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Neutron Stars. I. Properties at Absolute Zero Temperature*
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The properties of a neutron star at absolute zero temperature are discussed. The problem of determining
the ground state of a neutron star is formulated in a general way and the conditions are described under
which one might reasonably hope that an individual-particle model (which we adopt) is valid. The effects of
the strong interactions on the number densities and production thresholds of the various hadrons are il-
lustrated with several examples. The modiication of the energy spectrum of neutrons and protons in a
neutron star is calculated using an eGective-mass approximation adapted from the theory of nuclear matter.
Crude estimates are made of the contributions of hadrons other than nucleons to the equation of state and
specific heat.
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Here 8, I„ft'f, Q, and R are, respectively, the baryon
number, s component of the isotopic spin, neutron
number, charge, mass density, and radius of the
neutron star. The above numbers obtain for a star of
approximately one solar mass, with R/Ro 10 '. In
addition, a neutron star has a small admixture of
leptons (=1/o by number of e

—and tt
—). All hadrons

and leptons present in a neutron star are highly
degenerate.

In Sec. II, we formulate in a general way the problem
of determining the ground state of a neutron star and
discuss the conditions under which one might reasona-
bly hope that an individual-pa, rticle model (which we
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I. INTRODUCTION
' 'I the present paper (I), we discuss the properties
~ ~ of a neutron star at absolute zero temperature. In
the following paper (II),' we calculate, using the ideas
discussed in I, the rates in a hot neutron star of some
of the most important neutrino-cooling reactions. %e
also attempt to determine in II if the recently observed
discrete x-ray sources can be identified, as many authors
have suggested, with hot neutron stars.

Our approach in the present paper is to discuss a
neutron star as if it were a huge nucleus, neglecting
the thin outer shell from which the photons are emitted.
Some of the most important properties of a typical
neutron-star nucleus are

adopt) is valid. We also summarize the results obtained
by other authors using a noninteracting-gas model for
the nucleons in a neutron star. In Sec. III, we show
how the strong interactions can affect the equilibrium
number densities and production thresholds of the
various hadrons. In Sec. IV, we calculate the effect of
the strong interactions on the energy spectrum (assum-
ing no superconductivity) of the neutrons and protons
in a neutron star. In Sec. V, we make crude estimates
of the contribution of hadrons ot.her than nucleons to
the equation of state and specific heat.

II. THE GROUND STATE OF A NEUTRON STAR

A. General Statement and. Remarks

The problem of determining the ground state of a
neutron star can be stated in the following form'.
Find the state that minimizes the total energy for a
given baryon number, mass density, and zero net
charge. This general statement is obviously insufhcient,
by itself, to enable one to perform any practical cal-
culations. All calculations' ' to determine the proper-
ties of the ground state that have been carried out so
far lean heavily on the concept of individual particles
supposed to exist inside the huge nucleus-like neutron
star.

One is led to use a particle model of a neutron star
because most of our laboratory knowledge of hadrons
is expressed in terms of the properties of independent
particles, much of the experimental information re-
garding strong interactions having been obtained by
studying the interactions of free hadrons. To regard a
neutron star as composed of individual particles is, of

2 V. A. Ambartsumyan and G. S. Saakyan, Astron. Zh. 37, 193
(1960);38, 785 (1961) LEnglish transls. : Soviet Astron. —AJ 4, 187
(1960); 5, 601 (1962)j.

3 A. G. W. Cameron, Astrophys. J. 130, 884 (1959).' E. E. Salpeter, Ann. Phys. (N. Y.) 11, 393 (1960).
5 S. Tsuruta and A. G. W. Cameron, Nature 207, 364 (1965);

S. Tsuruta, Ph.D. thesis, Columbia University, 1964 (un-
published).

6 E. K. Salpeter, in Quasi-Stellar Sources arrd Gravitational
CollaPse, edited by I. Robinson, A. Schild, and E. L. Schucking
(University of Chicago Press, Chicago, 1965), p. 393. 'This article
contains an excellent introduction to the subject of neutron stars
and a review of some of the earlier literature.
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course, an oversimplification, but this oversimplifica-
tion possesses considerable self-consistency and some
experimental justification. The self-consistency results
from the action of the exclusion principle and the
experimental justification can be found in the successes
of the independent-particle model in describing nuclei.

