
PH YSICAL REVIEW VOLUM E 140, NUM BER 8 B 6 DECEMBER 1965

Neutron Stars. II. Neutrino-Cooling and Observability*
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Calculations of the rates of the cooling reactions e+n —+ e+p+e +v, and e+2r ~ n+e +v, are pre-
sented; the rates of the closely related muon-producing reactions and the four inverse processes are also
given. Several different arguments are used to obtain estimates of the relevant matrix elements. The nucleons
are assumed to form a normal Fermi Ruid with a continuous excitation spectrum. The calculated cooling
rates indicate that a neutron star containing quasifree pions would cool within a few days to a temperature
so low that the star would be unobservable. The surface of a star that does not contain quasifree pions would
cool to 107 'K in a few months and would reach 4&(10' 'K in about 100 years. The calculated cooling rates
strongly indicate that the discrete x-ray sources located in the direction of the galactic center are not neutron
stars.

I. INTRODUCTION emitting neutrinos in the reactions

(1)

(2)

(3)

'KASUREMENTS made on recent rocket flights
- above the earth's atmosphere have demonstrated

the existence of several discrete sources of galactic
x rays. ' ' Several authors' have suggested that some
of the observed sources may be hot neutron stars
radiating x rays from their surfaces, while other authors
have suggested that the observed x rays may by syn-
chrotron radiation from energetic electrons in magnetic
fields' or bremsstrahlung radiation from hot clouds of
electrons and nuclei. ' '

The neutron-star hypothesis is the most specific of
the suggested x-ray producing mechanisms, and it is
thus the easiest hypothesis to disprove observationally.
The most obvious property of a neutron star, its small
size, has led to observational proof" that the principal
x-ray source in the Crab nebula is not a neutron star;
the results of the recent occultation experiment indicate
that the source in the Crab has a diameter of the order
of one light year. In the present work, we consider in
detail another important property of neutron stars,
their fast cooling by neutrino emission, and we find that
the calculated cooling rates imply important restrictions
on the observability of neutron stars.

We calculate the rates at which a star loses energy by

n+n-+n+p+e +v„
n+n &n+p+—tz +v„,
+n + n+e +ve~

+n ~ n+ts +v„,
and

as well as the inverse processes

(S)

(6)

(7)

n+p+e ~n+n+v„
n+p+tt -+n+n+v„,

n+e ~n+sr +v. ,

n+tt ~n+rr +ve (8)

Reactions (1.) and (5) were first discussed by Chiu and
Salpeter~ and the corresponding neutrino luminosities
have been calculated by several authors. " "We have
previously reported crude estimates" of the rates of
reactions (4) and (8).

We expect that reactions (1)—(8) should be the
dominant means of neutrino production in neutron
stars. In the Appendix, we consider the rates of various
other neutrino-producing reactions, and conclude that
these processes do not contribute importantly to the
neutrino luminosity.

In our calculations of the rates of reactions (1)—(8),
we have assumed that the spectrum of excited states
available to a dense neutron gas is continuous, just as
it is for a normal Fermi gas. Ginzburg and Kirzhnits'4
have pointed out that the excitation spectrum of the
nucleon gas may not be continuous, but may instead
resemble the spectrum of a gas of superconducting
electrons. The existence of superQuidity might greatly
modify the cooling rates of neutron stars, and we expect
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to consider the question of superQuidity of the nucleon
gas in a future paper. Our present treatment of the
neutrino-producing reactions and the related conclu-
sions about the observability of neutron stars are ex-
pected to be accurate only if the nucleon gas does not
form a superRuid.

Our calculations indicate that reactions (1) and (5)
cause a mass M, of neutron-star matter to lose energy
at a rate given by

I. » 8= (6)(10» erg sec i)(~/cVo)(p i/p)i&32'9~ (9)

where Mo is the mass of the sun, p „.& is the density of
nuclear matter (3.7&&10'4 g/cc), p is the density of the
neutron-star matter, and T9 is the stellar temperature
in units of 10' 'K. The neutrino luminosity due to
reactions (2) and (6) is equal to FXI.„""-',where F is
equal to zero when the electron Fermi energy W'i (e) is
less than m„c', and is equal to the ratio of the muon
Fermi momentum to the electron Fermi momentum if
Wip(e) is greater than m„c2. Thus the net energy loss by
reactions (1), (2), (5), and (6) is equal to (1+F)1.„""

We Qnd that the rate of energy loss by neutrinos
produced by reactions (3), (4), (7), and (8) is given
approximately by

I. ~"= (10"erg sec ') (as~/n i,) (3E,/Mo) 2'9' (10)

where n /n& is the ratio of the number density of quasi-
free z mesons to the number density of baryons. The
luminosity I.„"is greater than L,„""-'if rc /m& is greater
than about 10 '. As we have shown in Sec. III of the
preceding paper, one cannot say with any degree of
certainty whether or not quasifree pions are present in
neutron stars. We conhne ourselves in the present work
to consideration of the consequences of the presence of
quasifree pions in neutron stars, setting aside the much
more dificult problem of whether such pions are
actually present.

We combine Eqs. (9) and (10) with the results of the
neutron-star models of Tsuruta'~ (computed using the
equations of stellar structure and various simple laws
for the equation of state) to estimate cooling times of
hot neutron stars. A neutron star containing quasifree
pions would cool so fast by neutrino emission that its
x-ray luminosity would be negligible within a few days
after the formation of the star. Thus our cooling rates
indicate that the observed x-ray sources cannot be
neutron stars that contain quasifree pions.

About half of the observed x-ray sources are in the
direction of the galactic center; our cooling times
indicate that any observed source that is actually
located near the galactic center (which is about 8
kiloparsecs away) could be a neutron star only if it was
formed less than a week before it was observed, an
extremely unlikely possibility. However, it has been

'~ S. Tsuruta, Ph.D. thesis, Columbia University, 1964 (un-
published); S. Tsuruta and A. G. W'. Cameron, Nature 207, 364
i19651.

suggested"' that the brightest source, the one that
appears to be in the constellation Scorpius, may be of
the order of 30 parsecs from the sun. If the Scorpius
source is in fact only 30 parsecs away, the observed Qux

from it is consistent with the hypothesis' that the source
is a neutron star with a surface temperature of about
3)&10' 'K. Our cooling times indicate that such a star
could be thousands of years old. However, a blackbody
at 3)&10' 'K would not produce the large numbers of
short-wavelength photons recently observed'~ for the
Scorpius source.

We begin the detailed discussion of the reaction rates
by formulating in Sec. II the general problem of
neutrino emission from neutron stars. Then in Sec. III,
we use simple heuristic arguments to obtain approxi-
mate expressions for the rates of reactions (1) and (3).
The problem of neutrino opacity is treated in Sec. IV,
where we show that the mean free paths of all neutrinos
involved in reactions (1) to (8) are large compared to
the radius of a neutron star. Section V contains a
detailed calculation of the rate of energy loss by
reactions (1), (2), (5), and (6), while Sec. VI contains
an analogous treatment of the pion processes, reactions

(3), (4), (7), and (8). Finally, in Sec. VII, we use
information from neutron-star models" to calculate
the rate of cooling of the surface of a typical hot neutron
star (i.e., the decrease of the x-ray luminosity with

time). We then apply our calculated cooling rates to
the recent observations of Bowyer et ul. '

II. GENERAL FORMULATION

In order to compute cooling times, one must consider
the excited states of a neutron star. A neutron star is
almost completely isothermal, except for an extremely
thin atmosphere. For the purposes of calculating the
rate of neutrino emission, one can neglect the atmos-
phere and imagine that the excited states of the star are
populated (according to the usual Boltzmann factor)
by placing the star in contact with a thermal bath at
a 6nite temperature T. The star then has a definite
baryon number and total electric charge but does not
have a definite energy. The rate of energy loss (cooling)
by neutrino emission is given by an expression of the
form

I,„=(2~/k) P„P„.[(S,;.i@„~S.) [2E„

&(5(E Es E„)exp( —E /kT)—, (—11)

where S, Sp are states of the entire star, H„ is the
weak-interaction Hamiltonian, E„ is the energy of the
emitted neutrino v, and the summation over P is limited
to states for which Ep&E .

In practice, cooling rates must be computed with the
help of a model; we adopt an independent-particle

"R.H. Brown, R. D. Davies, and C. Hazzard, Observatory
80, 191 (1960).

