and set e equal to 7 in Eq. (5.12). Then the modified
high-energy approximation with a square-well potential
predicts that for A smaller than

Pr (Ep rp $1+Vp(0)/2mc 5} s~

there are no more than three broad maxima and three
broad minima in the total cross section. The value of
pr, shown in Table I, is 11.74. In our calculations
we have used rp=1.25 ' aild Vp(0)=48 Mev. With
these values, Eq. (5.12) yields the result that for
A &225 there are no more than three maxima and three
minima in the total cross sections. This is in agreement
with observation.

It is worth noting that the agreement of the calcula-
tions with the measurements for neutron energies
greater than approximately 40 MeV is considerably im-
proved by taking the imaginary part of the potential

for energies greater than 40 MeV to be greater in mag-
nitude than that shown in Fig. 2. Thus if we represent
Wp by the solid curve shown in Fig. 2, for energies less
than 40 MeV, over which range it is linear, and ex-
trapolate it linearly, for example, to higher energies,
then the m=1 locus would be given by the dot-dashed
curve in Fig. 4. The e6ect of this change in g p upon the
m=2 locus is negligibly small. This is to be expected
since for A &250 this locus does not go above E=45
MeV. There is, of course, no eGect at all upon the other
loci if the calculations are restricted to A &250.

The agreement of the calculations with the measure-
ments for energies greater than approximately 40 MeV
can be improved still further by choosing the energy
dependence of TVp to lie somewhere between that shown
in Fig. 2 and the linear extrapolation described above.

The small shoulder which appears in both Figs. 3 and
4 near 50 MeV in the v=1 loci calculated from the
complex square-well potential of Fig. 2, arises from the
rapid decrease in the slope of the imaginary part 8 p,

in this energy region.
By comparing the solid curves with the corresponding

broken curves in both Figs. 3 and 4, we see that the
introduction of a small imaginary part to the potential
does not alter the positions of the maxima and minima
appreciably. This may perhaps be interpreted to indi-
cate that as long as absorption is not very predominant,
then the absorption processes do not play a significant
role in determining the positions of these broad maxima
and minima, and maxima and minima similar to those
which appear in the total cross section also reveal them-
selves in the scattering cross sections. We shall ex-
plicitly demonstrate this with some numerical calcula-
tions later in this section.

For low energies and large values of e, e.g. , n&3, the
results for the loci curves obtained by using the modified
high-energy approximation, Eq. (5.4), with a square-
well potential, are close to those obtained in Ref. 12.
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This similarity in the results may be explained by first
noting that in the limit of zero energy, 0. is —, and con-
dition (2.2) becomes

&ox=-,'e (6 3)
7

C:

O
IXI

This equation determines the A'i'3 intercepts obtained
in Ref. 12. On the other hand, the results obtained from
the modification, Eq. (5.4), with a real square-well po-
tential is, in the limit of zero energy,

EoR=p L1+Vo (0)/2mc'1'~', (6.4)

where the values for P are given in Table I. The ratio
of the value for Eoro used in the present paper to that
used by Peterson is 1.065. The ratios of the values ob-
tained in Ref. 12 for the A'" intercepts to the corre-
sponding values obtained in this paper are given in
Table II. These ratios approached 1.08 as e approaches

TABLE II. Ratios of A'~' intercepts in the loci curves calculated
from the Peterson condition, Eq. (2.2), for a real square well
with Uo(0)ro~ equal to 66 MeV F, to A~~~ intercepts calculated
from the modi6ed high-energy approximation, Eq. (5.4), for a
real square well with Uo(0)ro' equal to 'IS MeV F'.
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IE: Numerical Solution; Squore Well
1E Numerical Solution; Woods - Saxon Well, a 0.60 Fermi
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FiG. 6. Calculated neutron total cross sections as a function of
neutron energy for real square-well and Woods-Saxon potentials
for target mass number 216. The radius of the well is taken to be
7.5 F. Curves I and II are obtained from the high-energy approxi-
mation with Eq. (5.1) and the modification (5.4), respectively,
with a square well. Curves III and IV are numerical solutions of
the Schrodinger equation with a square well and a Woods-Saxon
well, respectively. The depths of the potentials are given in Fig. 2.
The orbital angular momenta l corresponding to the resonant
partial waves are indicated.