The exclusion principle prohibits true scattering
among the degenerate baryons in a neutron sta, r at
O'K because all the energetically accessible states
are occupied. A collision between two baryons in a
neutron star can therefore be pictured as follows.
Initially, when the separation is large compared to a
Fermi, the two-particle wave function is a product of
plane waves. During the collision, when the particles
are close together, the product wave function is dis-
torted because of the strong interactions. Since all
energetically accessible states are occupied, the two-
particle wave function Inust resume a,fter the collision
its original form a,s a product of plane waves. Thus
baryons in a neutron star behave somewhat like con-
duction electrons in a metal, namely, they propagate
like plane waves with some extra wiggles in the wave
function when two particles are close together. The
reason is the same in both cases (electrons in a metal
or baryons in a neutron star): the effective strength
of the forces (electromagnetic or strong) is grea, tly
decreased in the medium of degenerate fermions by
the exclusion principle.

The above picture is expected to be valid' if the
wave number k, which the average nuclear potential
impresses upon a nucleon, is smaller than Pp/h, where
I'p is the Fermi momentum of the neutrons or protons.
The relevant criterion is therefore

k= (m V/h')'"

&PF/5, (2)

where m„ is the ma, ss of a, neutron and V is the depth
of the nuclear potential. If one ignores for the moment
a possible hard-core repulsion, then inequality (2) is

approximately equivalent to the condition that P'p& 170
MeV/c; this condition is always satisfied for neutrons
in a neutron star The fact t.hat inequality (2) is satis-
fied for neutrons is sufficient for the validity of the
model since (for p&8p„„,~) most collisions in a neutron
star a,re between pairs of neutrons or between a, neutron
and some other hadron.

We have suggested previously' that a necessary
condition for the validity of any independent-particle

' L. C. Gomes, J.D. Walecka, and V. F. Weisskopf, Ann. Phys.
(N.Y.) 3, 241 (1958); L. C. Gomes and J. D. Walecka (unpub-
lished). Our application of the independent-pair model to neutron
stars is based largely on these two papers; they contain a particu-
larly illuminating treatment of the closely related problem of the
properties of nuclear matter. I"or more recent applications of
many-body theory to the calculation of the properties of nuclear
matter, see, for example, K. A. Brueckner and K. S. Masterson,
Phys. Rev. 128, 2267 (1962) or H. A. Bethe, ibid. 138, B804
(1965).

J. N. Bahcal} and R. A. Wolf, Phys. Rev. Letters 14, 343
(196S).

model for hadrons is that the average separation d
between ha, drons satisfy the following inequality:

d&0.5F. (3)

Inequality (3) is equivalent to the condition that
p(8p„„,~. We now show in three different but related
arguments why inequality (3) must be satisfied for
valid calculations to be carried out, with our present
knowledge of strong interactions, on the basis of an
independent-particle model. The arguments given in
subsections (ii) and (iii) assume that the effects of
strong interactions can be important in a neutron star;
this is shown explicitly by means of examples in Sec.
III.

(ii) Strarlge Forces

The forces due to the exchange of strange particles
are expected to be important when d is of the order of
A/m~c, i.e., 0.4 F. Since these forces a,re not well known
at present, one cannot ca,lculate reliably the strong
interactions among ha, drons at densities for which
d&0.4 F.

(i) Hard Core

Our original argument'' assumed the existence of a
hard core in, for exa,mple, the nucleon-nucleon inter-
action. We again assume in this subsection a hard
core. If inequality (3) is not satisfied, then pairs of
hadrons spend most of their time within each other' s
hard cores. Because of the high-momentum components
that are present in a hard-core interaction, any pair of
neighboring hadrons will continually produce other
kinds of virtual hadrons; thus the state vector of any
particular particle will contain large admixtures of
various hadrons. A "neutron" at such high densities
will spend a large fraction of its time as, e.g. , a ~
+rt~"s+p or E++~ +AD. Thus the concept of distinct
strongly interacting pa, rticles is not meaningful for
densities grea, ter than or of the order of eight times
nuclear densities.