»R. Giacconi, H. Gursky, and J. R. V/aters, Nature (to be
published).
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model whose general characteristics have been discussed
in the preceding paper. "We shall in fact use several
slightly different versions of the independent-particle
model in order to estimate the uncertainties in our
results. We also approximate the thermal average
(Eq. (11)) over the states of the star by assigning a
Fermi-Dirac or Bose-Einstein distribution function to
each kind of particle in the star. As discussed in Paper I,
it is not possible to decide at present whether or not
neutron stars contain a significant number of quasifree
pions; hence our calculations have been carried out for
both assumptions, pions present and pions not present.

III. HEURISTIC CALCULATIONS

One can estimate the order of magnitude of the energy
loss due to processes (1)—(8) by a simple heuristic argu-
ment that is not entirely fraudulent. The main feature
of this argument is that only fermions on the edge of
their degenerate seas can undergo inelastic scattering.
Thus only a small fraction of the order of (kT/Ez) of
the fermions of a given type can participate in the cool-
ing reactions. Since neutrinos escape from a neutron
star (see Sec. IV) this argument does not apply to them.
However, the net amount of energy transferred to a
neutrino in any of the cooling reactions must be, by
conservation of energy, of the order of kT. As a guess,
we replace the dimensionless neutrino phase space,
which is proportional to E„s, by (kT)s/LE+(n)Ez(P))
for reactions (1) and (2) and similar factors for reactions
(3) and (4).

The energy loss from reaction (1) can now be crudely
estimated from the familiar arguments of kinetic theory.
One writes for the energy loss from a volume 0 by
reaction (1):

L &'l Qn(n)'(ov)E LkT/Ez(n))+'PkT/Ev(p)), (12)

where n(n) is the neutron number density, the weak-
interaction cross section o 10 44LEv(n)/1 MeV)' cm',
the relative velocity o c/3, the neutrino energy
E, kT/3, and the various Fermi energies can be
estima, ted from Eqs. (5) of Paper I. We have included
in Eq. (12) one factor of kT/Ev for each degenerate
fermion that occurs in process (1); we have also made
use of the fact that Ev(e) is, according to Sec. II of
Paper I, approximately equal to Ez(n). We consider a
mass M, of neutron-star matter at a uniform density p
and a uniform temperature T. Using Eq. (5) of Paper I
in Eq. (12), one finds that the neutrino luminosity due
to reaction (1) is given by

(6)&10"erg sec ') (M',/Mo) (p~«&/p)'Tss (13)

where Mo is the mass of the sun and T9 is the tempera-
ture in billions of degrees. Equation (13) yields energy
losses that are not enormously diferent from the energy
losses computed from our more complicated analysis of

' J. N. Bahcall and R. A. %'olf, preceding paper, Phys. Rev.
140, 31445 {1965).This reference grill be referred to as Paper I.

Sec. V. Moreover, Eq. (13) gives correctly the crucial
dependence of L,&'& on temperature, although the den-

sity dependence cannot be obtained correctly without
a more careful kinematical analysis.

A similar crude argument can be used to obtain an
estimate of the energy losses from reaction (3). Note
that process (3) contains two fewer fermions than
processes (1) and (2); hence the rate of (3) is faster
than (1) by a factor of the order of (Ez(n)/kT)'. Thus

L„&" (4&& 10"erg sec ')
X( ./ .)(m,/Wo. )( .../ )"T,'. (1&)

The heuristic arguments show clearly what quantities
must be calculated in a careful analysis, namely, the
phase-space integrals (which we ha.ve approximated
by fa,ctors of kT/Ev) and the nuclear matrix elements
(which we have approximated by an average weak-
interaction cross section).

IV. NEUTRINO OPACITY

Neutrinos produced by the reactions discussed in the
previous section have typical energies of the order of
kT, with AT less than or of the order of 100 keV. For
neutrinos of such energies, the largest contribution to
the neutrino opacity comes from neutrino-electron
scattering for p, and neutrino-muon scattering for p„.
This result can easily be established by examining the
possible reactions. We consider erst electron neutrinos,
Pg.

The following reactions are forbidden for typical
neutron-star conditions by conservation of energy and
momentum: v,+n ~p+e, v,+p —+ n+e+, and v,+p
+n~n+n+e+ The .reaction v.+n+n~ p+e +n'
and related reactions involving strange particles, e.g. ,
A. 's or Z 's, occur rarely because the cross section is of
the order of 10 4' cm' times several factors of (kT/Ev).
Neutrino absorption by heavier elements on the surface
of the star is negligible because the cross sections are
small and the heavier elements are rare. Thus neutrino-
electron scattering is the most important interaction
for v,.

A similar analysis has been carried out for muon
neutrinos and shows that the only interactions allowed

by the selection rules and by energy conservation are
v„-p and P„-p, scattering.

The cross section for neutrino-electron scattering in
a degenerate gas is,"for E„(&Ev(e),

o = (2X10-44 cm') (E„/ni.c')'$E„/Ev(e))) (15)

where we have included. a factor of IE„/Ev(e)) that
was inadvertently omitted from Eq. (53a) of Ref. 19.
Equation (15) should be multiplied by one-third for
antineutrino-electron scattering. For v„-y scattering,
the cross section is again given by Eq. (15). For v„t4-
scattering, Eq. (15) should be multiplied by one-third.

"J.N. Bahcall, Phys. Rev. 136, B1164 (1964).
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The mean free path of an electron neutrino is

) „,=—(~n.)
—',

and therefore
(16a)

V. NUCLEON-NUCLEON COOLING

A. General Expressions

We now make explicit use of the independent-particle
model to calculate the rate of reaction (1).We describe
the state of the entire star in terms of the states of its
individual particles, introducing corrections to account
for the interactions among the various particles. Follow-
ing the work of Gomes et al.,20 we label each single-
particle state by its momentum y; as in Paper I, the
energy assigned to a state of particle species i with
momentum p is given by

X„,= (5X10skm) (p „,&/p)+s(100 kev/E„)'. (16b)

In obtaining Eq. (16b), we have used Eqs. (5) of I.The
mean free path of a muon neutrino is larger than X„,
since muons are less numerous than electrons.

Note that the values of the mean free path given by
Eqs. (16) are la,rge compared to the radius of a neutron
star ( 10 km). Thus the opacity of a neutrino star to
low-energy neutrinos is entirely negligible.

weak-interaction Hamiltonian for the beta decay of
the neutron. "

The sum over spins in Eq. (18) can easily be per-
formed, and the matrix element can then be written in
terms of the overlap between the wave functions
describing the relative motions of the nucleons in the
initial and 6nal states.

Before writing down an explicit formula for the
matrix element, we make two simplifications: (1) We
assume that the nucleon-nucleon potential acts only in
even-parity states, and (2) we neglect all terms involv-

ing the lepton momenta. The erst assumption has fre-
quently been used in nuclear-matter calculations and
does not appear to give rise to any large errors. The
second simpli6cation can be shown to introduce errors
of the order of 15% if the first approximation is valid.
One may reasonably expect the errors in the calculated
neutrino luminosity arising from these approximations
to be small compared to the uncertainties that arise
from our lack of a fundamental theory of strong inter-
actions from which one would hope to calculate the
scattering of nucleons in a neutron star.

We describe the overlap between the initial and final
nucleon wave functions by means of the following
dimensionless integrals:

(p) = (m sc +p&cs) & +U' (p) —m;cs

The Fermi energy E| (i) is defined by

Er (i)= {mac'+P'g(i) $'c') 'I' —m;c'

(17a)

(17b)

3Ev ——)(.—' d'rLcosk' r+6„,'(r)$*

XLcosk r+6„„'(r)); (19a)

d'rLcosk' r+6„'(r)g*
where Er(i) is the Fermi momentum for a particle of
species i The ze.ro point of U, (p) is defined such that
U;P'&(i)g is equal to the binding energy B(i) as defined
in Sec. IIIB of Paper I. Thus, E;(p) is the energy
required to take a particle of type i from inanity and
place it in the neutron star in a state with momentum
p (gravitational interactions not considered). The
quantities W;(p) and Wr (i) are defined to be equal,
respectively, to LE;(p)+m;c'1 and PE» (i)+m;c'j.

The neutrino luminosity I,„&'~ arising from reaction
(1) (n+n —+ n+p+e +v,) can be written as follows

L.&'& =s h ' P dsnrdsnsdsn~'d'n~tpn, dsn„-
spinN

XSo(E; Ey)Ep~ (n, p, e,p. [H (n—,n))', (18)

where the subscripts 1, 2, 1', p, e, and f denote the two
initial neutrons, the Anal neutron, the proton, the
electron, and the antineutrino, respectively. The factor
d'e; is the element of phase space for particle i; S is the
product of Fermi-Dirac distribution factors for the
neutrons, the proton, and the electron; and H„ is the

"L.C. Gomes, J.D. Walecka, and V. F. Weisskopf, Ann. Phys.
(N. Y.) 3, 241 (1938).