Locus number (e) Ratio of A'~' intercepts

0.83
0.89
0.94
0.97
0.99
1.00
1.08

infinity. We note that for m=6 the difference between
the two calculated A'" intercepts turns out to be
smaller than 0.5% for the values of the various parame-
ters which were used. If the values which were chosen
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FIG. 5. Calculated neutron total cross sections as a function of
neutron energy for real square-well and Woods-Saxon potentials
for target mass number 8. The radius of the wells is taken to be
2.5 F. Curves I and II are obtained from the high-energy approxi-
mation with Eq. (5.1) and the modi6cation (5.4), respectively,
with a square well. Curves III and IV are numerical solutions of
the Schrodinger equation with a square well and a Woods-Saxon
well, respectively. The depths of the potentials are given inFig. 2.

for Eoro had been the same in both papers, there would
have been an even larger discrepancy in the A'~' inter-
cepts for n&6.

In the limit of infinite neutron kinetic energy, the
discrepancy in A'l' between the two theories varies
from 50% for infinite values of II, to 39% for ri=6, to
15% for I=1.

It is interesting to compare the total cross sections
obtained from the approximations we have used with
those calculated numerically from the Schrodinger
equation. For such comparisons we shall consider the
cases A = 8 and A = 216, with E= 1.25A'~' F. The
energy dependence of the well depths, Vo and. TVp which
we shall use is again given in Fig. 2. The numerical solu-
tions of the Schrodinger equation were very kindly
furnished by E. H. Auerbach. In Figs. 5 and 6 we show
the total cross sections for a real potential, as a function
of neutron energy. We have taken the value of u in
Eq. (6.1) to be 0.60 fermi.

For the nucleus A =8, curves I and II in Fig. 5 indi-
cate that in the high-energy region the total cross
section obtained from the usual high-energy approxima-
tion is similar to that obtained with the modification.
This, of course, is not surprising since the two cross
sections are expected to differ appreciably only when
the magnitude of the potential is not much smaller than
the incident energy. At lower energies, however, we
note that the cross section obtained with the modifica-
tion exhibits only one broad maximum, whereas the
cross section obtained without the modification exhibits
an infinite number of maxima. For clarity, we have
drawn only the last three maxima in curve I. In addi-
tion, the high-energy maximum occurs at rather dif-
ferent positions in these two curves.
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The Gnite number of maxima and minima in curves
obtained from the modiied high-energy approximation
can be understood by recalling the definition of P given
in Eq. (5.6) and noting that curve I is obtained by using
the high-energy limit of that equation, P VeR/he.
Therefore curve I may be transformed into curve II by
having it "stretched" to the left from the ordinate axis,
E=0, while keeping the ordinates of the curve the same.
The irdinite number of maxima and minima at low
energies in curve I are thereby eliminated since they
are "stretched" out of the physical region, E&0.

Let us next consider the two numerical solutions. The
quantitative agreement between the cross section ob-
tained from the numerical solution to the Schrodinger
equation with the square-well potential, shown in
curve III of Fig. 5, and the approximate cross sections,
shown in curves I and II, is good at high energies.
Below 50 MeV the quantitative agreement becomes
poor. This, of course, is not surprising since for energies
below 50 MeV, kE becomes smaller than 4 and

I
V

~
/E

becomes greater than 0.7. Thus the restrictions for
curve II, namely that kR be much greater than unity
and

~
Vi/E be approximately smaller than unity, tend

to be violated below 50 MeV. Nevertheless we note that
the qualitative agreement between the approximate
cross section given in curve II and the cross section ob-
tained numerically and shown in curve III, is not bad.
The positions of the maxima in these cross sections are
within a few MeV of each other.

