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The conjecture that inelastic states containing an f meson should provide a natural-recurrence mechanism
is investigated. %'e 6rst treat coupled 3, a and Egfchannels where, in seeking a recurrence, Eg denotes the
previous recurrence. We establish that the attraction is always maximal for angular momentum and parity
corresponding to the recurrence state. %'e concentrate on the ~7+(T = $) and $+(T=$) states, and 6nd that the
attraction is strong enough to produce resonances, in fact, as we have computed it, excessively so. %e then
consider coupled Xgm and Egf states, and look for these resonances to occur in E@~ scattering. The reso-
nance positions determined by taking this point of view are vastly improved. In particular, if we invoke a
static version of SU(6) symmetry we obtain a —,'+(T = ~s) resonant state in good. agreement with observation.

L INTRODUCTION
' 'HE spectra of states in mX scattering for isospins

T= ~ and ~3 exhibit many resonances. ' Of those
having determined or suggested quantum numbers, we
may classify all but two according to the notion of re-
currences. ' The two families of recurrences (for T=2
and 2) are shown in Table I; the two observed reso-
nances, omitted in the classification, are the —', (T= —,',
1512 MeV) and the P (T=—,', 2700 MeV). In the T= 2
channel we shall consider the states &+ (1688 MeV)
and —,'+ (2190 MeV); if the latter of these turns out ex-
perimentally to have the indicated J~ assignment then
these two states would indeed be the first and second
recurrences of the nucleon. In the T=-,' channel the
(3,3) isobar recurs in the ~7+ resonant state at 1920 MeV;
the resonance at 2360 MeV would then be the next
recurrence if its quantum numbers were established to
be JP=11/2+.

We have recently proposed a dynamical model which
yields the —,

'+ (T= ~~) resonance'; at the same time we
conjectured how that model might be extended to ob-
tain all of the recurrences for either isospin. In this
paper we shall implement that conjecture with the
necessary calculations, and, in addition, we shall present
a device for extending the model of Ref. 3 which yields
an improved set of results for the other recurrences.

TmLz I. The T=$ and T=$ recurrences.

Our models are based on two-channel unitarity; in
Fig. 1 we indicate the choice of inelastic state which, ac-
cording to the original conjecture, ' we couple to the Ex
channel. In the figure the inelastic state contains the
particles cV~ and f where f denotes the 2+ (T=O)
meson of mass 1250 MeV and where A~ denotes the
previous recurrence in the isospin channel of interest.
That is, for the —,'+ (T=-,') state we have taken .'V~ to
be the nucleon'; for the 2+ (T=-,') state (we are assum-
ing J" such that we have another recurrence) we take
'Vg to be —',+; for the —,'+ (T=2) state we take 1Vs to be
the (3,3) isobar. In every case the f meson serves to
add the two units of angular momentum necessary
for recurrences.

It is well known" that absorption through inelastic
s states provides a most eS.cient mechanism for attrac-
tive elastic scattering; the appeal of using these states
which are virtual at the resonance energy has been
pointed out by Cook and Lee.4 Every amplitude of inter-
est to us here has positive parity; hence we may assume
s-wave absorption. Given that the inelastic states have
L=0, the recurrence state then corresponds to the maxi-
mum allowable total angular momentum. We shall show
that this is the most attractive configuration. We follow
the example of Ref. 4 and choose the forces to be purely
absorptive; as indicated in Fig. j., we take the one-pion-
exchange diagram to provide the dominant coupling be-
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FIG. 1. m-exchange coupling
Xx to X~f.
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' The knowledge of these that is available at the present time
may be found in A. H. Rosenfeld, A. Barbaro-Galtieri, W. H.
Barkas, P. L. Bastien, J. Xi', and M. Roos, Rev. Mod. Phys.
36, 977 (1964). References to the various experiments are given
there.

~ %e hasten to point out that we are in no way invoking Regge-
ism for the purposes of calculation; we are only borrowing a con-
cept, that of recurrence, which is an outgrowth of Reggeism. See,
e.g. , G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 8, 41
(1962); R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126,
766 (1962).