XPcosk r+A„„s(r)J. (19b)

In Eqs. (19), )t, is the Compton wavelength of the pion,
r is the relative displacement of the two nucleons, k' is
one-half the difference between the two nucleon
momenta in the final state, and k is one-half the di&er-
ence between the nucleon momenta in the initial state.
The initial-state wave function Pcosk. r+6„„'(r)) de-
scribes the relative motion of two neutrons with total
spin zero. The functions Lcosk' r+6„„'(r)7 and
Lcosk' r+6 ~'(r)) correspond to neutron-proton pairs
in states with spin zero and spin one, respectively.

The neutrino luminosity is then given by

L &'& =64s'QG')s ')1 'tv'[lMv (l'+BC''Il3fg ~'j& (20)

where the dimensionless phase-space factor P is defined
as follows:

P=Q sX s g d'npE„-51&(K' —K)8(E —E;). (21)

Since each factor d'm; is proportional to the normaliza-
tion volume 0, the phase-space integ|. al P is actually
independent of Q. Thus, L„&'~ is proportional to Q.

~' See, for example, E. J. Konopinski, Ann. - Rev. Nucl. Sci. 9,
99 (1959) or J. ¹ Bahcall, Phys. Rev. 126, 1143 (1962).
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Inserting the appropriate numerical values in the
expression for L,&'~, one Gnds

Q 'L„o&= (5.2X104S erg cm 'sec )
XP([Mv['+43(M~[ ). (22)

As was apparent from our earlier heuristic discussion,
two types of quantities must be calculated: the nuclear
matrix elements 3f~ and My and the phase-space
factor P. Equation (22) has been derived only for the
case of reaction (1); we shall consider in Sec. VD the
modifications necessary to account for reactions (2),
(5), and (6).

B. Phase-Space Factor

1. Genera/ Disclssioe

Chemical equilibrium among the diferent types of
particles present in a neutron star is ensured by various
weak-interaction processes, particularly reactions (1)
and (5). The concentrations of the various particles
can be brought to their equilibrium values in typical
wea¹interaction times of the order of 10 "to 10 ' sec.
However, the exclusion principle greatly inhibits all
these reactions when the stellar matter is near chemical
equilibrium at low temperature. For example, the
lifetime of a neutron in a neutron star at equilibrium
at 10' 'K is of the order of 10" sec, which is 10+' to
10+" times longer than the time required to estab1ish
chemical equilibrium.

This enormous reduction in the reaction rates near
equilibrium results from a decrease in the number of
available initial and final states. Equation (13) of
Paper I states that, in a neutron star at equilibrium at
O'K, two neutrons at the top of their Fermi distribution
have just enough energy to produce a neutron, a proton,
and an electron at the top of their respective Fermi
seas, plus a zero-energy neutrino. At temperatures
greater than zero but still small compared to the
relevant Fermi energies, neutrons with energies near
Ez(e) have sufficient energy to produce a neutron,
proton, and electron in unoccupied states near the tops
of their respective Fermi seas, plus a neutrino with an
energy of the order of kT. Thus the neutrons destroyed
in reaction (1) all come from a narrow band of states
with energies within a few kT of E~(n), and the
neutrons, protons, and electrons produced in reaction
(1) must have energies within a few kT of their respec-
tive Fermi energies. The relatively slow rate of reactions
(1) and (5) at equilibrium is due to the fact that only
a small fraction of the total number of particle states
can actually be involved in the reactions. The phase-
space factor P of Eq. (21), which we evaluate in the
following paragraphs, contains a quantitative descrip-
tion of the inhibition of the reaction rate due to the
small number of available states. The phase-space
factors for the allowed reactions (1) and (5) are the
principal quantities that determine their absolute rates,
just as the ordinary phase-space factor (usually denoted

by f) primarily determines the labora. tory deca, y rates
of superallowed nuclear beta decays.

Z. Ietegratioms

The integrations involved in the phase-space factor
I' can all be performed analytically; the approximations
required for carrying out the integrations give rise to
errors of only a few percent. One can evaluate the
integrals relatively accurately because of the simplifica-
tions that result from the fact that kT is, for the
problems of interest, much less than the relevant Fermi
energies. For example, the energy kT is 0.086 MeV at
10' 'K, whereas Ep(n), E~(c), and EJ (P) are, respec-
tively, of the order of 70, 70, and 3 MeV at nuclear
density.

We begin the evaluation of the phase-space factor I'
by rewriting it in the form

where

P=B g ppdp+Epo(Ef —E;)A,

B= (m, c)
—"(2m)-"

(23a)

(23b)

(23c)

and

where

P.+ I Pi P2I &Pi &Pi+—P2 P-
Pi&P

s y e P ~

(24)

The largest error made in restricting ourselves to the
domain described by relations (24) and (25) is of the
order of e ~J'(»~~, which is less than 10 ' for the
temperatures and densities of interest.

The angular integral A can be evaluated easily
through the use of inequalities (24) and (25), and the
result is

2 = (4')'h'(2pgp2pg') —'. (27)

The statistical factor S can be expressed most easily
in terms of dimensionless energies: namely,

S=g (1+e")—', (2g)

and p; and 0; represent, respectively, the magnitude
and direction of the momentum of the particle of
species i.

We begin by evaluating the angular integral A. The
integrand of I' is negligible except in the restricted
"important" region of phase space where all the
particle energies are within a few kT of their Fermi
energies. It is convenient to neglect contributions to
the integral from certain regions that are far from the
"important" region. In particular, we consider only
those parts of the region of integration that satisfy the
inequalities
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where

a, =PLEt—Ep(n) —B(n)j, (29a)

and

.,=-~LE.'-E.( )-B(.)l, (29b)

a,=—P/W. —W5 (e)), (29c)

*.=piE,-E.(-)-B(-)3, (29d)

~5= p/E, —E~(p—) B(p)—m„c'+—m c'5, (29e)

p= (uT)-' (29f)

It is thus convenient to use the x; as variables of
integration. Defining the nucleon effective masses as in
Paper I, we find that

(308)p„dp, =m,*(p„)dE„

p„dp =m„*(p„)dE„. (30b)

We make two approximations before evaluating the
integral over the x,. First, when the integrals are
expressed in terms of the x;, the factor

m~*(Er)m„*(Es)m~*(Et')m~*(E„)p, (E„)Pp. (E,)]'

remains in the integrand; since the important part of
the region of integration involves only energies within
a few kT of the Fermi energies, we can evaluate the
effective masses and momenta at the Fermi energies
and take these factors out of the integral. Second, the
region of integration does not include negative energies;
however, we introduce only errors of the order of
e &~&(» by setting the lower limits on the neutron,
proton, and electron energies equal to minus infinity.

With these approximations, we obtain"

P=25rrsc~B(m„*)'m„*Pr (p)Pr (e)'I, (31a)
where

The phase-space factor is, as expected from the
heuristic argument given in Sec. III, proportional to
T'; it is also proportional to the product of the effective
masses of the four nucleons involved, because the
number of single-nucleon states per unit energy is
proportional to the nucleon effective mass.

Although the integrations involved in P are accurate
to within a few percent, the numerical value of P is diffi-
cult to estimate to much better than a factor of 5 be-
cause of the uncertainties in the effective masses and the
electron Fermi energy. Using Eqs. (29)—(33) of Paper I,
we estimate that the product (m„*/m„)'(m„*/m„) is
equal to 0.6&0.3. The electron Fermi energy depends
on B(n)—B(p), the difference between the binding
energies of the neutron and proton. This difference
might easily be as large as 50 MeV at nuclear density,
but unfortunately no reliable theoretical estimates of
B(n)—B(p) are yet available. We shall assume that
B(n) B(p) is mu—ch smaller than 70 MeV and use the
free-particle relation, Eq. (5c) of Paper I, for the
electron Fermi energy. We then obtain a simple but
approximate expression for P,

P=1.9X10 55(p/p„„,))'Tgs.

C. Estimates of the Matrix Element

(33)

Our lack of detailed knowledge of the effects of strong
interactions makes accurate calculation of 3f~ and My
dificult. In the following subsection, we use a dimen-
sional argument to guess the order of magnitude and
density dependence of the matrix elements. Ke then
use two specific models for the nucleon-nucleon collisions
to obtain more detailed estimates of M~ and SIp.

write the phase-space factor in the convenient form

m„* ' m„* W5(e) '
P=2.6X10-&j

~ ~

Tss. (32)
Em I Em„m c'

d$1 d$2 d$3 dS
(&X+&2+3+&4) 1. Dimeesioea/ Estimate

11 513xs

120 960
(31c)

and

m *=m„*PEp(n)g,

m„'=m„*LEp(p)j.
(31d)

(31e)

Setting P~(p) and P5(e) equal to c 'W5(e), we can

"More detailed derivations of Eq. (31) and other equations
given in this paper are included in a thesis submitted by one of
us (R. A. W.) to the California Institute of Technology in partial
fulfillment of the requirements for the degree of Doctor of
Philosophy.

