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Pomeranchuk Repulsion and Resonance Narrowing*
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The contribution of the P (Pomeranchuk) and P trajectories to the generaIized two-particle (low-
energy) potential is shown to be repulsive and effectively of long range. A rough expression for the P po-
tential is given in terms of the high-energy total cross section and associated diffraction peak. It is argued
that Pomeranchuk repulsion represents the many-particle channels that dominate high energies and that
have an important narrowing effect on resonance widths even though these channels are closed in the low-
energy resonance region.

I. INTRODUCTION
' 'N a recent paper there were discussed certain eon-
' ~ sequences of employing Regge poles rather than
6xed J poles as the source of two-particle generalized
potentials. ' An important omission in that paper was
an estimate of potentials arising from trajectories for
which the erst physical J value fails to have an asso-
ciated pole of the S matrix. Two well-established tra-
jectories are of this type, the so-called P (Pomeranchuk)
and P' trajectories, where the 6rst associated particles
have J= 2,' whereas the first physical angular momen-
tum value is J=0, The purpose of the present paper is
to show that the J=O components of the P and P'
Regge potentials are repulsive and effectively of long
range. They may constitute the major bootstrap com-
ponent, so far overlooked, that tends to make reso-
nances narrow.

Bootstrap calculations of low-baryon-number par-
ticles on the basis of 6xed-spin potentials have always
yielded larger widths than experimentally observed. s It
is well known from the dynamics of particles with large
baryon number (classical nuclear physics) that the
proliferation of many-body channels, open at high
energies, systematically narrows the widths of low-

energy resonances for which these channels are closed.
No estimates have heretofore been given of this eGect
for particles of low baryon number, but the Reggeized
strip approximation includes the high-energy inelastic
eGect and therefore should manifest the narrowing
tendency.

In the new form of strip approximation the general-
ized two-body potential is represented as a sum over
contributions from the leading Regge trajectories of
crossed reactions. Reference 1 shows that when the
leading physical J value on the trajectory has an asso-

ciated physical particle, one may associate the potential
in the conventional manner with "exchange" of this
particle, although there is an important form factor
which reduces the strength and extends the rang-
relative to a axed-spin (elementary) particle potential.
A small part of the P and P' potentials may be asso-
ciated in such a sense with exchange of the J=2
f(1250) and f'(1525) particles, but the major com-
ponent belongs to J=O—where no particles exist. Ke
suggest that physically this latter component represents
the aforementioned dynamical eGect of many-particle
channels, closed inside the strip where the potential is
to be employed, but open above the strip boundary.

Why is such an identi6cation plausible' First of all,
the P and P' trajectories account for most of the total
cross section in the high-energy region where multiple
production dominates. ~ Second, as we shall see, the J=0
component of the P and P' potentials is always re-
pulsive and of a range —corresponding to the forward
peaks of high-energy diGraction scattering —that is
relatively long. When such a long-range repulsion is
added to a shorter range attraction from "ordinary"
particle exchange, one has the dynamical situation
favorable to narrow resonances. e

II. THE J=O COMPONENT OF THE
POMERANCHUK POTENTIAL

In Ref. 1 it was explained that inside the s strip one
may make a Legendre polynomial expansion in st of the
s-reaction potential associated with the ith Regge pole
connnunicating with the t reaction. Since the Pomeran-
chuk trajectory is of even signature, we have

VJ'(t, s) = g (27+1)Vs (t)PJ(.t), (11.1)
J even

where
(II.2)

(II.3)

s, (s,t) =I s+q.'(t)+qss(t)$/2q. (t)q, (t),
*Work done under auspices of the U. S. Atomic Energy

Commission. qos (t) = t/4 m.' qss (t) =—t/4 mss—
G. F. Chew, University of California. Lawrence Radiation

Laboratory Report No. UCRL-161o1, 1965 LProgr. Theoret. if the s reaction connects channels with particle masses
Phys. (Kyoto) Suppl. , to be published j.' Presumed to be the f(1250) and the f'(1525) the latter re- s See R. J. N. Phillips and W. Rarita, phys. Rev. 139, B1336
Ported by Barnes et al. , Phys. Rev. Letters 14, 82 (1965). (1965), for a recent review of all high-energy s& and && experi-' See, for example, J. R. Fulco, G. L. Shaw, and D. Y. Wong, ments and for additional references.
Phys. Rev. 137, B1242 (1965). e One may say that the system becomes "trapped" inside the

