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A theory of neutrinos is constructed within the present scheme of geometrodynamics. First, a special
class of c-number Heisenberg Gelds is considered and a plane-wave-like solution of the covariant neutrino
equation is obtained in the two-component limit. It is shown that the special class of neutrinos forms a
Rainich null geometry. Conversely, a geometry suitable for the special neutrinodynamics is distinguished
from general null geometries by imposing the condition that the null eigenvector of geometry is the gradient
of the neutrino complexion. Finally, the geometrical parallelism between gravito-electrodynamics and
gravito-neutrinodynamics is discussed.

I. INTRODUCTION

'HE view that the physical world is composed of
an empty geometry is not quite new. It is perhaps

su&5.cient to recall that Einstein's theory of general
relativity is already two score and ten years old. How-

ever, it was only a decade ago when Wheeler succeeded
for the first time in constructing a complete geometrical
model of mass, giving a new interpretation of the con-

cept of mass. ' In Einstein's theory, masses and fields

are still sources foreign to space-time geometry. Instead,
Wheeler considered them as products of the dynamics
of geometry. He and his collaborators have further
developed geometrodynamics dealing only with geom-

etry and its evolution and have discovered previously
unexpected rich implications for curved empty space. ' '
Above all, it is very compelling, despite certain un-

resolved difhculties, ' that a Rainich geometry' ~ ac-
comrnodates the coupled theory of Einstein's general
relativity and Maxwell's electrodynamics, which is
characterized by the Rainich algebraic conditions

g=0; goo&~0; E.„)Z„'=-',gp„E..p~ ~

and by the Rainich-Misner-Wheeler differential condi-

*Based on part of a thesis submitted by the Grst author to
Rensselaer Polytechnic Institute in partial fulGllment of the
requirements for the Ph.D. degree. Preliminary reports of this
work were given in Bull. Am. Phys. Soc. 9, 87 and 450 (1964).' J. A. Wheeler, Phys. Rev. 95, 511 (1955).

2 J. A. Wheeler, Geometrodynamics (Academic Press Inc. , New
York, 1962), in which Refs. 1, 6 and other related articles are
collected.

'See also J. G. Fletcher's review article in Gravitation: An
INtrodttetiort to CNrremt Research, edited by L. Witten Qohn Wiley
8r Sons, Inc. , New York, 1962).

4 A fundamental difBculty is that the required initial data may
correspond to more than one Maxwell Geld; see L. Witten, Phys.
Rev. 120, 635 (1960).Whether or not such a difliculty is fatal to
geometrodynamics is not yet known. An optimistic observation
on this matter is seen in Ref. 3, p. 416. Another serious problem is
the singular case of the Rainich vector a„, which this paper dis-
cusses in part.

5 G. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925).
C. W. Misner and J. A. Wheeler, Ann. Phys. (N. Y.) 2, 525

(1957).
7 R. Adler, M. Bazin, and M. SchiBer, Introduction to General

Retutivity (McGraw-Hill Book Company, Inc. , New York, 1965),
p. 418.

tion'

it„n„itrn„—=0; n„=e„„o,R ),VrR""/R pR~tt. (2)

8 In Eq. (2), e„„„is the permutation tensor; see, e.g., J. L.
Synge, Relativity: The Geeerol Theory (North-Holland Publishing
Company, Amsterdam, 1960), p. 18.

e O. Bergmann, J. Math. Phys. 1, 172 (1960); J. R. Klauder,i'. 5, 1204 (1964), and see also Ref. 11.IThis remark is given in Ref. 2, p. 88. Other important prob-
lems on the geometrization of neutrinos are also extensively
discussed there.

This is, in the language of Misner and Wheeler, an
already united theory of gravity and electromagnetism.

Recently, some attention has been paid to solving the
Rainich problem for neutrinos. In fact, the neutrino is
the simplest Geld with half-integral spin. It has no mass
and no charge; it travels with the speed of light. It
appears to be as fundamental as the gravitational and
electromagnetic fields. Nevertheless, no attempt has
succeeded in providing a proper place for this third 6eld
in geometrodynamics.