The integrals over r in Eqs. (19a) and (19b) must
yield a quantity proportional to the cube of a length.
Thus we can estimate Mz and Sf' by considering the
physical lengths that are involved. There are two
lengths associated with the nucleon-nucleon potential:
The attractive potential has a range of about X and
the core radius is about 0.4X . The relevant wave num-
bers IC, k, and k' are all large fractions of P5(n)h ',
and M'p (n)

—'—0.4X~(p/pa„. t)
—'".

Since all the lengths involved are nearly equal at
nuclear density, we expect (Mz(' and ~M&(s to be of
the order of unity at nuclear density. Furthermore, the
eGective range of 6 is probably determined primarily
by k, k', or P5(n)h ' Thus we mig. ht expect M~ and
Mv to be proportional to P5 (n) ', i.e., to decrease
as p '. In any event, we expect Mz and M& to decrease
slowly with increasing density, for moderate densities.
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Z. Scatterin Madel

In this model, we assume that the function 6 in
Eqs. (19a) and (19b) is an outgoing scattered. wave;
that is, we assume that

P ~
e"~ sin8~ I'~(Q) e'~"/kr (34)

for kr))1. Equation (34) does not describe the wave
function for the region kr(1, a region which contributes
a large part (&one-half) of the integrals 3fv and M~.
In order to estimate the wave function for small radii,
we must assume a specific form for the interaction
potential. We adopt the separable potential suggested
by Vamaguchi. "The corresponding s-wave scattering
wave function is given by

cosk r+e" sinb(e+' e~') (—kr) ' (35)
where

P 1 1k''
e" sin8= i+ ——+————

(

k 2 2P/I

+ (2m XP) '(P'+k')s . (36)

The parameters X and P, which represent, respectively,
the coupling strength and range of the separable poten-
tial, can be determined from the singlet and triplet
scattering data. The effective Hamiltonians acting on
the space parts of the singlet and triplet wave functions
are different. But the two singlet wave functions con-
tained in M~ are eigenfunctions of the same Hamil-
tonian; since the two eigenfunctions correspond to
different nucleon energies, they are orthogonal. Thus
the free-scattering model implies that Mz equals zero.

We have computed M'~ using values of P and X that
reproduce the experimental phase shifts between 25
and j.00 MeV. The resulting expression for M~ is
complicated, but, for p&p „.& it can be accurately
approximated as follows:

I ~~ I'= o 3 (/-.~/~)"' (3/)

Note that the model described. above neglects all
correlations between the colliding nucleons and the
other nucleons that are present.

3. 1VNclear-Matter CalcglaIioe

In using the scattering model discussed above, we
have neglected the fact that the exclusion principle
prohibits scattering into occupied states. Nearly all the
states that are energetically accessible to two colliding
nucleons are, in fact, occupied in a neutron star; hence
there is almost no free scattering. The wave function
describing the relative motion of two nucleons in a
neutron star or in nuclear matter is a symmetrized plane
wave, except for some distortion for small internuc]eon
separations. This distortion is described by the functions

sa Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).

6 in Eqs. (19a) and (19b).One can describe the collision
between two particles most simply by using a two-par-
ticle Schrodinger equation. The effect of the interac-
tions between the two colliding particles and the other
nucleons can be represented approximately by replacing
the free-particle masses by the effective masses. How-
ever, the Schrodinger equation must also be modified
to take account of the fact that the states below the
relevant Fermi levels are largely occupied; the appro-
priate modified form of the Schrodinger equation is the
Bethe-Goldstone equation, which is often used in
nuclear-matter calculations. " In the Bethe-Goldstone
equation, the usual potential-energy term V(r)f(r) is
replaced by qV(rg (r), where q is a projection operator
that eliminates those Fourier components of V(r)f(r)
that correspond to occupied states. Since the operator
qV(r) is not Hermitian, the solutions to the Bethe-
Goldstone equation for different energies are not
necessarily orthogonal. Thus My need not be zero as
it was in the scatteririg model of Sec. VC2.

We follow Gomes et a/. 20 in assuming spin-independent
forces, which implies that M~ and My are equal. How-
ever, A„„and d„„are not equal, since the exclusion
principle differentiates between neutrons and protons.
Using the fact that (k( is different from (k'( to show
that

d'r cosh' r cosh r=O,

we can rewrite Eqs. (19a} and (19b) m the form

M~=My (38a)

d'r cosk' r h„„(r)=0.

We follow Gomes et cl., in assuming that the nucleon-
nucleon potential consists of an attractive square well
and a hard core. The long-range attra, ctive well has
little effect on the wave function for densities com-
parable to p„„,~', the distortion functions 6 are due
almost entirely to the hard core. We consider the case
where the core radius a is much less than hLEr(e) j '.
The resulting low-density approximation should be
reasonably accurate up to densities about equal to
nuclear density. In the low-density limit, one can make
the following simplifications: erst, we need only

dsrLcosk'. rh„„(r)+cosk rh„„(r)

+h„(r)h„„(r)j. (38b)

The function &„„(r)has no Fourier components corre-
sponding to the scattering of either neutron into an
occupied state, i.e., A„„(r)has no components with wave
number p for which (-', K&p(&Pr(e)h —'. Since k' is
approximately one-half X, A„„(r) has no Fourier com-
ponent with wave number &k', and
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consider s waves; second, we can neglect the last term
in Eq. (38b) because the product A„„(r)h„„(r) is of
second order in Pg(N)a; third, in computing h„„(r) we
can neglect the leakage of the wave function inside the
core as well as the changes in the wave function's
normalization caused by the distortion terms A. One
can then use the Bethe-Goldstone equation to And the
Fourier component of h„~(r) that corresponds to the
momentum k. In this way, one 6nds that

= L (4z a) (k"—k') —9..—'$'. (39)

The values of k and k' are determined by kinematics
and the exclusion principle. We found in Sec. VB that
the particles involved in reactions (1) and (5) must be
in a narrow band of states at the top of their respective
Fermi seas. Thus the momentum of each particle
involved in a reaction must be nearly equal to the
Fermi momentum for that particle. The neutron Fermi
momentum is large compared to the proton and electron
Fermi momenta; the neutrino momentum, which is of
the order of kT/c, is completely negligible. Hence the
momentum p~' of the anal neutron must be approxi-
mately equal to the momentum in the initial state,
y~+p2. If we neglect the momenta of all particles except
the neutrons, we And that the three neutron momenta
form an equilateral triangle with sides of length Pz(N).
It follows that k is equal to 3'"(2h) 'Ep(e) and k' is
equal to (2h) 'P&(e). Substituting these values of k
and k' in Eq. (39), using Eq. (5e) of Paper I, and

choosing the core radius a to be 4X10 "cm, we find
that

equal within the approximations we have used in
calculating the rate of reaction (1).

In deriving Eq. (20), we assumed that the lepton
mornenta were small compared to the neutron momenta.
Within the same approximation, the expression for the
energy production due to the inverse process can also
be cast in the form of Eq. (20). The nucleon matrix
elements cV@ and 3IIv for reaction (5) are the complex
conjugates of 3I& and Mv for reaction (1). Further-
more, one can easily show that Eq. (31a) for the phase-
space factor P holds equally well for reactions (1) and
(5).Thus, Eq. (20), which gives the neutrino luminosity
in terms of My, M~, and I', predicts the same rates of
energy loss for the direct and inverse reactions.

Z. Muorl, Production

Muons are present in a neutron star if the electron
Fermi energy is greater than the muon rest energy
m„c muon neutrinos are then produced by reactions
(2) and (6). The rate of reactions (2) and (6) can be
computed by the method used for reactions (1) and (5).
The only diGerence in the rates of production of muon
and electron neutrinos results from the fact that the
density of muon states at the top of the muon Fermi
sea differs from the density of electron states at the top
of the electron Fermi sea by a factor F, where, for W&(e)
greater than m„c',

~=~~(u)/~~(&) ~

Using the equilibrium relations PEqs. (10) and (11) of
Paper Ij, we obtain

—1.0 (p,„,I/p)
F={1—Lm c'/Wg(e)y)'". (42)

4. Summary

The scattering model and the model based on the
usual picture of nuclear matter both predict that

~
3II~ )'

is of the order of unity near nuclear density and that

) cV& ~' decreases with increasing density. The relatively
small difference between Eqs. (37) and (40), and the
agreement of both equations with a dimensional

analysis, indicates that the value of the total matrix
element is not critically sensitive to the uncertainty in
our knowledge of the strong internucleon force.