4 G. F. Chew, Phys. Rev. 129, 2363 (1963); G. F. Chew and repulsive barrier and takes a long time to Gnd its way out. A long
C. E. Jones, tbttt. 135, B208 (1964). lifetime means a narrow width.
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b(t) =ln(sg(t)+Lz)2(t) —1/1'}, (II.5)

where z((t) = z(s~, t), s( being the strip width, that is, the
lowest energy at which the imaginary part of the full
amplitude can be approximated by the imaginary part
of the potential. It appears experimentally that s&&4
GeV'

The qualitative discussion of Ref. 1 may be applied
to V~ ~ (t), associating this force component with
f(1250) exchange, although the damping here with
respect to elementary-particle exchange is severe. Our
rough estimate would give a reduction at 3=0 by a
factor =e ', ~ almost one order of magnitude, so the
1=2 component of the Pomeranchuk potential is rela-
tively minor, although attractive (positive). The J=O
component, on the other hand, is, for ~t )((sq,

(~) PJ'()(& (~)7P(~)~ (II 6)

strongly repulsive. The result for I"is similar. One may
usefully compare (II.6) to the high-energy limit of the
imaginary part of the amplitude —which is the same as
the high-energy limit of the imaginary part of the
Pomeranchuk potential:

ImVp'(t, s) —& Pg

Observe that for s not enormously larger than s& the t
dependence of the two forms is similar. Thus the
"shape" of the Pomeranchuk potential is essentially
that of the high-energy diGraction peak. Using the
optical theorem,

0~'(s) = (16m/s) ImV~'(I=0, s), (II.S)

together with the fact that n~(0) =1, we may establish
the normalization to be

Vg=o~(t =0)=—(s,/24m') 0""(~ ) . (II.9)

Had we used the Chew-Jones expression for the
Regge formula" rather than the Khuri-Jones expres-

~ This result is confirmed by numerical calculations of Collins
and Teplitz based on the Chew- Jones potential (private
communication).

m, and mb. It should suKce for our qualitative discus-
sion here, as it did in Ref. 1, to employ the Khuri-Jones
formula for Vg (/)

v '()=0 L .(~) (~)l"("( (~)/L~ — (~)3}
)(g—[J—aP(t)](1(f) (II 4)

where Pp is a crossing matrix element (always positive
for the Pomeranchuk pole), y~(t) is the reduced residue
(also positive near t =0), and ez(t) is the Pomeranchuk
trajectory. The function $&(t) is given by

sion, we should have found in (II.9) a coeKcient
—s(/16m', corresponding to a slightly different sig-
nihcance for the parameter s~. Since actual dynamical
calculations are more likely to be based on the Chew-
Jones expression, we shall use this latter normalization
in what follows. (The arguments to be made here are
only qualitative, so a factor of ~~ is of no consequence. )

III. AN APPARENT CONTRADICTION

Estimating the t discontinuity (or imaginary part) of
(II.6), one finds it negative in the region between the
2m threshold and the mass squared of f(1250). Since the
t discontinuity of any t-reaction partial-wave elastic
amplitude must be positive, a doubt arises about the
correctness of (II.6).

In fact, Chew and Teplitz proposed a technique for
evaluation of the potential which precludes a negative
result for the potential carrying the vacuum quantum
numbers. The reasoning of these authors, however,
depended on the neglect of double spectral functions
throughout the "corner" regions where both variables
(s and t) are inside their respective strips. This is
equivalent to assuming that inside the t strip the entire
t discontinuity is contained in the potential for the s
reaction.

Such is, of course, not strictly the case, and if one
asks where (in t) the discontinuity of (II.6) becomes
large, one sees that it is in the region where Imn~(t) is
large, that is, the upper portion of the t strip above the
mass squared of f(1250). In view of the relatively
narrow width of the f we can be sure that Imnp(t)
remains small for t ~&mf'."Now, in the upper portion
of the t strip (inside the s strip) there may be sub-
stantial components of the Mandelstam double spectral
function arising from iteration of lower t components
in the potential. This double spectral function con-
tributes to the total t discontinuity but is excluded (by
delnition) from the potential. Were the double spectral
function suKciently large it could produce the required
positive sign for the complete t discontinuity, even
though the potential (II.6) may be negative.