A question arises as to whether it is possible for the
neutrino field to be a primary object of geometro-
dynamics. Concerning this point, Wheeler has remarked
that there is no classical description of the neutrino
along correspondence-principle lines, and has added
that Pauli's descriptive term "nonclassical two-
valuedness" antedated the term "spin.""The natural
origin of the two-valuedness could be found in quantum
geometrodynamics, and probably it would be necessary
to accept quantum considerations from the very be-
ginning in dealing with neutrinos. Nevertheless, in this
paper, we consider it worthwhile to reinvestigate the
c-number neutrino field as a solution of the general
relativistic Dirac equation, and we wish to see if one
may say anything about neutrinos within the present
scheme of geometrodynamics.

In the null case, where E. pR & vanishes, the Rainich
vector O.„ is singular, and the Rainich-Misner-Wheeler
Eq. (2) fails to hold. When a geometry has the properties

0; ~oo&&0; ~„xR,"=0

the Ricci tensor can be expressed in the form
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where e is an undetermined scalar and y„a null vector
that satisfies

Av'"=0~ v'0 ~w0 ~

If this geometry entails any physical law at all, there
should exist a physical correspondent to the null vector
p„. In contrast with the non-null Geld geometry, it is as
yet uncertain whether the null field geometry has a
rigorous physical correspondent. In e6ect, one can
construct out of geometrical quantities an antisym-
metric tensor which is adequate for describing the
Maxwell null field. 6 "~ However, the null electro-
magnetic field so defined is not always unique. By a
nonconstant duality rotation, another null field can be
found satisfying Maxwell's equations. '3 According to
Peres' investigation, " such arbitrariness occurs when
the field possesses a wave front; i.e., when, for a certain
value of e, the curl of y„vanishes

p, pv vga, =0

We will call this di6erential relation for the null vector

q„ the Peres condition.
It is now natural to ask if there is any alternative way

of understanding the null field geometry. To examine
this possibility, let us accept the conjecture that the
null vector q„could be constructed out of bilinear
covariants of a c-number Dirac field P. There are, how-

ever, no bilinear covariants of the four-component field
that can fulfill the properties (5). As is seen in Sec. II, a
unique bilinear null vector may be formed. from the
Dirac field subject to the two-component constraint
f=ysP. This fact makes it clear that the c-number
Heisenberg nonlinear equation turns out to be the
neutrino equation in the two-component limit. Section
III deals with a special class of Heisenberg Gelds and
derives a plane-wave-like solution of the covariant
Dirac equation for a massless Geld in the two-component
limit. Section IV is devoted to showing that the special
class of neutrinos forms a Rainich null geometry
characterized by (3). In Sec. V, a geometry suitable for
the special neutrino physics is distinguished from
general null geometries by imposing the condition that
the null vector is the gradient of the neutrino complexion.
As a result of this additional restriction, the gravito-
neutrino geometry thus formulated belongs to Peres'
exceptional case of null geometries. The Peres con-
dition (6), though a little weaker for neutrinos, is
comparable with the Rainich-Misner-Wheeler equation
in the non-null case. Finally, Sec. VI summarizes the
parallelism between null and non-null Geld geometries
and discusses the self-consistency of the theory in some
detail.

"L.Witten, Phys. Rev. 115, 206 (1959).
's A. Peres, Phys. Rev. 118, 1105 (1960).
"See L. Witten's article in Gravitation: An Introduction to

Current Research, edited by L. Witten (John Wiley 8z Sons, Tnc. ,
New York, 1962), p. 395.

i4 A. Peres, Ann. Phys. (N. Y.) 14, 419 (1961).

Throughout this paper we shall employ natural units
in which 8+6= 1 as well as A= c= 1.

and the covariant derivative of the spinor Geld is given
by V'„f= (8„—F„)P,where P„ is the Fock-Ivanenko spin
connection. The adjoint field of P is defined by g=Ptt)
with a Hermitian matrix g such that

and
B„t)+P„try+ r)I'„=0.