D. Related Reactions

J. The Inverse Reaction

We have calculated so far only the rate of neutrino

energy loss via reaction (1). At the temperatures and
densities for which reactions (1) and (5) are the
dominant means of ensuring chemical equilibrium in
the m-e-p system, the rates of reactions (1) and (5) must
be equal in order to preserve the equilibrium. The rates
of neutrino energy loss by the two reactions are in fact

The ratio F is of course zero when Zg(e) is less than
m„c'. Using Eq. (Sc) of Paper I to estimate Wp(e), we
find that

and

~= D—2 25(p-.~/p)"'3'" «r p».8p.,l (4»)

for p(1.8p „,i. (43b)

L,""=(10' erg cm ' sec ') (P/P„„,()2&3T98(1+@) (44)

where F is given in Eq. (43).
The luminosity of a mass M, of neutron-star matter

E Numerical Expressions

We now combine the results of the last four sub-
sections to obtain convenient numerical expressions for
the rate of energy loss by neutrino emission. Substi-
tuting Eqs. (33) and (40) into Eq. (22), and multiplying
by 2(1+7) to take account of reactions (2), (5), and
(6), we fmd that the rate of neutrino energy loss by the
two-nucleon reactions is given by
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with a uniform density p is given by the expression

I.„""=(6X 10"erg sec ')
X (~./Jib,. ) (p,.Ip)"'I'(1+I'), (4')

where Mo is the mass of the sun. '
Equations (44) and (45) give estimates of the neu-

trino luminosity from reactions involving two nucleons.
Two-nucleon reactions are expected to dominate the
neutrino production as long as there are no quasifree
pions present.

F. Comyarison with Previous Work

Chiu and Salpeterr first suggested that reactions (1)
and (5) might contribute importantly to the cooling of
neutron stars. They used a dimensional analysis to
obtain the expression

I.„s= (2X 10"erg/sec)

X Ts'JEST (I)/50 MeV7 s s'(cV,/cVO)

for the rate of energy loss by neutrinos produced in
reactions (1) and (5). The result given by Chiu and
Salpeter has the correct temperature dependence, but
it is typically two or three orders of magnitude smaller
than our best estimate )as given in Eq. (45)7.

Finzi" has performed a detailed calculation of the
rate of reaction (2) at a density of 1.6p„„&. Although
he did not explicitly calculate the rate-of-energy loss
by reaction (5), he correctly assumed it to be equal to
the neutrino luminosity arising from reaction (1). His
treatment of the matrix element differs from ours in
several ways. First, he neglected the effects of the
exclusion principle on the relative motion of two
colliding nucleons. Second, he treated the strong
nucleon-nucleon interaction as a first-order perturba-
tion; the nucleon scattering matrix element was
assumed to be equal to a constant, which was deter-
mined by the requirement that the same erst-order
perturbation treatment yield a value of 3&(10—"cm'
for the scattering cross section for free nucleons. Third,
he treated the nucleons and leptons as scalar particles
(instead of fermions) in calculating the amplitude
associated with the weak vertex. Finzi's treatment of
the phase-space factor I' divers from ours in two ways:
First, a minor error in his integrations results in an
extra factor that is approximately equal to 2/3; second,
he uses the free masses m and m„ instead of effective
masses m * and m„* to describe the density of single-
particle states. Finzi gave the following expression for
the luminosity of 0.6MO of neutron-star matter at

'4 Jn our earlier calculation (Ref. 13), we used the scattering
model to estimate the matrix element. We also neglected the
relativistic correction to the neutron effective mass. Setting Afar
equal to zero, using Eq. (37) for Mx, and setting m * equal to
0.9 reduces the value of the constant in Eq. (45) to 1X10ss, the
value given in Ref. 13. The density dependence is also changed
somewhat. The muon rate was not included in our earlier estimate.

I-6p uci-'

I,"= (8.83X10'r erg/sec)2' s

This result differs from the luminosity predicted by
Eq. (45) for the same ma, ss and density by about a
factor of one-fifth (if we set Ii equal to zero). The dis-
agreement between the two answers is small compared
to the obvious uncertainties in either approach. The
closeness of the two results for the rate of energy loss
arises partly from the fact that the matrix element is,
as we mentioned in Sec. VC, relatively insensitive to the
details of the model used to calculate it.

Ellis" has recently reported a similar calculation of
the rate of energy loss by reactions (1) and (5).
Following Finzi, he employed second-order perturbation
theory to estimate the transition amplitude, using the
known nucleon-nucleon scattering data to determine
the coupling at the strong vertex; he also neglected the
eGects of the surrounding neutrons on the relative
motion of the colliding nucleons. Unlike Finzi, Ellis
treated the nucleons and leptons as fermions, and he
performed the calculation for a range of densities.
Although he did treat the nucleons relativistically, he
did not consider the protons to be degenerate, despite
the fact that Er (p)/IkT is of the order of 50 for most
temperatures and densities expected in neutron stars.
Ellis performed part of the integration over phase space
by a Monte Carlo technique; he gave the following
formula, which a,ccurately represents his numerical
results:

IP = (6X10"erg/sec)

Xf&s(e)/50 MeV7 "(M,/M. )T,".
The peculiar temperature dependence is due primarily
to the fact that he assumed that the protons were non-
degenerate. The above relation does not differ from
that obtained by Finzi or by us by more than a factor
of 10 in the most interesting domains of temperature
and density.

We have extended and refined the work of previous
authors in several respects. First, the rate of energy loss
by muon neutrinos and the luminosity due to the
inverse processes /reactions (5) and (6)7 have been
explicitly calculated in the present work. Second, we
have attempted to modify the single-particle picture
to take account of strong interactions. In particular,
we have used the methods developed for nuclear-matter
calculations to estimate the density of single-particle
levels (as expressed by the effective masses) and to
treat the nucleon-nucleon scattering in a manner con-
sistent with the exclusion principle. We have also been
able to calculate the phase-space factor more accurately
by expressing it in a form that permits accurate analytic
evaluation.

VI. PION COOLING

A. General Discussion

In this section we calculate the rates of several
neutrino-producing reactions that will occur if quasi-
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free pions are present in neutron matter. We showed
in Sec. V of Paper I that quasifree pions, if they are
present at all in a neutron star, must be highly de-
generate; that is, nearly all the pions must be in the
lowest energy single-particle state. The momentum p
and energy co of this lowest single-particle state are not
known. The reaction rate fortunately does not depend
sensitively on p, and we can assume that p is zero
without making a serious error. The energy or can be
written

and P; and Pf are the initial and final momenta,
respectively.

In the following sections, we estimate the values of
I' and 3P, employing arguments that are analogous to
those we have previously used to calculate the nucleon-
nucleon cooling rate. We shall see, however, that our
knowledge of the relevant matrix elements is much
less accurate for pionic cooling than it is for nucleon-
nucleon cooling.

(o =B(ir )+m c', (46) B. The Phase-Space Factor

where B(m ), the pion binding energy, was defined in
Sec. III of Paper I.

The most important neutrino-producing processes
that involve pions are reactions (3), (4), (7), and (8).
We shall hrst derive an expression for the rate of energy
loss by reaction (3), and then modify the formula to
take account of other reactions.

The rate of energy loss per pion by reaction (3) is
given by

L,&4i = 2irl'4 ' g d'rid'Ni'd'I d'm Se(Ef 8)-—
spins

where

Ly&'& =EM'I G'(27r)'I4 9. '] (48a)

I'= (24r) "(m~c) ' d'pid'p, 'd'P4d'p„-

)&b(Zf —E,)P(Pf—P;)SEp, (48b)

&& & I((&e ~)l&-I (~,~ )+)I' (48c)
SP lllS

The notation used in Eq. (47) is similar to that used in
Eq. (18):The differentials d' 44di't'ai', de„and de„- refer
to the initial neutron, the Anal neutron, the electron,
and the antineutrino, respectively. The statistical
factor S is the product of the usual Fermi-Dirac distri-
bution functions for the two neutrons and the electron
(all pions are assumed to be in the lowest energy state).
The initial-state vector

I (e,7r )+) is an eigenstate of
the strong Hamiltonian; the incoming part of

I
(np. )+)

corresponds to a neutron with momentum p~ and a pion
with momentum y . The final-state vector

I (rs,e,p)) is
a product of momentum eigenstates representing a
neutron (with momentum yi), an electron (with
momentum p,), and a neutrino (with momentum y„-).