This conclusion is ea,sily understood in terms of the
following simple example. Ima. gine a collection of alpha
particles at a density for which d)R, where R is the
"radius" of an a,lpha particle. If the density of alpha
particles is now increased so tha, t d&R, the alpha
particles will come apart into their constituents, pri-
marily neutrons and protons, as they do in actual
nuclei. This simple example also suggests that the
distinction between fermions and bosons probably dis-
appears for densities in excess of eight times nuclear
densities. Thus pions (bosons) will spend a large
fraction of their time as fermion-antifermion pairs
(e.g. , 1V+g). In this situation, one inust regard the
star as one complex object and try to discuss the exci-
tations of the star (or la,rge nucleus) as a. single entity.
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B. The Noninteracting-Gas Model

The noninteracting-gas model for the constituents of
a neutron star was proposed ind. ependently by Ambart-
sumyan and Saakyan' and Salpeter' in 1960 and has
been investigated in great detail by Cameron~ and
Tsuruta. ' In this model the concentrations of the
various species of particles were calculated neglecting
all interactions between particles, although the effects
of nuclear forces were included in the equation of
state. Tsuruta has calculated detailed tables, on the
basis of the noninteracting-gas model, for the number
densities of the various hadrons, Z—,A,
etc. , as a function of stellar density for p&300p„„.&. A
principal result of these calculations' ' is that only
fermioms are present at densities for which stable
neutron-star models are expected to exist (p(300p„„,~);
no pious are present on the basis of the noninteracting-
gas model until p&300p„„,~.

The following approximate numerical results can
easily be obtained, for p&2p„„,&, on the basis of the
noninteracting-gas model:

e(e)=2X10+"(p/p „,~) cm '; (5a)

e(e) =et(p) =2X10+36(p/p„„,~)' cm '; (5b)

EF(e) =EF(e)=7X10+'(p/p q)"' MeV; (5c)

EF(p) =3(p/I.„.i)«MeV; (5d)

PF(n) =4X10+'(p/p &)
~ MeV/c; (Se)

PF(e) =PF(p) = 7X 10+'(p/p ~)"' MeV/c. (5f)

'L. Gratton and G. Szamosi, Nuovo Cimeoto 33, 1056 (1964)
have used a semiclassical hard-sphere model to describe the
properties of a neutron gas at densities much greater than nuclear
densities, claiming that quantum-mechanical eBects are negligible
when the de Broglie wavelength becomes smaller than the hard-
core radius. Their model is an example of an incorrect over-
simpliQcation that ignores the unsolved matters of principle
pertaining to the description of matter at high densities.

(iii) Strange Particles

The mass splittings between members of the baryon
octet are of the order of a few hundred MeV. Thus
strange particles such as Z's, A."s, etc. , will be produced
in profusion in a neutron star when the neutron Fermi
energy is of the order of, say, 400 MeV. The condition
that

PF'(n)/2m„= 400 MeV,

implies an average separation between neutrons of the
order of 0.4 F. Since the forces between various mem-
bers of the baryon octet are not well known (except
perhaps for the nucleon-nucleon forces), one can not
carry out reliable calculations for densities such that
d&0.4 F.

Note that Eq. (4) also shows that relativistic effects,
which can not be reliably included in dynamical cal-
culations involving the strong interactions, are impor-
tant for d&0.4 F.'

Here e(i), EF(i), and PF(i) are, respectively, the
number density, Fermi kinetic energy, and Fermi
momentum for particles of type i. Equations (5) will
be used for order-of-magnitude estimates in this and
the succeeding paper.

The number of electrons and protons is much less
than the number of neutrons because of two facts: (1)
The Fermi momentum of the electrons equals the
Fermi momentum of the protons (the condition of zero
charge); and (2) The mass of an electron is much less
than the mass of a nucleon. The way in which these
facts conspire to produce a relatively small number of
electrons and protons can be seen easily from the
equilibrium relation between neutrons, protons, and
electrons, which is (a+p+e —& e+n'+ v.):
cPF(e)+PF'(p)/2mv= (m mv)c'+—Py'(n)/2m„. (6)

Thus
(~(c)/~(~)) =(PF (c)/PF(~))'

= (Pp (m)/2m. c)'

(7a)

(7b)

(7c)

which is the origin of the name "neutron star. "
The noninteracting-gas model has been used to

calculate' —' the equation of state, heat capacity, and
other properties of dense matter for p„„,~&p&300p„„,~.