Out of the p matrices we form an involutary constant
matrix,

1
75 &e~)pvYQ P P )

41

which anticornmutes with all 7„.From (8) follows

75 9759

According to these definitions, the vector bilinear
V„=itsy„p and the axial-vector bilinear A„=itsy„ystk
are both real. In particular,

Vo'&~0' Ao'~&0

For the field. f one may also verify that the Pauli-
Kofink relation holds"

with Q= I, y„, y„p) p„ys, or ys, where y„,= s (Y„y,—y,y„).
If the field equation for g is invariant under the

chirality transformation

li ~ erpa'rstp

with a constant 3(l&, then the field. constrained by

(13)

can certainly be a particular solution. By means of the
projection operators A+= sr (1&vs), the constrained
field and its adjoint are expressed as g=A+P, and

/=PA, respectively. It is possible to select a suitable
representation such that only two components of the
constrained field remain nonvanishing everywhere. Of
all possible bilinear covariants of the two-component
field, xQX, the only nonvanishing one is the vector

"See, e.g., D. R. Brill and J. A. Wheeler, Rev. Mod. Phys. 29,
465 (1957). The p5 matrix adopted here differs from theirs by a
multiple g(—1).

r6 W. Kofink, Ann. Physik 30, 91 (193/).

II. NEUTRINOS IN CURVED SPACE

For convenience, we start with the four comp-onent

spinor field P defined in curved space in the usual
manner. "Here the y matrices are related to the space-
time metric g„„by
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(axial-vector) bilinear. 'r From the Pauli-Kofink identity
(12), one deduces the important null relation for x,

(xv,x)v"x=o (15)

The last expression indicates that x is the null eigen-
spinor of the vector xp„x. Evidently, the nonvanishing
bilinear is null:

(xv.x) (xv"x) =0. (15')

The integrability condition of Eq. (18) is obtained
after calculation of the commutator of two covariant
differentiations (V+7„—V„V„)g which reads

A»„v"V= e'e.s„&e,.„„g~ ($7.74) (4v~vs4)v~V, (21)

where E„q„„is the Riemann curvature tensor. Evidently,
the integrability condition (21) s,llows the following
solution for R„q„„.

As an example of a chirality-invariant Geld equation
for iP, we consider the Heisenberg nonlinear equation in
covariant form"

R„y„„=e'e„i se„,p g&'($7 vsip) (gv vs/) .
Contraction on ~ and p, leads to

(22)

7 V„p+3e(fv vga)v„7@6=0, (16)

where e is a real constant. The chirality invariance
permits the equation to possess a particular solution
which is subject to the constraint (14). For such a
constrained field, however, the second term disappears
regardless of the value of e because of the null property
(15), and we are left with the Dirac equation in the form

7~V„/=0.

Although the Heisenberg equation would be of little
interest in c-number field theory, it is remarkable that
the Heisenberg c field reduces to the massless Dirac
field in the two-component limit p —+ vs/.

The general term "neutrino" may be used for any
massless Dirac Geld. Hereafter, however, we shall focus
our attention merely on the neutrino as the two-
component limit of a Heisenberg field. . Obviously, in
that limit, the right-handed state of the neutrino is
excluded at every local point of space-time.

III. RESTRICTED CLASS OF NEUTRINOS

V„x= —e (xv„x)x, (24)

which we shall refer to as the restricted neutrino equa-
tion, with the field y describing a restricted class of
neutrinos. For the limiting field x the relations (20a)
and (20b) are also simplified as

+"i~.=+i.= —2e ( 8'7&vs'') (A'.vs')
g'Vv—,vs') (Wv'vs')) . (23)

So far as Eq. (18) is completely integrable, a solution
exists for an arbitrary initial condition 1t (xs). Since Eq.
(18) is invariant under the chirality transformation
(13), any nonvanishing components of A+/ will never
turn into a nonzero part of A f in the course of dynami-
cal development. Therefore, if P(xs) is limited to x(xe),
then the same should be true for P(x) at any back-
ground metric provided that the integrability condition
(21) is fulfilled. Naturally the null property (15) of a
two-component field is preserved under the dynamical
restriction (18).