We again 6nd it convenient to separate the neutrino
luminosity into a dimensionless phase-space factor, a
dimensionless matrix element, and a constant factor.
The matrix element is nearly constant over those
regions of space where the statistical factor S is non-
negligible. Thus we can remove the matrix element
from the integral and write the neutrino luminosity in
the form

dS] F2
—(ay+@2)

dx4(xi+xp+x, )'

Xg (1+e ')-' (50b)

= (457/5040)s' (50c)

The phase-space factor is proportional to T', as
expected from the heuristic argument in Sec. III. The
factor I' for reaction (3) depends on the density only
through the effective mass m„* and the pion ground-
state energy ~ . Referring to the results of Sec. IVB of
Paper I, we assume that the neutron effective mass is
1.0m„. We also assume that the pion binding energy
B(7r ) is small compared to m c'. Then the pion phase-
space factor can be conveniently expressed in the form

8=5.6X10 "2 g'

As in the case of nucleon-nucleon cooling, we describe
the density of available initial and final states by the
phase-space factor I', which, for reaction (3), is defined
in Eq. (48b). The integrand in Eq. (48b) is concentrated
in the small "important region" of phase space where
the energy of each particle is within a few kT of its
Fermi energy. Just as in Sec. VB, we neglect the
contribution to the integral P from certain regions far
from the important region"; in particular, we consider
only the parts of phase space satisfying the following
inequalities:

pi+p.-+p —p.(pi'(pi —
pp —p +p„(49a)

Pi&P +P-- (49b)

Following the treatment of reaction (1), we also artj-
Qcially extend the region of integration to include
negative energies for the two neutrons and the electron,
since the contributions from the negative energy
regions are completely negligible. We neglect the
variation of m (E„)in the important part of the region
of integration.

With these approximations, the calculation of I' for
reaction (3) is directly analogous to the calculation of
I' for reaction (1). We find that

P=2 ~ir (~~9/ ~ m)(ckT/m~c')4(m„*/m, )'I (50a)

where
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C. Matrix Element

We present several arguments that can, in the
absence of a detailed theory of strong interactions, be
used to obtain crude estimates of the matrix elements
for reaction (3).

I. Dimeesioma/ Argument

The physical lengths involved in the matrix element
are the following: bc~ ', h(m, c) ', lz(m„c) ',

ALPS (e)) ', hcLE;j ', her(n)) ', and the range of the
pion-nucleon potential. The range of the pion potential
is of the order of the scale length A. . We assume that
the pion binding energy B(zr ) is not large compared
to m cz; then bc~ ' and Izp'r(e)j ' are also of the
order of A. .

There remain four relevant lengths that are not
approximately equal to K: bc'=„', h(m, c) ', h(m c) ',
and ALP+(n)$ '. The neutrino energy E„enters the-

matrix element only through the combinations E,+E„-;
since 8„- is much smaller than E„ it follows that M is
essentially independent of Ac/Zzj '. The momentum
and energy transferred to the leptons do not depend
strongly on m„m„, or Pr(n), because of the equilibrium
relations that obtain Lcf. Paper I, Eq. (13)j. Hence
these three quantities do not contribute strongly to the
energy denominators corresponding to the important
virtual states (the virtual states involved in Fig. 1 for
example). The amplitudes at the vertices are not
strongly dependent on Pr(n); consequently, the entire
matrix element 3I is approximately independent of

h[Pz(n)) '. We shall see later that the amplitude at
the weak vertex can, for some diagrams, be proportional
to the electron mass, and the contributions from these
diagrams are consequently inhibited by a factor of
(nz, /m ). The contributions from the dominant dia-

grams, however, are essentially independent of A(m, c) '.
The effect of the nucleon mass on the matrix element is
more subtle; the masses of the hadrons and the coupling
constants characterizing their interactions are con-
nected in a complicated way. The ratio (K /X„) or
m„/m, is typical of the dimensionless quantities arising
in strong-interaction calculations. Our dimensional
reasoning can only suggest that M should be of the or-
der of unity, within perhaps a couple of factors of m„/m .

Z. I'iorj, Decay

We first estimate the rate of reaction (3) by consider-

ing the diagram shown in Fig. 1(a); the pion is assumed

3. Born Approximation for Pion Decay

Ke now use a specific model to treat the pion-nucleon
interaction. We assume an interaction Hamiltonian
given by'~

where
+s =zg+N'z'Y5 kx' f y (55a)

to beta decay during a collision with a neutron. The
diagram suggests factoring the matrix element of II„
as follows:

((n,e—,p) [Jz'„( (np.—)+)= (e(p,) z (p„-) ( H„[zr (p,+p„-))

X(n(p, ') (p.+p,) l(n, ;)+), (52)

where e(p,), for example, represents an electron state
with four-momentum p, . This factorization can be
justi6ed formally by writing an explicit expression for
(n,e, z

~
B„~(n,zr=)+) in terms of a double integral over

the neutron and pion coordinates.
It is easy to establish the dimensional form of the

overlap matrix element (n(pz')zr(p, +p;) j (n, zr )+),
which we abbreviate by (P~P). The matrix element
involves two integrals, one over the center-of-mass
coordinates and one over the relative position of the
nucleon and pion. The integration over the center-of-
mass coordinate yields a momentum delta function;
the integration over the relative position yields an
effective overlap volume, which must be of the order
of A, '. Since the wave functions are normalized in a
volume 0, we And that

~ (@(P)('=B'lt '0—
z(2zrgg)zP(Pz —P,), (53)

where 8 is expected to be of the order of unity.
The weak Hamiltonian is the product of a leptonic

weak current G'z'2 'I'%,y (1+hz)%„and a Pionic weak
current Q . The current Q has the form (p,+p;)
XEL—(p,+p„-)z], because the four-momentum is the
only vector associated with the spinless pion. The scalar
factor E( (p,+p;)'j is dif—5cult to calculate. However,
the value of E(m ') can be calculated from the known
lifetime of the free pion. Assuming for simplicity that
Ef (p,+p;)'j is ap—proximately equal to E(m '),
we find, using Eq. (53), that

M'=0.9B'm,zcz((o m ) '.
The factor 8 is a dirnensionless number characterizing
the strong pion-nucleon interaction. It should be equal
to unity within perhaps a couple of powers of (m„/m, ).

g= 14 (55b)

and ~ and P are vectors in the isotopic spin spaces of the
nucleon and pion, respectively. We treat the strong
interaction as if it were a small perturbation and con-
sider just the diagram shown in Fig. 1(b). The assump-
tion that the strong interaction is a small perturbation
is of course not valid because of the large value of g,

(a) (b) (e)

FgG. 1. Several Feynman diagrams for the
reaction n+~ —+ n'+e +v,.

25 G. Kallen, E/ementary Particle Theory (Addison-Wesley Pub-
lishing Company, Inc., Reading, Massachusetts, 1964), pp. 141
and 119.
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but we use the erst-order treatment in the hope that it
will provide some insight into the relevant physical
quantities that enter the problem and perhaps serve as
a guide in the estiniation of the factor 8 in Eq. (54).

The Feynman rules permit one to calculate easily the
amplitude corresponding to the diagram of Fig. 1(b).
We use the free-particle propagators for the pion and
nucleon, make the nonrelativistic approximation for
the nucleons, neglect m compared to m,„, and average
over the directions of the neutrino momentum. The
result is

us=380(~,/~. )s,

which corresponds to

(56a)

8=21. (56b)

The factors of (m,/m )' in Eqs. (54) and (56) result
from our assumption that the leptons are produced in
the decay of a x . A similar factor occurs, for the same
reason, in the well-known and experimentally verified
prediction of the V—A theory for the decay of a free
pion. In the next section we consider the production of
an electron and a neutrino by the decay of a neutron
(Fig. 1(c)j and find that the corresponding matrix
element is not inhibited by factors of m,/I .

4. Ãeltroe Decay

The diagram shown in Fig. 1(c) is the siinplest one in
which reaction (3) takes place by neutron decay. At
the strong vertex, we use the Hamiltonian given in
Eq. (55), but the weak vertex now involves the nucleon
current. We assume a pure V—A form

&-=2-'"G+.v-(1+v )+P.v.(1+v )+. (5&)

for the weak Hamiltonian. The coefFicient of the axial-
vector part of the nucleon current has, for simplicity,
been set equal to unity.