Towards the lower edge of the t strip the potential
must dominate the t discontinuity, so (II.6) cannot
there be a good approximation to the complete
(vacuum-like) potential. Here the procedure recom-
mended by Chew and Teplitz seems appropriate in
order to include the efI'ect of secondary trajectories and
"background. "

Notice that our conjected mechanism for removing
the contradiction between (II.6) and the positive-
dedniteness requirement, through the double spectral
function, implies the inadequacy of approximating the
left-hand discontinuities in an 1V/D calculation by the

The essential point is that Xmu~(t) is positive.
9 G. F. Chew and V. L. Teplitz, Phys. Rev. 137, 3139 (1965).
"For t=mf, Ima. p=Ffmf(d Re~p/dt)& f~, and the trajectory

slope appears to be less than 1 GeV '. Thus for Ff=100 MeV,
Xmup&0. 1 at t=mP.
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discontinuities of the potential. This is perhaps not
surprising if one recalls that this latter approximation
has been especially delcient in handling strongly re-
pulsive forces."

A lesser paradox is the circumstance that the "range"
of the Pomeranchuk potential (II.6), as measured by
its logarithmic derivative at 1=0, is longer than would
be given by a dispersion-relation estimate based on the
region of t()mr ) where the imaginary part becomes
large. For pion-pion scattering, as an example, the in-
verse logarithinic derivative with respect to t of thedif-
fraction amplitude (II.7) at t=0 and s=s~ is =0.5
GeV~,~ while mr =1.6 GeV'. The explanation here is
that the imaginary part of Vs P(t) oscillates when the
imaginary part of nr (t) becomes large, leading to can-
cellations in the dispersion integral, so the dependence
on t near t=0 may be steeper than given by the de-
mentary estimate, which tacitly assumes an absence of
cancellations. This circumstance means that Pomer-
anchuk repulsion even while behaving dynamically like
a long-range force, does not correspond to a "nearby"
left-hand singularity in partial-wave amplitudes. It is
a superposition of distant singularities on bo/h right
(outside the strip) and left, in which the oscillatory
character of the discontinuity is an essential feature.
To represent such an effect in E/D models by a few

phenomenological poles on the left is probably hopeless.

V,r=i'(t) =3(1+s/2qP) V&&(t), (IV.1)

where, for
(
t ( &(s~,

Vg&(t)=q'P(4&p/mp)/(mp' t)]e ''&"—~ '& -(IV.2)

the effective crossing matrix element here being equal
to ~~.'3 The potential is attractive, to be compared to
our estimate above of the repulsive Pomeranchuk
potential:

sy InL4 (sy, t)
V-. '(t) = -="'(") — - (IV 3)

Sn' IrrL4 (sg,0)

"J. G. Bjorken and A,. Goldberg, Nuovo Cimento 16, 539
(1960).

~ G. F. Chew and V. L. Teplitz, Phys. Rev. 136, 31154 (1964).
'3 In the ~7f problem, both crossed reactions contain the poles

in question, so the total potential treated in this section is twice
@at from the t reaction aboye.

IV. ESTIMATE OF THE IMPORTANCE OF
POMERANCHUK REPULSION

Let us now examine for a much studied example, the
I=1 xm. channel, the relative importance of the po-
tentials associated with the I' and p trajectories, the
latter being the only one usually considered for this
system.

In our previous paper' we have roughly estimated the

p potential as

Although the detailed shape of the high-energy mx
forward diffraction amplitude is not known, it should.
sufGce here to represent it by a simple exponential of
the above-mentioned width 0.5 GeV'. The value of
0'"( ~) is taken as 10 mb "leading to

, r i~(t)= 0—3sze." (IV.4)

where s~ and I, are to be evaluated in units of GeV'. For
the p potential, using a width I',=110 MeV, a mass
m, =0.77 GeV, and a trajectory slope n, '=0.5 m,—', we
have

V~~, r r~(t) = 1 1(t/. 4 m—'+s/2)e'"/(1 1 7t)—. .(IV.S)

Comparing (IV.4) and (IV.5), one should notice two
points: (a) The t dependence of the two potentials is
not very diferent, but the p potential has a major com-
ponent increasing linearly with s, while the Pomer-
anchuk potential is independent of s. (b) In the lower
half of the strip, where s(sq/2, the Pomeranchuk re-
pulsion is entirely comparable in magnitude to the p
attraction.