3 P. R. Auvil and J. J. Brehm, Phys. Rev. 138, B458 (1965).
4 L. F. Cook and B. W. Lee, Phys. Rev. 127, 283 (1962); 127,

297 (1962).' F. T. Meiere, Phys, Rev. 136, B1196 (1964).
8 j.35
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tween channels. The application of this model, the con-
jecture of Ref. 3, is the subject of Sec. II. In this section
we give the calculation of the necessary spin-dependent
vertex factors and the projection of the diagram into the
relevant J~ amplitudes. The results of the model are
computed for the 2+ (T= s) and the 92+ (T=-,') states.

The pursuit of this program yields the conclusion
that the attraction is sufhcient to support our conjec-
ture. In fact, by our method of computing the strength
of the forces, the attraction is excessive in that these
two resonant states appear at energies well below their
experimental values. At this juncture a different point
of view is adopted for the dynamics of these two states,
In Sec. III we treat coupled .Va~ and Vaf channels,
and we explain why these may provide a dynamical
model which is a more relevant extension of the mecha-
nism of Ref. 3. In I'ig. 2 we indicate the assumed cou-
pling of the two channels. In Sec. IV we conclude with
some remarks suggesting how the results of Sec. III
are reflected in cVx scattering.

in which we have suppressed the J index. %e have also
suppressed the index j denoting the spin of Xg. The
superscripts g and $ run through ss (2j+1) integers cor-
responding to the number of di8erent J~ eigenampli-
tudes. In Table II we identify the oG-diagonal block
%31of SR in terms of the helicity amplitudes, "for posi-
tive parity. The helicity amplitudes in turn are given by

(n, &, iM3i~P)=2m. d cos8d i,s (8)M, i, (2)
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FIG. 2. m-exchange coupling
Xg~ to 1V~f.

II. THE COUPLED Nm, Ngf PROBLEM

A. The Model and Its Solution

We denote the coupled X7r and oaf channels by the
subscripts 1 and 3, respectively, (we reserve the sub-
script 2 for the /Van. channel). The amplitudes for
angular momentum and parity J~ are described by the
matrix

&11 3f13&

5R=
M31'1 &33'I&

where the helicities and the choice of c.m. coordinate
system are as shown in Fig. 3.

To incorporate the correct threshold behavior we
define

where, for example,

F11 F13&

F32 F33"~
(3)

TABLE II. JP eigenamplitudes in terms of helicity amplitudes.

1

2
~ ~ ~

2j+1
2j+2

~ ~ ~

2(2j+1)
4j+3

~ ~ ~

4(2j+1)

Combinations for positive parity J+

&i, 21~31lk&+ (—)' '& —i, —2 IW~ lb&

&j—t, 2l~ails)+( —) '& —(j—t), —2l~»lk&
~ ~ ~

i, 2I~»lk&+—(—)' '&i, —21~»lk&
&i t

I ~~ I k&+ (—)' '(—i, —t
I ~» I s)

~ ~ ~

i, t l~»lk&+( —)'—'&i, —t l~»lk&
&i, o i~silk)+( —)' '& —i, ol~» lk&

~ ~

&k, ol ~» lk&+ (—)' '& —r', o l~» Ik&

The model employs the many-channel E/D method'
in which we let

r=X~-1,
where the elements of the matrices X and X) are ex-
pressed in the notation of Eqs. (1) and (3), and where

disc X)= —2xzpX

on the right-hand cuts. The matrix of phase-space fac-
tors is diagonal:

p1 0

0 p38„g)

and, apart from 8 functions, we have

p2l+1
P1=

(4~)' w(po+m)" '

2nt po+~
F11 %11, (4)

pp+m p

'"=(,.',.)'"(.',.)"'"', )'- '
in which (m, p,po) and (M,Q,QO) denote the (mass,
momentum, energy) of X and Xz, respectively. We
denote the w and f masses by p and h. In Eqs. (4) and
(5) we take l=3 for the —,

'+ state and I=5 for the s2+

state; note that we have used I.=O in the inelastic
state.

I M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).