The cross section obtained from the numerical solu-
tion to the Schrodinger equation with a Woods-Saxon
potential, shown in curve IV, agrees quantitatively
with the other cross sections in Fig. 5 in the high-energy
region. Although the magnitude of this cross section at
lower energies is considerably larger than those of the
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FIG. 7. Calculated neutron total cross sections as a function of
neutron energy for complex square-well and Woods-Saxon po-
tentials for target mass number 8. The radius of the well is taken
to be 2.5 F. Curves I and II are obtained from the high-energy
approximation with Eq. (5.1) and the modification (5.4), respec-
tively, with a square well. Curves III and IV are numerical solu-
tions ofjthe Schrodinger equation with a square well and a Woods-
Saxon well, respectively. The depths of the potentials are given in
Fig. 2.
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FIG. 8. Calculated neutron total cross sections as a function of
neutron energy for complex square-well and Woods-Saxon po-
tentials for target mass number 216. The radius of the well is
taken to be 7.5 F. Curves I and II are obtained from the high-
energy approximation with Eq. (5.1) and the modi6cation (5.4),
respectively, with a square well. Curves III and IV are numerical
solutions of the Schrodinger equation with a square well and a
Woods-Saxon well, respectively. The depths of the potentials are
given in Fig. 2.

other cross sections shown in this figure, the qualitative
features are similar in many respects to those of
curves II and III.

In comparing the approximate cross sections for the
A=216 target, shown by curves I and II in Fig. 6,
comments similar to those regarding the corresponding
cross sections for the A =8 target may be made. The
numerical solution for the cross section for a square-well
potential, shown in curve III, exhibits relatively narrow
resonances near 14, 25, and 37 MeV, and a shoulder near
52 MeV. If we were to average this cross section over
energy intervals of say several MeV, the e6ects of these
resonances would be eliminated or would show up rather
weakly and we would find curve II to be in reasonable
qualitative agreement with curve III. Similarly, if in
the numerical solution for the Woods-Saxon well,
shown in curve IV, we were to average the cross section
over energy intervals of several MeV, then the shoulder
near 36 MeV and the resonances near 11, 17, and 27
MeV would be eliminated or would show up rather
weakly. We would then find curve II to be in reasonable
qualitative agreement with curve IV.

In Figs. 7 and 8 we show the total cross-section curves
for the case in which the well depths of the various
optical potentials are now taken to be complex func-
tions. These figures indicate that the addition of an ab-
sorptive part to the potential tends to flatten the curves.
In addition there is no longer a relatively simple rela-
tionship between the two approximate cross sections
obtained with and without the modification (5.4), i.e.,
between curves I and II. To transform curve I into
curve II, we must now not only stretch it from the left,
E=D, but we must also elevate its mountains and
depress its valleys. Another e6ect of adding an absorp-
tive part to the potential is to shift the positions of the
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cross-section maxima and minima to slightly lower
energies. A comparison of curves III and IV in Fig. 6
with the corresponding curves in Fig. 8 shows that the
ad.(ia ition of an absorptive part to the potential com-
pletely eliminates or greatly weakens the relatively
sharp resonances that appear with a real potential.

A comparison of Figs. 5 and 7 indicates that for small
nuclei the addition of a small absorptive part to the
optical potential does not affect the total cross sections
greatly. On the other hand, a comparison of Figs. 6 and
8 indicates that for large nuclei the addition of a small
absorptive part tO the potential makeS an appreCiab&e —Numerical solutions from schrodinger Eq.