In the two-component limit, any Heisenberg c field
tends to the neutrino field. In the same limit, Eq. (18)
can be written as

In the c-number theory there is a special Heisenberg
field satisfying the dynamical restriction'9

V„p= se(fv"vs/)viv„vga 2e($71,75$)v—gk (18).
Vpv. = ixv. V~x+iVpxvvx =0,

~pv Xgv pg ~pX+vg '+$4 'Pv 1

(25a)

(25b)

This is easily seen by operating on Eq. (18) from the
left with 7&. The adjoint equation of (18) is

where y„= ixv„x. From (23), therefore, there follows an
allowed geometry in which the restricted field equation
(24) is integrable''

V.4= "(47'vs')47.7~-vs 2eV7.74)%vs— (19) ~..= —2"(xv.x) (xv.x) . (26)
Combining Eqs. (18) and (19), one may prove the
relations (see Appendix A):

V„A„=i/7„7sV„/+iV„gv„vs/ =0, (20a)

U„„=$7„V„Q V„pv,p= 2e(—A„A,+,'g„,Ai A") . -(20b)

1' This is due to the following properties of h.+. A+QA+ ——0 for
scalar, tensor, or pseudoscalar, and A~QA. ~= &A+yQ~ for vector
or axial vector. See R. P. Feynman and M. Gell-Mann, Phys.
Rev. 109, 193 (1958).

"W.Heisenberg, Rev. Mod. Phys. 29, 269 (1957);H. P. Durr,
W. Heisenberg, H. Mitter, S. Schlieder, and K. Yamazaki, Z.
Naturforsch. 14a, 441 (1959). For the covariant form, see T.
Kimura, Progr. Theoret. Phys. (Kyoto) 24, 386 (1960).

"This Geld is also self-consistent in the sense that the stress-
energy tensor serves, if ~=2m, as the source to the geometry in
which the Geld equation is integrable; A. Inomata, Bull. Am.
Phys. Soc. 10, 577 (1965).

Positive-definiteness of Ass in Eq. (26) results from the
property (11) of the vector current for any metric value.
Apparently the Ricci tensor (26) fulfills all Rainich
null-field conditions (3). We may thus conclude that
the restricted neutrino equation is integrable in a
Rainich-Riemannian null space. In addition, the curl

The integrability condition of Eq. (24) is R„),„,p&"X=O (be-
cause the right-hand side of Eq. (21) vanishes for x), from which
Morinaga derived the equation R„),„„=*R„),„„and obtained the
pure gravitational space R„„=O as a necessary consequence;
K. Morinaga, J. Sci. Hiroshima Univ. Ser. A 5, 151 (1935).The
present solution (22) is obviously another possible geometry which
reduces to the pure gravitational case in the limit e —+ 0.Emphasis,
however, must be placed on the point that the restricted neutrino
Geld x is a limiting case of the Heisenberg field. Otherwise the geom-
etry (23) will be subject to ambiguity by a constant multiple.
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of the null current q„=i'„y vanishes because of the
relation (25a)

~pyv ~vga= 0 ~ (27)

Hence the null space belongs to Peres' exceptional case.
Before closing this section, let us obtain a plane-

wave-like solution of the restricted neutrino equation
(24). The Peres equation (27) holds true if and only if
q„ is the gradient of a scalar; say q„=B„q. On this
substitution, Eq. (24) becomes

Vpx= 168', px

and is readily solved with the field

X=g"&Xp,

(28)

(29)

VpXp= 0 j Xp ysXp ~ (30)