The dimensionless factor M' can be calculated using
Feynman rules. Making the same approximations as
in subsection (3), we find that

us=2gs(~ /m )' (58)

=9. (59)

We note that the contribution to M from the diagram
of Fig. 1(c) contains no factors of tn, /m and is conse-
quently larger than the contributions from the diagrams
involving pion decay. The value of M given in Eq. (59)
is not reliable, however, because of our use of perturba-
tion theory. Terms of higher order in g' may be larger
than the contribution from Fig. 1(c). For example, the
contribution from Fig. 1(b) would have been large
compared to that from Fig. 1(c),had it not. been for the
factor (m,/re )', which resulted from the form of the
weak Hamiltonian. The constant in Eq. (56b) is large
because it contains four factors of g, while the constant
in Eq. (59) contains only two.

The estimates of the matrix element M' given in
Subsec. VIC.1 to VIC.4 can be summarized by stating
that M' is expected to be of the order of ten but is
uncertain by one or two powers of ten.

1. ~"=10 "erg/sec (60)

for the rate of energy loss per pion. The neutrino
luminosity of a mass M, of stellar matter is then given
by I„"=(104' erg/sec)Tss(e /es) (M,/kIo), (61)

where ts /e& is the ratio of the number density of quasi-
free pions to the number density of baryons. Equations
(60) and (61) are probably accurate to within a factor
of something like 100. The result given in Eq. (61)
is about twice the rate indicated by the heuristic
discussion in Sec. II, and is almost identical to the
result of our previous calculation. "We note that the
energy loss by the pionic process is of the order of

ss In our earlier calculation (Ref. 13), we used Eq. (34) to
estimate the pion matrix element, describing the state ( (e,s-))
by means of a crude wave function based on an analogy with the
nuclear-matter calculations of Gomes, Walecka, and Weisskopf.
However, in this earlier work, we wrongly neglected the contribu-
tions from neutron-decay diagrams such as Fig. 1(c); this error
resulted in the incorrect statement that the rate of reaction (3)
is reduced by a factor of (m, /nz )' if Wz(e) is less than tm„p.

D. Related Reactions

Muons are expected to be present in neutron stars
that contain pions if to is greater than m„c' Lcf. Eqs.
(11b) and (15) of Paper Ij.When muons are present,
reaction (4) contributes to the rate of neutrino produc-
tion. The phase-space factor for reaction (4) is the same
as for reaction (3) if, as expected, ~ —m„cs is much
larger than kT. . The matrix element 3SI is, on the other
hand, not the same for decays producing muons and
electrons. In Sec. VIC we found that diagrams such as
Fig. 1(c) that involve the decay of a neutron into a
proton, electron, and antineutrino were much more
important than diagrams such as Figs. 1(a) and 1(b)
that involve the decay of a virtual m into an e and a p, .
However, the pion-decay processes that are inhibited by
a factor of (I,/nz )' in the case of decay into e and p,
are only inhibited by a factor of (m„/nz )' in the case of
decay into a p and p„. Thus diagrams such as Figs. 1(a)
and 1(b) may contribute importantly to the rate of
production of muon neutrinos. The rates of production
of electron and muon neutrinos may nevertheless be of
the same order of magnitude, and, lacking an accurate
estimate of either rate, we shall assume that the rates of
energy loss by muon and electron neutrinos are equal.

As in the case of the nucleon-nucleon reactions, the
rate of energy loss by the inverse processes Lreactions
(7) and (8)j can be proved equal to the rate of energy
loss by the forward processes )reactions (3) and (4)g.

E. 5'umerica1 Expressions

The rate of energy loss by neutrinos produced in pion
reactions can be obtained by substituting values of 3f'
and P in Eq. (48a). In particular, we use Eq. (51) for
the pha, se-space factor and set M' equal to ten. Multi-
plying by four to account for the muonic decay (re-
action (4)] and the inverse processes Lreaction (7) and
(8)), we find the expression
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10~TQ ' times the energy loss by the nucleon-nucleon
processes if a significant number of quasifree pions
are present.

VII. COOLING TIMES AND OBSERVABILITY

A. Temperature Distribution

The interior of a neutron star is nearly isothermal
because of the high conductivity of the degenerate
electrons. The effective surface temperature T, is, on
the basis of the models of Tsuruta, " of the order of
10 ' times the central temperature T, but the tempera-
ture drop from T to T, occurs almost entirely in a thin
surface layer of nondegenerate and partially degenerate
matter. The energy loss by neutrino emission depends
on the interior temperature T, but the rate at which
photons are emitted from the surface is governed by the
effective surface temperature T,.

The thermal energy U of a neutron star is approxi-
mately equal to the energy of thermal excitations in
the neutron gas if there are no gaps in the energy
spectrum of the gas. YVe thus find that

U=(5X10 erg)T, (p/p„„„) (M,/M-o), (62)

where T9 is the interior temperature of the star in units
of 10' 'K.

B. Cooling Rates

We assume that the star radiates photons from its
surface like a blackbody; the detailed atmospheric
calculations of Orszag" indicate that the blackbody
assumption is a fairly accurate over-all approximation.
The photon luminosity is then given by

1.7= (7X 10"erg sec ')T,q4Rrgg, (63)

where T,7 is the effective surface temperature in units
of 10' 'K, and E~o is the radius of the star in units of
10 km. For convenience, we rewrite Eqs. (45) and (61)
for the energy loss by the nucleon-nucleon and pion-
nucleon processes:

I. ~~= (6X10"erg sec—')
X (M./Mo) (p a/p)"'T '(1+F), (45)

I;~"= (10"erg sec ') (M /M o) (gb /I b) Tg' (61)

where e and n~ are the number densities of pions and
baryons, respectively; the factor P, which represents
the contribution from muonic decays, was defined
in Eq. (42).

The rate of change of the interior temperature can
easily be computed (if the ratio of interior to surface
temperature is known) using the relation

dP/dt gg se g n'e—
and Eq. (62). If quasifree pions are present in significant
numbers, the pion-nucleon cooling reactions are
dominant, and the time required for the interior to cool

g' S, A, Orsssg, Astrophys. J. 142, 473 (1965).

and

a= (1900yr) (M,/Mo)'~',

b= 8.5 (p/p „,))'~s (M,/Mp)'~s,

x;=bLnTg(i)]g,

xg bfnTg——(f)]'

(66b)

(66c)

(66d)

(66e)

Ke have assumed that the temperature parameter cz,

de6ned by
n(T) = 10-'T/T

n(T) = Tg/T, r,

(67a)

(67b)

is approximately constant for T between T(i) and T(f).
It is clear from Eq. (66) that the cooling rate depends

strongly on the parameter n, which must be determined
from theoretical models of neutron stars. We wish to
stress that o. is, in fact, the only quantity derived from
neutron-star models that enters at all sensitively into
the theoretical predictions of the cooling rates. It is
primarily through n that the models aGect the question
of the observability of neutron stars, and future models'
calculations should therefore attempt to establish the
uncertainty in n(T) due to, for example, uncertainties
in the equation of state.

Ke have computed cooling times for a typical
neutron star, with the results shown in Fig. 2. The
curves represent cooling by the pion-nucleon reaction
LEq. (65)], by the nucleon-nucleon processes, by
photons radiating from the surface, and by the nucleon-
nucleon process and photon cooling operating together
LEq. (66)]. We considered a star with average density
p~«& and mass Mo. The quantity n(T) is a slowly
varying function of temperature; we chose values of
n(T) in agreement with a neutron-star model con-
structed by Tsuruta" (see Table I).

C. Observability of Neutron Stars

The probability of ever observing a neutron star de-
pends strongly on the rates at which such stars cool. A
star containing quasifree pions would emit detectable
x rays for no more than a few' days, and the probability
of observing it would be small. A star that cools only
by the nucleon-nucleon and photon processes vrould be
detectable for a longer time (cf. Fig. 2).

from an initial temperature T(i) to a final temperature
T(f) is

ht(pions) = (SX10 ' yr) (gsb/gg )(p/p„„.&)
gl'

XLT,(f)- —Tg(i)-]. (65)

The luminosity I " is zero if no quasifree pions are
present. Then we can solve Eqs. (62), (63), (45), and
(64), f(nding that the time required for a star s interior
to cool from T(i) to T(f) is given by

At=an'{LnTg(f)]-' —LnTg(i)] '
+bLtan —'xg —tan —'x,]), (66a)

where
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7.5
TABLE II. Possible distances and cooling times

for the Scorpius source.

70

I—

O

O
6.5

2.0
1.0
0.8
0.6
0.4
0.3
0.2
0.1

r (kiloparsecs)

2.3
0.7
0.5
0.3
0.09
0.03

6X10 3

4X10 '

~cooling

Sh
60 days
1yr
8yr

100 yr
800 yr
10' yr

3X105yr

6.0-4 -2 0 2.