diQ'erence in the cross section. We note that in addition
o virtually eliminating the sects of all the narrow

resonances in curves III and IV, the insertion of an ab-
sorptive part to the potential has tended to make Neutron Energy (MeV)

curves II III and IV, and IV more qualitative/y simi]ar, even FxG. 10.Neutron total, scattering, and absorption cross sections
~ ~ ~ ~

at ]ow energies. For examp/e, in Fig 8 the positions of as a function of neutron energy, numerically calculated from the

the maxima and minima obtained. from the modifie
hi .h-e ~ ~

e mo i e mass number 216. The depths of the potentials are given in Fi . 2.
ig -energy approximation are 91.5, 44, 23.5, 11,4, and The radius of the well is taken to be 7.5 F. The measured total

1 MeV. The corresponding positions obtaineg from the
cross sections are shown as points.

numerical solution are 83, 44, 21, 10, 3.5, and 1.5 MeV.
A].though the positions of the high-energy maximum in square-well Potential have been derived in Sec. V and

t e two calculations differ by g.5 Me+ or 1.0%, we see
that the maximum is extremely broad ang that the present calculations we shall con6ne ourselves to a

cross section varies very s].ow&y at these high energies. target nucleus with mass number 216. In Figs. 9 and 10

us in curve D the cross section at g3 Mey (which is we show the total, absorPtion, and scattering cross

iffers from the cross section at the maximum (i.e., at in Fig. 10 are measured values" ' of the total cross

91.5 Me&) by less than one percent. &n addition, the sections of neutrons on lead.

chrodinger equation which is used to obtain curve III From the e 6gures we note that the ma'n qualitative

does not include any relativistic corrections. features of the total cross-section curves obtained from

As we have noted. in Secs. IV any V, the high-energy
he numer'cal solutions of the Schrodinge equat'on are

approximation may be used to analyze the absorption
revroduced fairly well by those of the corresvonding

an/ scattering cross sections separately Th e appro~
scattering-cross-section curves, Particularly at high

mate expressions for these cross sections for a compl
energies whe~e the absorPtion cross section is a very
slowly varying function of the energy. At lower ener ies

e oscillation in the absorption cross sections obtained
from'the numerical solutions, which arise from the small
volume-absorption potential used, have an appreciable
effect on the qualitative features of the total cross

Numerical Solution From Schrodinger Equation sections. For the ~"'ooor e ~A'oods-Saxon well, for example, the
s a low minimum in the total cross section shown near
22 atesMeV, shown in Fig. 10, corresponds in part to the
relative minimum in the absorption cross section in that
energy region.

gee Since at high energies the absorption cross section is
a rather slowly varying function of the energy, we may
attribute at least the first (high-energy) maxirnurn and
minimum in the total cross section solely to the 6rst

0 IO 20

%i h-~ ig -energy& maximum and minimum in the sea;tterin
IO 20 30 40 50 60 70 80 90 IOO IIO

Neutron Energy (MeV)
cross sec~is section. The absorption processes at these energies

F G. 9. C l l d
only serve to shift the position of the maximum and

G. . a cu ate neutron total, scattering, and absorption minimum ~
cross sections as a function of neutron energy for a complex squar
well potential for target mass number 216. The depths of the o-
ential are given in Fig. 2. The radius of the well is tak t b 5isaeno e

e so sd curves are numerical solutions for the cross sections
obtained from the Schrodinger equation. The broken curves are
obtained from the modiaed high-energy approximation, Eg. (5.4).
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VII. PARTIAL-WAVE ANALYSES

We have made no attempt to investigate the cross-
section Inaxima and minima by means of a detailed
optical-model analysis of the phase shifts. Although it
is certain that potentials diQerent from those we have
considered would 6t the measurements more accurately,
we have not attempted to compute them. However, in
order to obtain some understanding of the roles played
by the individual phase shifts, we shall consider some
special cases and illustrate what occurs in these
examples. We shall restrict our analysis to incident
neutron energies greater than 0.5 MeV.