These results have been applied to a number of prob-
leIns including hydrodynamic models of supernova
collapse. '0

III. PARTICLE MODELS WITH
STRONG INTERACTIONS

A. General Formalism

The problem of determining the constituents of a
neutron star can easily be formulated for any model
that assumes the existence of individual particles in-
side the star. One defines a function

c =Z' d'I'Lli"P')+~Q(i)+PB'(i) j,

where the summation over the particle label i extends
over all types of particles that are present, d'e; is the
number of particles of type i in a given momentum or
energy interval, W; is the energy of a particle of type
i and momentum p, E, is the number density of par-
ticles of type j, Q(i) and B'(i) are the charge and
baryon numbers of particles of type i, and n and P
are Lagrange multipliers introduced in order to satisfy
the constraints of conservation of charge and baryon
number. The state of the neutron star is then deter-
mined by requiring that

(BC/cjoy )o ——0

"S. A. Colgate and R. H. White (to be published), and UCRL-
7777 (unpublished).
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where the minimization implied by Eq. (9) is carried
out at constant volume Q.

Note that Eqs. (8) and (9) can be used to determine
the equilibrium state of matter even if the matter is
not in the form of an electrically neutral neutron star.

B. Examples

The function W, (X,) has a. simple form for the
leptons (e and zz ) that are present because the average
electrostatic energy is small j&0.2(p/p„„,~)'" MeV)
compared to the Fermi energies Lsee Eqs. (5)$.
Therefore,

equal to zero, to the relation LEq. (6)$ valid in the
noninteracting-gas model. Preliminary estimates suggest
that LB(n) —B(p)j is, however, rather large because of
the great disparity between neutron and proton number
densities.

If Z 's are present,

mz-c'+ Ep (Z
—

)
= Wp(e)+m„c'+Ep(n)+/B(n) —B(Z )$, (14)

and if 7t- 's are present,

m.c'+B(zr )= IVp—(e)

and
W. (p) = c(m,'c'+p')"', (10a)

(15b)

W,(r, (e))= —~, (11a)

= W„(Ep(zz) ), W,(Ep(e)) &m„c'. (11b)

The functions t/t/;, where i is a hadron, depend on the
number densities of all the hadrons present because of
the strong interactions that obtain among all hadrons;
the magnitudes of these interactions are comparable
with the hadronic binding energies. A significant part
of each hadronic function t/t/"; will, nevertheless, be
given by the simple expression: m, c'+p'/2m, . Thus one
obtains by differentiating Eq. (8) with respect to 1V„:

Here,
nz„c'+Ep(n)+B(n) = —P. (12a)

W„(P)= c(m cz+P )i/&. (10b)

From Eqs. (8)-(10), one finds
where we have defined ~ to be the energy of the lowest
pionic excitation. In writing Eq. (15), we have made
use of the fact that pions are bosons and hence all the
pions that are present (at zero temperature) will be in
the lowest energy state.

Equations (13), (14), and (15) can be obtained by
inspection from the equilibrium reactions, n+e—+p —+

n+n+v„e +n+nz 2 +v.+n', and n+n —+zr +p
+n' The r.eason why neutron stars can contain Z 's,
A."s, and possibly many other hadrons in abundance,
although these strange particles are not present to a
good approximation in ordinary nuclei, is that the
Fermi kinetic energy, Pp'/2m, in neutron stars can be
of the order of the mass differences (300 MeV) be-
tween the hadrons (Pp'/2m(50 MeV for ordinary
nuclei).

B(n) —= (rl/BcV „) d'n„(W „nz„c' p—'/2m„)— (12b) C. Shifts in Threshold. Densities

represents the average energy due to the strong inter-
actions between the neutrons and all other hadrons
present. The quantity B(n) is negative and less than
—Ep(n)(=——Pp'(n)/2m„) if the neutrons are bound
independent of the gravitational forces. As a first
approximation, one can neglect in computing B(n) all
interactions except those among the many neutrons
present. In this simplified case, B(n) is the average
energy due to interactions of the neutrons in a neutron
gas. Even in this case, the quantity B(n) is uncertain
by a factor of two or more depending upon which form
is chosen for the nuclear forces in a nuclear-matter
calculation. "

The equilibrium equation can be obtained by com-
bining Eqs. (11) and (12) with a similar relation for
protons. One finds

Wp (e)+ Ep (p)
=Ep(n)+ (m„—m„)c'+ t'B (n) B(p)j, (13)—

where B(p) is d.e6ned by Eq. (12b) with n replaced by
p. Note that Eq. (13) reduces, if LB(n)—B(p)7 is set

' See, for example, J. S. Levinger and L. M. Simmons, Phys.
Rev. 124, 916 I;1961).