Q(Q.+3f)/
(4m)'

' R. Blankenbecler, Phys. Rev. 122, 983 (1961).
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In terms of these quantities the 5 matrix is

5=1+2xip~~2$p~I2. (10)

TABLE III. Angular-momentum amplitudes for I =0
and for each Sg.

Ke define the model by specifying the discontinuity
of F on the left-hand cuts in a pole approximation as

discrj'ii =0= discrFIp&,

dlscrFgp= 2xid&5('N —'10i),

discrF ist = 2w'idr8(w —wi) ~

J+
1+
Y
g+
5+
7+

&R=$+

J+
1+
3.+
5+
7+
9+

in which

S,—=detS= 1—d'(w —wi)'Ei(w) Ti(w) (12)

The presence of the b functions in (11) reduces the solu-

tion of the model to an algebraic problem. Since we are
looking for resonances below the inelastic threshold the
only quantity we need is the determinant of the I)
matrix:

termine d' by computing the residue at the pole. If the
model is to make any sense we must 6nd our resonance
between the two thresholds; thus we choose the in-
elastic threshold as a representative (and also very con-
venient) point for the evaluation of the coefficient:

(u 1 u 3)[F31 (u 3)]diagram

(13) with w3 3E+h.——

and where

2'i(~) =

dx pi(x)

-+.(x—~)(x—~i)'

dx ps(x)

,if+ad (x—w) (x—u, )'

(14)

Q, Q

FIG, 3. Definition of the
kinematic variables.

The criterion for a resonance at an energy m* below
the inelastic threshold is

Re SO(w*) =0.
The model contains two parameters w~ and d'. We

determine these by explicit evaluation of the diagram of
Fig. i. Such a calculation yields a singularity in F»
at x=ns+p. This circumstance is attributable to two
sources: first, the threshold factor in (5), and second, the
analytic continuations necessary to define Fsg with un-
stable Ãa and f particles. 4 This singularity is in general
not a simple pole so if we take m ~=m+ p, we cannot de-

B. The Coupling Parameters of the Model

We now consider the two problems of interest separ-
ately; in the first instance we take X~———,'+ with 7=-'„
and in the second Ãg =—',+ with T= -,'. If we suppress all
but 1.=0 in the ~V~f state and consider only positive
parity, then the amplitudes listed for each choice of iVz
in Table III are relevant.

We depart from the approach of Cook. and Lee, and
regard Ãa and feach as single particles; for this purpose
we need the appropriate Xs and fwave functions. These
are given in Tables IV, V, and VI. The e's and I's are
the usual spin-1 and spin--', wave functions in the
helicity basis:

"(Q)=~( ~ o o)/v

e'(Q) = (O,O,QO; ~Q)/~,

I+ii~(Q) = Qo+~)"' x+
(18)

2M I a[Q/(Qo+~) jxp

in which xtx=1. The expressions (17) and (18) are re-
ferred to the orientation of the coordinate system as
given in Fig. 3; states corresponding to other directions
of the momenta can be obtained by applying rotation
operators.

According to Eq. (16) we need only compute the
diagram of Fig. 1 at the inelastic threshold. Here both

TABLE IV. The 5-component wave function p&(K)
for the 2+ particle.

y~=e1(K)e1(K)
y'= I e'(K)e'(K)+e'(K)e'(K} j/V2
qb'= Pe'(K)e '(K)+2e'(K)e'(K)+e '(K)e'(K) j///6

O- =P (K).—(K)+ -'(K)(K)3/~
4~=;1(K)e-1(K)
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TABLE V. The 4-component wave function p~(Q) for
the $+ particle.

TABLE VI. The 6-component wave function p~{Q) for
the q+ particle.

8"=e'(Q)»/2(Q)
4' '= I: '(Q)+-I/2(Q)+~e'(Q)»/2(Q) j/~

4 '"=L~(Q)~-I/2(Q)+e '(Q)»/2{Q) j/
'(Q) — (Q)

/Vz and f are at rest in the over-all c.m. system. In the
following calculations it will be understood that m =m3.