The s-increasing aspect of the p potential means that
in 1V/D dynamics this component, acting like a very
short-range attractive force, tends to dominate the de-
nominator function and thus to control the existence
and location of resonances in the amplitude. On the
other hand, the width of a resonance (resonances are
expected to occur in the lower half of the strip) is pro-
portional to the numerator function at the resonance
energy —which is sensitive to the value of the potential
in this low-energy region (the "long-range force"). Thus
a drastic reduction of the potential in the resonance
region should lead to an important resonance narrowing
eGect.

It has already been remarked that with such a strong
repulsion one may not employ the Z/D device of re-
placing left-hand partial-wave cuts by the cuts of the
potential. It will be necessary to perform at least a few
steps of the Mandelstam iteration in order to achieve
a bdievable dynamical result. The results of such cal-
culations will, one hopes, be reported at a later time.

V. CONCLUSION

The presence of Pomeranchuk repulsion in all two-
particle channels may explain why resonance widths
have so uniformly been overestimated in non-Reggeized
bootstrap calculations. At the same time, certain aspects
of the qualitative estimates heretofore given of the
attractive forces essential to forming bound states and
resonances are not invalidated by Reggeization. There
remains a correlation with the concept of particle ex-
change, and the sign (attraction or repulsion) generally
survives. We can understand in this way the success of
crude bootstrap arguments that use crossing matrices
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and almost nothing more. The estimates given in this

paper and in Ref. 1 indicate, however, that to achieve
even semiquantitative accuracy in the dynamics it will

be necessary to employ Regge potentials together with
the Mandelstam iteration or the equivalent thereto.
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A determination of the E+ decay branching ratio into the mode E+ —+27-+x+7r is obtained in a H2
bubble chamber with a beam of stopping K+. With a total r+ count of 2186, the branching ratio obtained
is (5.71+0.15)'%. The estimated world average is (5.54+0.075)%.

INTRODUCTION

'HE precise determination of the r branching
ratio is very important, since this information is

used in most E+ experiments to establish the E+ Qux.
Many values have been obtained in the past years, not
always compatible within the errors. In Table I we
have collected the most signi6cant ones.

We present here a new determination of the v

branching ratio obtained in the 81 cm Saclay-CERN
hydrogen bubble chamber exposed to a beam of stopping

E+. The statistical accuracy of our determination is
comparable with those of Refs. 1 and 2. However, the
use of the H2 chamber allows, in our opinion, a more
certain reduction of the background.

EXPERIMENTAL DETAILS

The entire analysis was carried out at the scan table
with visual separation between decays into the r mode
and all other E+ decays. Two kinds of scans have been
done. In the first scan (scan A) all the tracks entering

TABLE I. Published values of the r branching ratio.

References

G stack coll. +

Ritson et al.b

Brussard et al. '
Hoang et al.d

Birge et al.'
Alexander et at. (see Ref. 6)
Taylor et al.'
Roe et al.g

Bttggild et at. (see Ref. 7)
Shaklee et at. (see Ref. 1)
Callahan et al. (see Ref. 2)

scan A
Present experiment scan B

total
Weighted mean

Technique

emulsion (cosmic rays)
emulsion
emulsion
emulsion

emulsion

emulsion

emulsion

xenon bubble chamber
emulsion
xenon bubble chamber
Freon bubble chamber

hydrogen bubble chamber

No. of w

30
58
30
9

171
226
263
359

98
540

2332
504

1682

Branching ratio into v mode

(8 5 &16)'%%uo

(76 +1)%
(71 +1)%
(5.2 W2)%
(5.6 +0.4)%
(6.8 +0.4)%
(5.2 &0.3)%
(5.7 +0.3)%
(7 7 &0 8)%%uo

(5.1 +0.2)%%uo

(5.54&0.12)%%uo

(5.65~0.26)'%%uo

(5.74~0.18)'jj
(5.71&0.15)%
(5.54+0.075)%
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