Strong interactions shift the threshold densities at
which various hadrons are produced from the values
these threshold densities have in the noninteracting-gas
model. The crucial way in which these threshold shifts
occur is most clearly understood by discussing a few
examples. Pions are produced at densities such that
(n+n~ zr=+p+n'):

W, (Pp(e))&m c'+B(zr ). —(16)

Pions are produced before sigrnas if

B(zr—)&0.5{(mz —m„—2m )c'

+LBo(~ )—B(P)—Ep(p) j) . (18)

Inequality (18) follows from Eqs. (13), (16), and (17).
It is useful to rewrite Eq. (18), expressing all energies
in MeV and estimating the proton Fermi energy from
the noninteracting-gas model. One finds in this way
that the criterion for pions being produced before

Sigmas are produced at densities such tha, t (e +n+n —+

Z +,+n'):

W, (Pp(e))+Ep(n) & (mz m)c'—
+LB,(Z-) —B(n)]. (17)
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sigmas is (energies in MeV):

B( )& —1o—14(pip-. )'"
+0.5$Bs(Z )—B(p)7 . (18a)

The question of whether or not this inequality is
satisfied has great practical significance since the pres-
ence of a large number of pions changes the predicted
cooling rates of a hot neutron star by a large factor
( 10+').'' Note that inequality (18) or (18a) can
never be satisfied if one neglects, as one does with the
noninteracting-gas model, the effects of the strong in-
teractions Li.e., sets B(z=)=Be(Z—)=B(p)=B(p)—=0$.
The reason that the threshold density for the produc-
tion of pions is so high (=300p„„t)on the basis of the
noninteracting-gas model is that the excess negative
particles, electrons, are drained off into Z 's before the
Fermi energy of the electrons becomes high enough to
make pions.

D. General Remarks about Models That Include
Strong Interactions

The equations given in Secs. IIIA—C are valid for any
model that assumes the existence of individual par-
ticles in a neutron star. Of course, these particles will

have, as a result of their continuous strong interactions,
properties that are different from their free-particle
analogues which are studied in most laboratory ex-
periments. Unfortunately, one must invoke a detailed
theory of strong interactions in order to calculate quan-
tities such as B(rr ) and B&(Z ). We hope that some
high-energy theorists will apply their methods to the
calculation of these interaction energies which are vital
to an understanding of neutron stars. "

IV. THE ENERGY SPECTRUM OF A
NEUTRON STAR

A. General Discussion

The specific heat and neutrino luminosity of a neu-
tron star depend critically on the spectrum of energy
states available to the star. In the present work (papers
I and II), we describe the states of the star in terms
of its constituent particles, adopting the model that
Gomes, Walecka, and Weisskopf used to describe nu-
clear matter. ~

We assume that the nucleons in a neutron star do
not form a superQuid; that is, we assume that there is
no energy gap between the ground state and the first
excited state of the nucleon gas." An energy gap of
more than 0.1 MeV in the neutron energy spectrum

"Some preliminary calculations by W. G. Wagner (private
communication) suggest that 13 (rr ) is positive for moder-
ate neutron-star densities. However, one must still calculate
LBs(Z )—B(p)g before attempting to decide if pions are indeed
produced at lower densities than sigmas.

"V. L. Ginzburg and D. A. Kirzhnits, Zh. Eksperim. i Teor.
Fiz. 47, 2006 (1964) LKnglish transl. : Soviet Phys. —JETP 20,
1346 (1965)j have suggested that the neutrons may form a super-
Quid with a gap of 1 to 20 MeV.

would greatly reduce both the neutrino luminosity and
the speci6c heat of the star.

We are now trying to determine theoretically whether
a dense nucleon gas forms a superQuid and to estimate
the effects of superQuidity on the cooling rates of hot
neutron stars; we expect to report on this work at a
later date.