On each local Minkowskian background, the solution
(29) describes a plane wave

where xp is a covariantly constant two-component
spinor, i.e.,

Using the Lagrangian from which the Dirac equation
(17) is derived, one finds the stress-energy tensor for
neutrinos "

2'"= 'Qv-.~.0 .P—vA+fv.~A ~.fv.f) (33)

On account of Eq. (17), the trace of this tensor vanishes

T"„=0) (34)

just as the trace of the Maxwell tensor does. Never-
theless, the fact that the field equation is needed in
proving the vanishing trace contrasts with the situation
of electromagnetism for which the trace disappears
algebraically. The expression (34) is a dynamical
consequence rather than a pure algebraic relation. The
Rainich algebraic conditions, whether null or non-null,
are not satisfied in general by the stress-energy tensor
of the form (33), even though the field equation is taken
into consideration.

In particular, for the restricted neutrino field x, the
stress-energy tensor (33) reduces to the simple form

gp) &..= —~(xv.x) (xv.x), (35)

with momentum-energy p„=ieXov„xo In g. eneral, the
eikoeu/-like function" q can be found by a line inte-
gration,

N(~) = Plj~&"+Po (31)

As the integral is independent of the path, it is com-
pletely determined up to an additive constant. The
undertermined constant merely gives rise to a phase
gauge of the field which is physically irrelevant.

~pv 2 giuvR KT&& ~ (32)

By the variational principle, the Einstein equation (32)
is obtainable from an appropriate Lagrangian which
consists of the geometrical and physical parts. The
stress-energy tensor can be defined as the variational
derivative of the physical part with respect to the
metric. In order for the Newtonian correspondent to
exist in the weak-field limit, the coupling constant ~ in
Eq. (32) inust be universal for all massive sources
(~= 1 in natural units). There is, however, no particular
experimental reason for applying the same argument to
massless fields which do not have the rigorous Newton-
ian limit. For the moment, we leave the value of ~

unspecified for convenience.

"For example, see L. Landau and K, Lifshitz, The Clussicul
Theory of Fields, translated by M. Hamermesh (Addison-Wesley
Publishing Company, Reading, Massachusetts, 1951),p. 136. "She
null relation (15') corresponds to the eikonal equation.

IV. NEUTRINO STRESS-ENERGY TENSOR

In the general theory of relativity, the physical field
serves as a source to the geometrized gravitational field
through the Einstein equation

which has the algebraic properties

TI"p= 0 j Tp), Tv"=0. (36)

The restricted field satisfies the relations (25a) and
(25b), and the second relation has been used in reducing
the tensor (33) to the form (35). Applying the first
relation as well to the reduced tensor (35), we obtain the
differential restriction on the neutrino tensor,

VgT„,„=0. (37)

~ For a detailed account, see Ref. 15.
~ J. R. Klauder, Ann. Phys. (N. Y.) 11, 123 (1960).

In the expression (35), positive-definiteness of 2'Oo is
not assured as it depends on the sign of e, a quantity
which is somehow related to the energy value of the
field. For instance, in a local Lorentz frame, Tpp
= e(xtx)'. In fact, the lack of positive-definiteness of
the energy in the c-number theory is a feature of all
fields with half-integral spin. As is well known, anti-
commutation rules are necessary for the spinor field in
order to resolve the negative-energy difficulty. Un-
fortunately, such anticommutation relations are not
compatible with the null property (15). The recent
work of Klauder on the c-number quantization" could
be of importance in this context.

For a source with vanishing trace, the Einstein
equation becomes

(38)

According to this equation, geometry must be endowed
with the same properties as those of the physical source.
Now one may raise the question: Would the c-number
neutrinos deinand. a negative geometry (Roo(0) as well
as a positive geometry (Roo) 0) depending on the value
of e? Before answering this question, we recall that the
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restricted neutrino as a limit of the special Heisenberg
field is meaningless in the negative null space. On com-
parison of the Ricci tensor (26) with the neutrino stress-
energy tensor (35), it is seen that the theory is self-
consistent only if

K= 26. (39)

As a result, the geometry turns out to be positive-
de6nite regardless of the sign of e. If the energy concept
at a local point could be carried over to curved space,
we would say that the positive and negative states of
neutrinos are degenerate in the geometry with the
restricted source (35). At any rate, it is clear that the
restricted class of neutrinos is a solution of the Rainich
null-field problem.