Suppose we consider a heavy nucleus, 2 = 216. If the
optical potential is either a real square well or a real

TABLE III.Ratio of signiicant partial cross sections to the total
cross section at energies for which the total cross section attains
a relative maximum. The results are shown for a complex Woods-
Saxon well (CWSW) and a complex square well (CSQW) for a
nucleus with mass number 216. The corresponding values of the
maximum cross sections and their energy positions are also given.

Potential CWSW CSQW CWSW CSQW CWSW CSQW
cr (barns) 4.9 4.5 =5.7 4.9 8.3 5.6
E (MeV) 79 83 =21 21 3.5 3.5

Ratio of partial cross section, 0 «& (E ),
to total cross section, 0.

0

2
3
4
5
6
7

10
11
12
13

15
16
17

0.003 0.004
0.010 0.011
0.017 0.018
0.023 0.026
0.031 0.031
0.038 0.045
0.046 0.048
0.054 0.058
0.065 0.076
0.075 0.077
0.087 0.084
0.100 0.109
0.111 0.128
0.114 0.126
0.101 0.100
0.068 0.045
0.033 0.010
0.014 0.002

0.010 0.015 0.020
0.028 0.026 0.140
0.054 0.088 0.339
0.083 0.083 0.396
0.119 0.139 0.024
0.170 0.236 0.080
0.199 0.240
0.146 0.089
0.068 0.035
0.098 0.031
0.024 0.015

0.017
0.371
0.467
0.088
0.015
0.042

From Fig. 9 we note that the total, absorption, and
scattering cross sections obtained from the modified
high-energy approximation exhibit roughly the same
qualitative features as those obtained from the numeri-
cal solutions, except in the absorption cross section at
low energies where the numerical solution exhibits some
oscillations. We note that in this approximation, the
main features of the total-cross-section curve are re-
produced quite well by the scattering-cross-section
curve.

Woods-Saxon mell, whose depths are given in Fig. 2,
then the corresponding total cross sections are given by
curves III and IV in Fig. 6. A partial-wave analysis
shows a number of resonances present in these cross
sections. The values of the orbital angular momenta l
corresponding to the resonant partial waves are indi-
cated on the curve. Reference to Fig. 6 reveals that the
three broad peaks are not caused by these resonances.
This may be seen more easily if we consider the effect
of adding a small imaginary part to the potential. The
total cross sections are then given by curves III and IV
in Fig. 8. The addition of a small absorptive part to the
square-well potential is seen to eliminate the effects of
all the resonances that previously appeared so strongly.
Nevertheless, the three broad maxima still remain. The
addition of an absorptive part to the Woods-Saxon
potential almost completely eliminates the effects of the
resonances that appeared previously. This is also clearly
indicated by the scattering cross section given in Fig. 10.
The three broad maxima, however, still remain in the
total and scattering cross sections.

Let us now examine the partial cross sections for this
case. In Table III we show the energies E,„at which
the total cross section attains its maxima together with
the values of these maxima. ' We also show the ratios of
the significant partial cross sections to the total cross
section at the energies E, . We see that no one partial
cross section is much greater than all the others and
that at a cross-section maximum there are many partial
cross sections which contribute appreciably.

The broad cross-section maxima which we have con-
sidered are not caused by a resonance due to any single
phase shift, but rather by a joint effort on the part of
many phase shifts to pool their resources and contribute
a large share to the total cross section. This, no doubt,
may often occur in the energy region where one or more
partial cross sections happen to attain their maximum
values.

ACKNOWLEDGMENTS

The author would like to thank Professor Herman
Feshbach for referring him to the thesis of Riese and for
a critical reading of the manuscript. He is indebted to
Dr. Elliot H. Auerbach for the numerical solutions of
the Schrodinger equation. Thanks are due to Mrs. Mida
Aitken for assistance in programming.

"For the second broad maximum of curve IV in Fig. 8, since
the cross-section curve in that region is perturbed by the oscilla-
tions in the absorption cross section we have chosen the position
of the maximum to be at approximately 21 MeV, i.e., at approxi-
mately the position of the scattering cross-section maximum.