B. The Nucleon Effective Masses

(i) Definitions

According to the individual-particle model, the ex-
pression for the density of states available to a single
nucleon is given by

p(E) =2 'rr 'Il 'P'dP/d-E (19)

where p(E) is the number of states per unit energy
interval per unit volume, and p and E are the momen-

tum and energy of the nucleon. For a nonrelativistic
nucleon, the free-particle model implies that

p(E) =2—'z.-'h 'pns (20)

where m is the mass of the nucleon. The effect of inter-
particle interactions on the energy spectrum of a star
can be represented approximately by writing the energy
of each individual nucleon in the form

E(P) =c(ntsc +P ) I tÃc +U(P) (21)

p= 2-'z —'h—sPnt*(P) (23)

for the density of single-particle states. Note that Kq.
(22) reduces to the usuaP nonrelativistic definition of
an effective mass if p is neglected relative to rn in the
first term on the right-hand side of Eq. (22). The addi-
tional relativistic correction (—sr p'ns 'c ') is small

( 5%) for nuclear matter. We are interested primarily
in the density of states near the Fermi momentum I'p,
because this is the quantity that enters into neutrino
cooling rates. Thus we need calculate only rn„*LJ's (n)j
and. m~*LPs (p)), which we can now write more com-

pactly as m * and m„*, respectively.

(ii) Calculation of the Effective Masses

We need the effective masses of both the neutron
and the proton for our calculations of cooling rates.
There are, however, two important simplifications that
result from the fact that the number density of protons
is much smaller than the number density of neutrons;
one can, with suflicient accuracy, neglect the effect of
neutron-proton interactions on the neutron energy as,

where U(p) is the change in the single-particle energy
produced by interactions with neighboring nucleons.
We define the effective mass ns*(p) by the relation

1/ns*(p) = (ns'+P'c ') '"+(1/P)dU(P)/dP y (22)

which leads to the expression
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well as the eGect of proton-proton interactions on the
proton energy.

The nucleons are only slightly relativistic for the
densities at which an individual-particle treatment is
valid, and the term p 'dU/dp in Eq. (22) is not large
compared to m '. %e thus treat both the relativistic
correction (——,'p'm 'c ') and the interaction correction
as small perturbations and do not consider relativistic
corrections to the interaction term in Eq. (22). Follow-
ing the nonrelativistic treatment of Gomes et al. ,' we
make several simplifying assumptions:

(1) The potential acting in an odd-parity nucleon-
nucleon state is negligibly small.

(2) The potential acting in even-parity states is
spin-independent and consists of a short-range hard-
core potential, V" (r), and a long-range attractive
potential, V'"(r).

(3) The repulsive core makes a negligible contribu-
tion to dU/dp.

(4) The Born approximation provides an accurate
estimate of the expectation value of the attractive
potential (because of the effect of the exclusion prin-
ciple on the nucleon wave functions).

Gomes et al. ~ have shown that the above approxima-
tions result in small errors at densities near nuclear
density.

The four assumptions listed above imply a simple
correspondence between nuclear matter and a neutron
star with the san1e number density of neutrons. In
computing U(p) for a neutron in a neutron star, we in-
clude interactions with only half the neutrons in the star,
because assumption (1)and the exclusion principle imply
that there is no interaction between neutrons with paral-
lel spin. The corresponding U(p) for nuclear matter
(which contains equal numbers of neutrons and pro-
tons) includes contributions from half the neutrons
and all the protons present. Thus we conclude that

U ' (p p )=-'U" (p p ) (24)

The effective masses of the neutron and proton have
been calculated using Eqs. (22) and. (26). The compu-
tations have been carried out for the following poten-
tials: (1) an attractive square well with a repulsive
core (the potential used by Gornes et at.); and (2)
several combinations of attractive Yukawa potentials
and repulsive cores (the potentials suggested by
Preston" ). There is a significant variation in the
values of the eGective masses calculated using these
potentials, in spite of the fact that all the potentials
were chosen to 6t the low-energy nucleon-nucleon
scattering data. In the next two paragraphs, we de-
scribe the general behavior of the effective masses as
functions of density, indicating the extent to which
the numerical results depend on the particular poten-
tial chosen. The errors introduced in our calculations
of the specific heat and cooling rates by the uncertain-
ties in the effective n1asses are small compared to the
other uncertainties that exist.

0.90m„&m *""&1.15m . (27)

Our present estimates for m„*"' are somewhat higher
than in our previous work8 since we did not include
the relativistic correction in our earlier estimate. For
p(Qp„,.&, the eftective mass can be expressed in the form

rn„*"' =BI„E1—n(p/p„„, i)+0.08(p/p„„, ~) $, (28)

where o,=2.5&0.5.