V. NEUTRINO GEOMETRY

In the preceding section, we have seen that the
restricted neutrino field may form a Rainich null
geometry. Conversely, can a geometry suitable for the
neutrino physics be singled out from general Rainich
null spaces' In the following, we shall show that the
null geometry of a spinor field in the two-component
limit has a physical correspondent which obeys the
neutrino equation in the circumstance that the null
eigenvector of the curvature is the gradient of the
chirality complexion of the 6eld. This situation is quite
analogous to the case of the Einstein-Maxwell geometry
of non-null fields where the Rainich vector (2) composed
of the curvature is taken as the gradient of the duality
complexion of the electromagnetic 6eld.

As the Maxwell stress-energy tensor remains un-
changed under the duality transformation with a real
function n (the n rotation), " the reduced neutrino
tensor (35) is invariant under the chirality transforma-
tion with a real gauge P (the P rotation), "

To see this, we choose the 6eld Xo appearing in Eq.
(30) as the extremal field. Now the chirality trans-
formation generates on the basis of the extremal field a
new field

X= e@Xp. (43)

If the gauge function is taken as

(44)

then the field X obeys the restricted neutrino equation
(24) and coincides with the plane-wave-like solution
(29). Following Misner and Wheeler's terminology of
duality complexion in the case of electromagnetism, we
call the particular gauge P in Eq. (44) the chirality
comp/exiom of neutrinos. Thus, by assuming the exist-
ence of the extremal field Xo, and by imposing the condi-
tion that the null vector rp„ is the gradient of the
chir ality complexion, we may read the restricted
neutrino physics out of a Rainich null geometry.

From Eq. (25a), the chirality-invariant null current
is covariantly constant or uniform. This uniform condi-
tion is, as is seen in Appendix 8, sufIicient as well as
necessary for the null current to be the gradient of the
chirality complexion of the restricted neutrino 6eld. In
summary, neutrino geometry is characterized by a
uniform null curvature:

R=O' Roo&~0' R~xR. =0 ~zRp. —0. (45)

Since the uniform condition on the current (25a) is
obviously stronger than the Peres condition (6),
neutrino geometry is more restrictive than the Rainich-
Peres null geometry. The uniform condition is the
counterpart, in gravito-neutrinodynamics, of the Rain-
ich-Misner-Wheeler equation in gravito-electro-
dynamics.

X'= e'»~X (40) VI. CONCLUSIONS

V„g~ V'„g+i 8+g, (41)

If the values of P are different at different points of
space-time, V'„X transforms according to

As is shown in Table I, there is striking parallelism
between the null neutrino situation and the non-null
electromagnetic situation. The neutrino field is pre-
sented as a sglore root of the null curvature vector, in

and hence the Dirac equation is transformed into

v"~~x+&'~u&v"x = o (42)
TABLE I. Comparison between the non-null and null cases.

which is not generally a free-neutrino equation. This
implies that the stress-energy tensor of the form (35)
does not necessarily represent the neutrino physics.

With a choice of the chirality function P such that
+Pyj"x=0, the transformed Geld again satisfies the
neutrino equation. In this case, the gauge can have any
value provided that its gradient is either orthogonal or
proportional to p„. For the restricted field, this de-
generacy does not exist. Therefore, in a way analogous
to the Einstein-Maxwell case, specifying an extremal
field as standard of reference, one would be able to
determine the restricted neutrino 6eld by the chirality
transformation with a very special gauge.