The fear vertex is given by

U1 = fy"„.(IC)k„k„ (19)

0' '=4'(Q)»/2(Q)
P'/' = f2&'(Q}»/2(Q) +f'{Q)m I/~ (Q}j/+5
4'~= LO'(Q)»/2(Q)+~4'(Q)+-I/2(Q) j/V'5

L~4 i(Q) Ni/2 (Q)+~ko (Q)I,/~ (Q)j//5
0 '"=L4~(Q)»/2(Q)+W '(Q)+-I/2(Q) j/V'5
0 '"=e~(Q)+-I/2(Q)

The width is given by

I'o/o ———',L(po+m)/M'] p'go'/41r,

where f is the coupling constant. In the rest frame of f h f p 125 M V h o/4 0 383
this becomes

i'J —( )1(o)1/2fk2$2 (g) (20)
& -s= gok ..(Q)p.p.rogo(p)

(it is convenient for later use to express the vertices in
terms of Wigner d functions' ). The width of the f which, for Q=O, becomes
resonance can be computed from (20); it is

(25)

p5 2

I'f —————.
15 624m

Po+m '/'-' P'
=(—)' '"(2/5)"' go d- '"((/) (26)

(21) 2m Po+m
It follows that

For a width of 100 MeV we obtain f'/41r=0. 536/1
"

For the %*3/2/V~ vertex we have

i'-s=go(t .(Q)p.ls(p)

2 p g5
I'5/2=—

15 M(po+m) 41r
(27)

so that in the X*3/2 rest frame,

s
—(o)1/oL(Po+m)/2mj1/2goPd so/2(e) (23)

so, for I'o/, ——80 MeV, go'/4s. =0.0333/1 '.
For X&——~+ the helicity amplitudes for the diagram

are given by Eqs. (2), (20), and (23):

4n' po+m )"'
(al IM»IP&=( —)"+ '—fgo I

P'
3 2m)

i d cosO
1,8'(e)d= -P"'((/)d1, .-(~)o.

y $—P
(28)

%'e make use of

where
t—/1'= 2pQ(cose —x),

x = (2PoQo+/1' —M' —m')/2PQ.
(29)

Formula (28) then is easy to evaluate; since we are at t//=wo(Q=O), only Jo(g/2=0 contributes. ' (In fact this
relates directly to our assumption of an l.=0 /(/af state. ) The result is

81r (po+m '/'
(.XlM-I p&=-(-)""—fg I

p'(2Mp +/1' —M' —m') '(J a—l1, —,', —al J, —,', 2) —l1)
3 &2m

X(J, p, o, —pl J, —'„2, 0)(2, X, 2, —Xl2, 2, 0, 0)(2,0,2,0l2,2,0,0). (30)

According to Table II there are 10 J+ amplitudes; these are

161r Po+m "'
()ct 1/2 fgoP3(2MP+/12M2m2)1

15 2m
X(J, a—~, o, —alJ $2 l1)(J o, $, —o1lJ, —,o, 2, 0), (31)

where 1/ depends on a, lj, as shown in the table. From Eqs. (5) and (16), we obtain

—(—)& 1/o(16'/15)fgopo(~o 1//1)(2Mpo+/12 Mo m2) —l((po+m)/p)1
x (J, a—)1, -'„—a

l
J', -'„2, —l1)(J, -'„-'„—

o l J, $, 2, 0), (32)

A. R. Edmonds, Angular Jtd'omentuw in Quan/em

Mechanics

(Princeton University Press, Princeton, New Jersey, 1960).
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where / is given in Table III.It is worth noting that the q dependence of d„' is contained entirely in the first Clebsch-

Gordan coefficient and, moreover, that

(33)

For /V/i= ss+ the analog of Eq. (28) is

47r po+m~ i/' p' ' d cose
(~,~l/lf'silP)=( —)"+ '" fgs —

l

— d. i,/i'(~)d ., //"'(&)A, o'(&)
v'15 2m & po+m i t /'— (34)

and, by the same manipulations, we get, for the 15 coeScients

( )a—i/2
16m p' po+m '

fgs (ws —wi)(2Mpo+/i' —3P—m') '
5+15 pa+ m

We can now indicate why the recurrence states are
the most attractive ones. Given I.=O, the recurrences
correspond to the largest J; this in turn calls for the
largest l, although occasionally (e.g. , with /V/i

——-',+) the
next largest J may have the same l. Where $ is largest
the factor L(po+m)/pj' is dominant. In the case of a
competing J having the same l,, the second Clebsch-
Gordan coefFicient in (32) and (35) always favors the
recurrence state. These remarks are not restricted to
the two resonances we are treating here, but hold quite
generally.