(io) Proton

Effective

Mass

The proton eGective mass reaches its minimum value
m; *at a density p;, where

(iii) Neutrort Effective Muss

The neutron effective mass takes on its minimum
value at a density of the order of p„.~. When (p/p „,i) is
between 0.5 and 5, the neutron effective mass m„* ' is
in the range

where superscripts n.s. and n.m. denote, respectively,
"neutron star" and "nuclear matter, " and the sub-
script e represents "neutron. " One can use a similar
argument to show that

0.5m„&m;.*&0.75m„,

0 9pnue1& pmin &2pnuc1 ~

(29)

(30)

U "'(p p )=-'U "' (p p ) (26a)

U ' (p' p ) =-'U " (p' p ) (25)

The assumptions (1)—(4) can be used to show that
the neutron and proton energies have the form where

~.* ' =~-E1—v(p/p- .i)j,
~= 5.0a1.0.

(31)

(32)

For p&(pnucl the effective mass can be expressed in the
form

where

=(2sh) '
1 g1 &PF (e)

(PE d t'

Xcos'(k r) V'"(r), (26b)
where

m *~' =err E1—5(pa„,i/p)"sj

0.6&8&2.0.

(33)

At high densities, m„*"' is given approximately by

k = (2t'r)-'(p —q)

and Ps (e) is the neutron Fermi momentum.

(26c) r4 M. A. Preston, Physics of the Nucleus (Addison-Wesley Puh-
lighing Company, Inc. , Reading, Massachusetts, 1962), Chap. 2,
pp. 27-29.
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The eGective masses can thus be calculated with
reasonable accuracy, despite the fact that our present
ignorance of the strong interactions makes the accurate
calculation of the energy of a neutron gas dificult
(or impossible). The energy U„„of a neutron gas is
the sum of a negative part U„, which results from the
attractive well, and a positive part U„, which results
from the repulsive core and the ordinary kinetic energy.
The positive and negative contributions to U&, & tend
to cancel, and

~
Ut, t~ is generally small compared to

either [U„( or ) U„(. Thus, small errors in U„or U„
can cause large fractional errors in U&,~. On the other
hand, the strong interactions cause only a relatively
small change in the effective mass. Thus it is possible
to calculate the effective masses to within about 10'P~

despite the uncertainty in the treatment of the strong
interactions.

C. Electrons and Muons

The energy spectra of the electrons and muons in
a neutron star are essentially the same as their corre-
sponding free-particle spectra, because the energies of
the electromagnetic interactions are small ((1 MeV)
compared to the relevant Fermi energies.

of the energy of a neutron gas differ by as much as a
factor of 6ve at typical neutron-star densities. The
presence of hadrons other than the nucleons can be
estimated, on the basis of the noninteracting-gas model,
to change the pressure by less than a factor of two.

The specific heat also depends on the threshold
densities for the production of various species of strange
particles. The specific heat can be shown to increase

by a factor of the order of 1.5 near the threshold
density for the production of each new baryon. The
densities at which these increases occur are somewhat
uncertain (cf. Sec. III) because the strong interactions
can cause large shifts in the threshold densities of the
strange baryons.

The presence of pions will not affect the specific
heat directly. A pion gas becomes degenerate at a
temperature T„where

T,= (4X10~'K) (e /m )'"(p/p «.t)'", (34)

and I /e„ is the ratio of the number density of pions
to the number density of neutrons. Pions are therefore
highly degenerate if e )0.1m„and T&10" 'K. The
ratio of the pion specific heat C to the nucleon specific
heat C„ is given by

V. THE EQUATION OF STATE
AND SPECIFIC HEAT

C./C„= 0.1(n„/n„)'"(T/T, )'".
Thus, C is negligible compared to C„ if T&&T,.

(35)

The strong interactions among the hadrons present
in a neutron star make it difBcult to 6nd an accurate
equation of state for neutron-star matter. The equa-
tions of state based on various theoretical estimates"

"J.S. Levinger and L. M. Simmons, Phys. Rev. 124, 916
(1961); K. A. Brueckner, J. L. Gammej, and J. T. Kubis, ibid.
118, 1095 (1960); E. E. Salpeter, Ann. Phys. (N.Y.) ll, 393
(1960). The paper of Levinger and Simmons includes a com-
parison with the earlier work.
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