LQGIP (TIME(years))

FIG. 2. Cooling times calculated for a typical neutron star. The
curves marked Yrn and nn were calculated assuming neutrino loss
by the pion-nucleon and nucleon-nucleon reactions, respectively.
The curve p represents a star cooling by radiation from the
surface only, and the curve nn+p gives the cooling time of a star
emitting neutrinos from its interior by the nucleon-nucleon
processes and radiating photons from its surface.

TABLE I. Temperature parameter n(=10 'T/T, ). The values
of a were obtained by interpolation of a table given by Tsuruta. '
T,7 is the effective surface temperature in units of 107 'K.

Td7

2.0
1.0
0.8
0.6
0.4
0.3
0.2
0.1

1.92
1.65
1.61
1.59
1.53
1.48
1.39
1.10

a S. Tsuruta, Ph. D. thesis, Columbia University, 1964, p. 322 (un-
published).

"J.¹ Bahcall and R. A. Wolf, Astrophys. J. (to be published).

We have previously pointed out' that the rate of
decrease of the x-ray intensity from a neutron star
could be used as an observational test of theories of
neutron-star cooling; we have given a convenient
formula for making the appropriate observational
comparisons, should a neutron star ever be discovered.

Ke now' consider the Qux of photons that would be
produced at a distance r by a neutron star with effe( tive
temperature T', . The Aux C of photons with wavelengths
less than ) is given approximately by

4= (0.4 cm sec ')Rts'rj, ~, '(T,/3X10' 'K)s

X (-',x'+x+1)e ', (68a)

where 810 is the stellar radius in units 10 km, rl,~, is the
distance to the star in kiloparsecs (1 kpc=3.08X10st
cm), and x is defined as follows:

*=4.8(10 ~/&m) (3X10' 'K/T ) (68b)

Approximately ten x-ray sources have been identified
by Giacconi et al. ,

' Bowyer et al. ,
'' and Clark et a/. 4

These sources are concentrated near the galactic plane,

and about half of them are located in the direction of
the center of the galaxy. The weakest source detected
by Bowyer et al. , produced a measured flux of 0.7
cm ' sec ', and, because of absorption in the earth' s
atmosphere and in the counter itself, the observed
x rays must have been concentrated in the wavelength
range from 1.5 to 8 A; since the sun is approximately
8 kiloparsecs from the galactic center, we conclude from
Eq. (68) that the effective temperature of an observed
source located at the galactic center must be greater
than 2)&10~ 'K, if the source is no larger than a neutron
star. Comparison with Fig. 2 indicates that a neutron
star with a temperature of 2)&10~ 'K would have to be
less than a day old. The x-ray sources located in the
direction of the galactic center have been observed
several times in the last few years, "'7 and the fiux from
these sources has not changed, within the observational
uncertainties (about a factor of 2 or 3). Hence we con-
clude that the sources in the direction of the galactic
center are almost c,ertainly not neutron stars.

The strongest x-ray source appears to be in the
direction of Scorpius. We have used Eq. (68) to calcu-
late the distance at which a neutron star with a given
surface temperature could produce the Aux observed
from the Scorpius source; this distance is calculated for
various surface temperatures. The corresponding cool-
ing times computed from Eq. (66) are shown in the
third column of Table II. In computing the second
column of Table II, we assumed that all the observed
photons had wavelengths less than 8 A; we also
assumed that the neutron star had a radius of 10 km.
It has been suggested that the Scorpius source may be
only of the order of 30 parsecs from the sun. According
to Table II, a distance of 30 parsecs corresponds to a
surface temperature of about 3&(10 K and to a
reasonable cooling time of approximately 10' yr. How-
ever, a blackbody at 3)&10''K would not produce
nearly enough radiation with wavelength less than 2 A
to be consistent with the spectral Ineasurements re-
cently performed on the Scorpius source by Giacconi
et al."
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APPENDIX

Sections V and VI are devoted to the calculation of
the rates of neutrino loss by reactions (1)—(8); in this
Appendix, we explain why we expect reactions (1)-(8)
to dominate the neutrino production if the nucleon gas
has a continuous excitation spectrum. In the following

paragraphs, we consider various types of reactions and
show that their contributions to the neutrino production
is small compared to the contributions from reactions
(1)-(8).

%'e Grst consider reactions that do not involve either
electromagnetic interactions or quasifree pions. The
rate of ordinary neutron decay

Applying the arguments of the last few paragraphs
to all of the obvious neutrino-producing processes that
do not involve either quasifree pions or electromagnetic
interactions, we find that none of these processes are
faster than reactions (1), (2), (5), and (6).

We now consider reactions that do not involve pions,
but do involve electromagnetic interactions. Photons
propagating through a neutron star interact with the
charged particles in the stellar medium. Creation of one
of these quasifree photons (usually called "plasmons")
requires an energy greater than koo, where coo is the
plamsa frequency in the medium. Consequently, the
rate of a reaction such as

e —+ p+e +r (A1) (A5)

e++m+e~ e+p+I, (A3)

involves an incident positron, produces few neutrinos
because the concentration of positrons is proportional
to exp[—Ep(e)/kTj. Positron-producing reactions like

e+p —+ n+n, +e++y (A4)

are slowed by the same factor of exp[—EF(e)/kTj,
because the number of neutron-proton pairs with
enough energy to produce tw'o neutrons in unoccupied.
states is proportional to exp[ Er (e)/k T$. —

is negligible compared to the rate of reaction (1). As

explained in Sec. VB, the conditions of chemical equilib-
rium and conservation of energy imply that the rates
of processes involving only neutrons, protons, electrons,
and neutrinos are dominated by reactions in which the
neutrons, protons, and electrons concerned have
energies near their respective Fermi energies, and the
neutrinos produced have energies of the order of kT.
But momentum cannot be conserved in reaction (A1)
if p„ is near Pp(e), p„ is near P~(p), p, is near Pp(e),
and p„- is of the order of kTc ', because

Pp(m) —Pp(p) —Pp(e)))kTc '.
Consequently, reaction (A1) must involve the emission
of electrons and protons with momenta small compared.
to their Fermi momenta, and the probability of finding
such low-energy states unoccupied is of the order of
exp[—Ep(n)/k T], which is extremely small. Conserva-
tion of momentum is easily satisfied if the decaying
neutron is allowed to collide with another particle, as
in reaction (1).

Reactions that involve large numbers of particles are
slow because only a small fraction [of the order of
kT/EF(n) j of the particles of a given species are near
enough to their Fermi level to scatter into unoccupied
states. For example, the reaction

n+e+n ~ e,+e+P+e + I (A2)—
is slower than reaction (1) by a factor of the order of
[kT/E, (~)] .

A reaction that, like

which involves one external plasmon is proportional
to e ""«~ . Rates of such reactions are small for tem-
peratures less than 10' 'K because AMO is of the order
of 5 MeV at neutron-star densities. "

Reactions involving more than one neutrino are
generally slow because of the small amount of phase
space available to such processes. The amount of phase
space available to a neutrino with energy less than kT
is proportional to (kT)'. Consequently, the rate of the
reaction

p+v ~ p+e +r,+I„, (A6)

'II +rl ~ 'Ir +Ia + Pp ~ (A7)

however, might be faster than reactions (3), (4), (7),
and (8) if the lowest quasifree pion state has a momen-
tum greater than about aPr (p); the energy and
momentum of the lowest pion state are completely
unknown. However, the question of whether reaction
(A7) proceeds faster than reactions (3), (4), (7), and

(8) is not particularly important, because reactions (3),
(4), (7), and (8) alone would be sufficient to cause a,

neutron star containing quasifree pions to cool too fast
to allow radiation from its surface to be observed.

~' J. B. Adams, M. A. Ruderman, and C-H. Woo, Phys. Rev.
].29, 1383 (1963);M. H. Zaidi, Nuovo Cimento (to be published).

Ia M, A. Ruderman (private communication).

for example, is smaller than the rate of reaction (1) by
a factor of the order of [kT/E p(m))a.

More detailed work on processes involving electro-
magnetic interactions is now in progress, "but we have
not yet found any such processes that are more im-

portant than reaction (1) for the temperatures and
densities at which neutron-star rnatter forms a normal
Fermi Quid.

Turning to reactions involving quasifree pions, we

can use the arguments presented in the last few para-
graphs to show that the follow'ing types of pion reactions
are slower than reactions (3), (4), (7), and (8): the free
decay of the pion (7r ~ p +I„), reactions involving

large numbers of fermions, positron processes, and
pionic reactions involving more than one neutrino. The
reaction