C. Results

We now look for a resonance between zo& and m3,
accordingly, we compute ReSO(u/) and look for an
energy w=u/* such that (15) holds. The results for
7= 2+ (T=-,') and J= ~+ (T=-,') are shown in Figs. 4
and 5, respectively, According to the model described
in this section (the one conjectured to apply in exten-
sion of the model of Ref. 3), we find that the resonances
occur at u/'j/2 —11.8 /i (1650 MeV) and at w9/2* ——9.6 /i

(1340 MeV). It is clear that the conjectured mecha-
nism is suSciently attractive (evidently, too much so).
The positioning of the resonances leaves something to
be desired; especially unpleasant is the occurrence of
the f+ below the z+. Even if we use I'q/2 ——42 MeV (the

result of Ref. 3) we can only increase the mass of the
~+ by 100 MeV.

The widths of the resonances may be computed from
ImSO and (d/dw)(ReSO). For ~7+ we find F7/&

——26.5
MeV; this diGers by only a factor of 2 from the observed
partial width for Xx decay. ' VVe cannot expect our cal-
culation to yield a result comparable with the observed
total width since many inelastic channels that are open
and important have been neglected in the model. In
fact the very large inelasticity of both 2+ and ~+ reso-
nances will be exploited as motivation for a di6'erent
approach in the next section. The computed width of the
2 resonance is unreasonably small; h-wave phase space
and the very low resonance energy account for this.

III. THE COUPLED New, Naf PROBLEM

The force pictured in Fig. 1 perhaps does not repre-
sent the extension of the model of Ref. 3 which is most
relevant, although it is the most natural if we wish to
compare our results with the resonances as observed in
Xw scattering. For both the 2+ (1920 MeV) and the ss+

?(2190MeV) the elastic decay fractions are small, in the
neighborhood of 30%%uo,

' indicating that the resonant /V~

phase passes through 0 rather than ~~x.' Thus we might

FIG. 5. ReSp versus m
for g+(T'=g). l2

Fro. 4. ReSp versus
m for $+(T=g).

'A thorough discussion of this effect may be found in, e.g.,
M. B.Watson, M. Ferro-Luzzi, and R. D. Tripp, Phys. Rev. 131,

(&963).
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assume, from this apparently weak coupling to the Xm

channel, that the resonances are more appropriately to
be sought in another channel. "%e shall adopt the point
of view in this section that this other channel is 'Vgm-.

Accordingly we assume the force of Fig. 2 to be the
relevant extension of the model employed for the first
nucleon recurrence. '

To pursue these observations we now look for the
occurrence of a resonant state in E~7r "elastic" scat-
tering. We ignore channel 1 and add channel 2, the X~m
channel. The 5 matrix becomes

/'pbbs = (a'o r/oo) [Fop (u'o) jdiagram ~

For the X3/2 E3/2 K vertex we use

V-s= g»& .(Q)&of'.(P);

(43)

(44)

in so doing, we are neglecting the f wav-e coupling (pre-
sumably small due to the centrifugal-barrier efFect).
For Q=0 this leads to

the dominant singularity occurs at w=M+/i, where P
vanishes; so we choose m2=M+p, . We determine the
factor b'c' at zo=m3 from

in which, e.g. ,

~23'

F32nr p33nh
(36)

&y3/2= 1, (46)

1, o= (—)//+i/o, pg»L(Pp+/M)/2bgji/o

XLP/(Po+~) jd,p'"(e), (4&)
where

oui/o= o(1—2Pp/M).