Geometry

Invariance groups

Extremal 6elds

Complexions

Physical 6elds

I'ield equations

Physics

Non-null case

Rpv =COp),GOy
X

~ ),~~~ ——0; ~o) ~o)'&~ 0
y, trav vp=0

0pv

lg -I -fg
0) P,GO y =07 pffft) v

cj = JcxydS +0!0

Gpp, v= e cc) pv
ia

Vl"coqv =0
Gravito-

electrodynamics

Null case

Eyy=2$ Qp, gv
gp+=0 j +0+0~ 0
V„p„=0
X ~ e&toX

V'„xp ——0

P= 6J pptB~+Po

x =-e'~xo

Vpx = zQ ppx

Gl avlto-
neutrinodyn amies

a oopv =fjgv+i(+tv) aiid Gopv =flay —i (*fljv) are complex electromagnetic
fields; see Ref. 13.
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much the same way that the non-null electromagnetic
field is described. as a square roof of the non-null curva-
ture tensor. The chirality transformation de6nes the
complexion of neutrinos, while the duality rotation
designates the complexion of electromagnetism. The
uniform condition bestows neutrinodynamics on a null

geometry and the Rainich-Misner-Wheeler condition
endows a non-null geometry with electrodynamics.

It is common to both the null and non-null cases that
there is a free scale factor independent of all geometric
conditions. In other words, if a curvature tensor R„„
satisfies the algebraic and the differential conditions, so
does another tensor which differs from the R„„by a
constant multiple. On the other hand, the Einstein
equation (38) shows that different multiples in geometry
give rise to different 6eld strengths in physics. Neither
the duality rotation nor the chirality transformation
can remove or generate such a multiple. In order that
the theory be self-consistent, any dynamical restriction
imposed on the physical 6eld such as Eq. (24) must be
completely integrable in the geometry formed with the
restricted field. itself. This requirement works to de-
termine the multiple in principle. For a field which is
two-component ob initio, the restricted Eq. (24) is
integrable in a null geometry with an arbitrary multiple,
and the ambiguity does still remain unresolved. To get
rid of this difhculty, we have adopted the view that the
neutrino is the two-component limit of a Heisenberg
6eld rather than an essentially two-component 6eld.
The limiting procedure demands the gravitational cou-
pling ~ to be equated to the self-interaction 2e, ensuring
positive-definiteness of neutrino geometry. The Ein-
stein equation is then put into the form

E„„=2eT„.(e), (46)

which signifies that the gravito-neutrino coupling is
directly related to the internal structure of neutrinos.

Suppose the gravitational constant ~ has a universal
value as it does for all massive sources. Presumably, the
most natural generalization of the idea of the universal
gravitational interaction is to choose the value of ~ as
unity (=8vrG) in natural units. By Eq. (46), the cou-
pling should. be positive for the positive energy state
(Tss) 0) and negative for the negative state (TM(0).
As has been shown in Sec. III, the restricted neutrino
equation (24) has a plane-wave-like solution. In a local
Lorentz frame, the energy density of the 6eld is given
by &-,' (xtx)', the form of which is to be compared with
that of the electromagnetic energy density s'(E'+H').
The field density itself can be identi6ed with the energy
density. Comparing, at the same local point, such a
solution for the neutrino field and a plane-wave solution
of the full Dirac equation (17), one may regard the re-
stricted field as standing for a monochromatic wave
carrying the energy e(xtx). A general solution of the
local Dirac equation is to be found by superposition. In
general, however, the covariant Dirac equation is 'non-

linear in over-all character, so that the simple super-

position principle is not applicable. Whether the set of
restricted neutrino fields may cover all possible solutions
of the Dirac equation (17) is yet an unanswered ques-
tion. '4 A speculation has been made that the Eq. (24)
would govern the geometrical behavior of two-com-
ponent neutrinos in curved space."

It is also important to see how the neutrino field
relates to the Maxwell null 6eld in the special case of the
Rainich-Peres geometry. Could both neutrino and
electromagnetic fields coexist in the null geometry?
Coiild the Maxwell field. perhaps be composed of neu-
trino 6elds? Or is there any way to discriminate be-
tween the Maxwell null geometry and the neutrino null
geometry? At the present stage, however, none of these
issues can be settled.