(o,&
l ~» l &)= —(—) +"'-'x(-')"'fgoo

Po+M) '" P'
X l,„(2bfPp+ po —2' o)-i

2M ) Pp+M

where Pp and P denote the Xg energy and momentum
in the Xgx state. The indices r and s run through the
o(2j+1) values needed to label all the amplitudes in
conjunction with the oo(2j+1) integers iv and $. The
identic. cation of these indices with the combinations of
helicity amplitudes is still given by Table II if we re-
place the initial helicity state

l
—,') by the set of o(2j+1)

states
1 j), l j—1)"

The nonzero forces of the model are assumed to

X (J, —x, -'„—
l J, —,', 2, —x)

X(~, P, o, Pl~, o, —2, o) (47)

Then, for r= 2, ~ and for g=1 to 10, the calculation of
the J+ amplitudes and the application of Zq. (43) yields

(38) the coefficients
dlsczFpoo"= 2or&ob~b(w —'wo),

dlsczF»~t = 2s'ob~ctb(w wo);—

I 32n~-
23' "-' 2M qi/' Po+3f~'

l
M»"', (37)

Po+bf' Qo+M/' P The helicity amplitudes at m =w» are

where
Sp ——1—b' (wc—up)'So(u/) To(w),

b2 —Q b 2

C — C

(39)

(40)

we shall demonstrate the validity of factoring the co-
efBcients later. The determinant of the X) matrix in this
case is

Se-
c„=( )a+1/2 (2)1/2fg

5 Pp+N
Po+~ '

X ('wo wo)(2MPp+p— 2M )—
P

X (J, n —X, $, —n
l J, —,', 2, —li) (48)

b, = o,(J, r, —,', —r
l J, -'„2, 0) .

In Sg we use

To(~) =

dx po(x)

~„(x—w) (x—wo)'

dx p, (x)

orlop (x—'w) (x—'//oo)

V //= googol/ „.(Q)pe//~„. (P) . (30)

The factorization assumed in (38) is evidently valid by
inspection of Kq. (47); this circumstance holds equally
well for Eg=-,'+.

For the .'Vli/o /Vo/o or vertex we neglect f wave and-
i-wave couplings and write

R2=
(4x) ' w(Pp+/V) "—'

and we take l=3 for both J=-,' and —', .
Once again the parameters of the model are deter-

minable in terms of coupling constants; this time we
compute the projections of the diagram of Fig. 2. Here

' We are grateful to R. H. Capps for suggesting this notion.

For Q= 0, this becomes

V //= (—)P '/'r//gooL(Pp+M)/2M j'/'
XV/(Po+W&&-, p" (e,

65/2

ryo/o= o(1 4Pp/3E), —
v'yi/o= o(1—2Pp/M+2Pp /3P) .

(32)
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The helicity amplitudes at m =w3 are

(~,~ I
M»

I 0)= (—)—'"s~(4)'"fg»

Po™)"' P'
X

I
r' (2MPO+y-'—2M') '

2M ) Pp+M

x(J, a—x, —,', —aIJ, 2, 2, —x)

X(~, e, -'„-e
I ~, —:,2, 0) . (53)

Thus, for the case .Vg= —,'+,

F00"

80"

60--

jp38~
c„=(—)

—'~'—(-')'~'fg
5 I'p+ M

x(y, —x, —,', — Iz, —,', 2, —") (s4)

&((w3 wg)(2M—Pa+p' 2M') —((Pp+M)/P)'

40"

20--

in which
&.= T.(J, r, 2, —r

I
J 2, 2, o) ~

r=-,', —,', —,
' and g= 1 to 15.

(55) 20

FIG. 7. 55 coupling constant as a function of resonance energy.

80-

60--

40"

20"

0 12 l6

I'IG. 6. 33 coupling constant as a function of resonance energy.

The coupling constants g33 and g~~ are not experi-
mentally determined; we shall let them be variable
parameters for the time being and determine g»'/4n.
and gq52/kr as functions of the resonance positions. To
this end we define the quantity G' from Eq. (39) by
writing

ReSO= 1—g'G'/4w,

where g =g33 for J= -,' and g =gss for J= 9. At resonance
we then have

g'/4n. = I-G'(w*)g '. (57)

The right-hand side of Eq. (57) is plotted in Fig. 6 for
—,'+ and in Fig. 7 for a2+. For wr~s*=13.7 p (1920 Me&)
and wg~2 =15.6 g (2190 Mev) we obtain

g33'/4m= 36.7

gag'/4n =69.
(58)

If we allow a tolerance of about 0.5 p, in the ability of
our model to give resonance energies we can see from
the figures that we have sufFicient sensitivity of the re-
sults to give a range of 26 to 51 for the 33 coupling and
of 48 to 116 for the 55 coupling.