Finally, one may ask: If the two-component limiting
process be essential, would, the neutrino field be no more
fundamental than the Heisenberg Geld, contrary to our
earlier expectation? The Heisenberg nonlinear physics
is not at all reproducible in the framework of Rainich
geometry. Only in the two-component limit does the
Heisenberg physics become significant in the Rainich
scheme. As a matter of course, geometrodynamics by
no means claims that Rainich geometry is the only way
to describe all physical laws. A geometry other than
Riemannian geometry might be adequate for the
Heisenberg field. It is already known that the nonlinear
terms can be understood geometrically as torsion of
space-time. For instance, a Finkelstein space' with
uniform torsion is equivalent to the Rainich uniform
null space. ' Even for understanding the obvious co-
existence of neutrinos and electromagnetism in reality,
it seems inevitable to introduce a new degree of freedom
such as torsion into geometry. Geometrodynamics asks
one ultimately to fashion mass, field, and perhaps spin
out of geometry itself. In an effort to speak of elemen-
tary particles in the geometric language, it is almost
meaningless to deal from the beginning with the Dirac
field with nonvanishing mass. If there exists a purely
geometrical description for the Heisenberg physics, the
field is apparently more general than that for neutrinos,
whichever field is more fundamental.
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APPENDIX A We assume that the covariant derivative of a spinor
field can be expressed as a linear combination of 16Here we prove Eqs. 20a and 20b . The proofs are
independent products of the y Inatrices, and writedirect if we use the following identities:

Yp Y) Pv Pr+Q p 4~e'pxvzP +5 ) (A1) (81)

aviv~+ vr vip 2 (gimp gvpvX+ gi pvv) ~ (A2)

On substitution of Eqs. (18) and (19), the left-hand side
of Eq. (20a) becomes

~.A.= l"(~—v"v ~)(~(v.v.v. v.v.v-.)~}
Use of (A1) readily leads to

In this case, the field x is subject to the constraint
y=y5X and hence Z„ takes the simple form

&.=&A.+C.-~v' (82)

Now the uniform condition requires that A„and C„p be
real. Furthermore, C„p must satisfy the condition

V'„A„=—ee„),„„gv"vga) (fv"vs') =0. (A3) C„pp =0. (83)

V'„p,=0. {A4)

Next, substituting Eqs. (18) and (19) into the left-
hand side of Eq. (20b) yields

U~~=+2~9v vs'')(4'(v~v&v +v vive)v4'}
«Vv&v~—k) (0v.v~4') .

Making use of (A2), we find

U..= 2& Vv.v.—~) (iv,v.a)+!g..Vv.v.~)(av"v a)}
or

U„„=U„„=2e(A„A„+,'g„„A),A") . - (AS)

In the two-component limit,

The two-component current y„ is also necessarily
uniform;

Since the Pock-Ivanenko connection involves an
arbitrary vector field, the field A„may be adjusted so
as to vanish from the right-hand side of Eq. (81).Since
the field C„~ under the condition (83) has only eight
independent components, we can express it in terms of
the two real vector fields C„and D„which are orthogonal
and proportional to q„, respectively,

C„s=C„C Ds C„CpD +—ie„s,D'. (84)

On insertion of (84) into (81), the 6rst and second
terms disappear because of the null property of p„. The
third term alone contributes to (81).Again making use
of the null property of q„, we obtain

(A6) ~@X ~~V pX y (85)

APPENDIX B

In the following we wish to show that the uniform
condition (A4) is sufhcient for the two-component
spinor field g to be the restricted neutrino field.

where we have put D„=ep„. Although the proportion-
ality constant seems arbitrary, once the extremal field.
has been specified, the chirality transformation deter-
mines the restricted neutrino field uniquely up to a
constant-phase gauge.