Something can be said about what to expect for the 33
coupling if we invoke a form of SU(6) symmetry. The
couplings g and g33 (and gq as well) are related since the
E and cV3~2* are both supposed to belong to the 56-
dimensional SU(6) multiplet. "We shall refer to the re-
sults of Capps" who has adopted a static model for
the meson-baryon vertices. The "decay" vertex for
)V*—+ X*x may be written

V~*, ~* = (56,10I BgoP8, 10)(BgoP8,10I 'V*n.) V56

= (lv'10) V; (59)
and for .V —»Yw

Vn, ~-= I-(56 8I BBP8,8,)(BBP8,8, IiYm )
y&56,8I B,p„s,)&B,p„s, tx~) jv„

= (6V'10) Vgs. (60)

In these expressions the first factors are the Clebsch-
Gordan coe%cients in Capps' wave functions, the second
factors are the appropriate isoscalar coe%cients, "and
the last factor V5~ denotes the reduced matrix element.
Thus for degenerate masses the ratio of the "decay"
probabilities is 1.On the other hand, if we compute this
ratio from (45) and from its analog for V ~ 1Vm in the

"F.Gursey, A. Pais, and L. A. Radicati, Phys. Rev. Letters
13, 299 (1964); B. Sakita, Phys. Rev. 136, 31756 (1964)."R.H. Capps, Phys. Rev. Letters 14, 31 (1965). See also J. G.
Belinfante and R. E. Cutkosky, ibid. 14, 33 (1965)."J.J. de Swart, Rev. Mod. Phys. 35, 916 (1963).
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static limit, we get (5/9)gaP/g', and, hence we conclude
that

gag/kr = (9/5)g'/4n. (61)

Numerically, then, we have gBP/Sr=27 and, from this,
the model gives a ~7 resonance at w"s*=14.2 p (1988
MeV), in rather good agreement with experiment.
Unfortunately no such symmetry argument is at our
disposal for the 55 coupling.

17. eOmCX, USromS

There is at least one sense in which we can say we have
a recurrence mechanism. %e are dealing with a model
which is, by de6nition, attractive in every state. Vie
have shown that the attraction is maximal in the re-
currence state. Our original conjecture' that the force
of Fig. 1 provides the mechanism is therefore qualita-
tively successful. Our ~7+ resonance however is two pion
masses ofF the mark.

The comparatively weak observed coupling to the
Xx system of both the f920- and 2190-Mev resonances
suggests that we should formulate our model from the
point of view of looking for resonant states in another
channel. Accordingly we couple &V'n. and ERf states,
and indeed we obtain vastly improved results.

The model, in both its original and its improved form,
fails to touch upon the important question of calcu-
lating the elasticity of the resonances. To study this
entails including open inelastic channels with couplings
such that the elastic phase can be driven through 0, in
agreement with the observed small elasticity. ' The

formulation of a three-channel model with special
application to this problem is treated in a subsequent
paper.

Our models are based on the role of the f meson in
specially chosen inelastic states. The mechanism is al-
together difFerent from other explanations in the
literature for the pattern of quantum numbers of the
observed excited nucleonic states. Carruthers, " and
Donnachie and Hamilton" have analyzed many ex-
change forces and conclude that the signs and sizes of
these imply attraction in all the right states. Carruthers
in particular shows how the reciprocal bootstrap of
Chew" has a natural extension to the recurrence states
among the higher resonances. His forces have not yet
been implemented by a unitary calculation to ascertain
the positions of the resonances. Freedman'~ has given a
dynamical model for the nucleon trajectory which in-
corporates inelastic efFects. His choice of inelastic
states differs from ours and the calculation invokes
only elastic unitarity.
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