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Of course the e's in (6.5) Gt in between E~ and E in

(6.6)-(6.8).
If these three equations are multiplied by (5.7) and

avera, ged over b spin, it is found that only terms linear

in a" survive. Hence, it is reasonable to look at the de-

pendence of Q 4 and cr&&&0 on a, a", but not on a' by
using (5.11) rather than (5.7). We obtain

Let a basis be defined in the decay configuration by

a=I',
a"=I' sin8" +n' cos8", cos8"=a" a.

Then the projected cross sections for the ~ sequence are

do&o0=E cos8"l 4ly+zl'+ (8/3) Rey(y+z)*
+j '(17j'+38g+6)

l y l'] dcos8", (6.12a)

where, for the —,'+ sequence,

X&'&=8(j+1)(Q a")—4(2j+1)(Q a)a" a,

X&'& = (20/+30 j+2) (Q a")
—(20/+30j——',) (Q a) (a" a), (6.10b)

X&'&=j '(—3j'+22j+15)(Q a)(a" a)

+j '(20j'+16j—9) (Q a"), (6.10c) do 1—10 d0 110

Q +=X"'ly+zl'+X"'Rey(y+z)*+X"'lyl' «9) d., „= d.„,
= (8/V2) sin8" t 8 (j+1) l y+z l'

+ (20/+30 j+z3) Rey(y+z)*

(6.10a) Xj '(20g+16j—9) lyl'j dcos8". (6.12b)

The formula, s for the 2 sequence are

«»o=«os8 C
—2j(j+1) ly+zl

+-'(j+1)(j+2) Rey(y+z)*
+(j+2)(/+3) lyl'j dcos8", (6.13s)

and, for the —,
' sequence,

X&'&= —4(j+1)'(Q a")
+2(j+1)'(j+2)(Q a)(a" a), (6.11a)

X"'=(j+1)(j+2)[(10/+15j+6) (Q a")
—(10/+15j+14/3) (Q a) (a" a)j, (6.11b)

X"'=(j+2)L(2&'+3j—l) (Q a")
—(g+3j—2)(Q'a)(a" a)j (611c)

= (R/v2) sin8" L
—4(j+1)'ly+z l'

+ (j+1) (j+2) (10@+15j+9) Rey (y+z) *

+2 (j+2)(4j'+6j—1) ly l'] dcos8". (6.13b)

The ratios of the M=O to the M= & j. terms are inde-
pendent of the production and give information on the
decay constants. One may hope that the spin and parity
determination need not rely on formulas of this com-
plexity. Once the spin and parity are known, however,
such formulas may be needed if one wishes to determine
the decay constants. The reader will appreciate why we
do not wish to present the complete moment analysis.
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The nonleptonic K' decays are examined on the basis of the CPT theorem and unitary symmetry without
the requirement of CP invariance. It is shown that the present model (based on the CPT theorem and uni-
tary symmetry) is consistent with the various experimental branching ratios of K ~ 2~ modes, if CP in-
variance is almost maximally violated. Further, the decays KI0 —+ 3H and K20 —+ 3~0 are forbidden by uni-
tary symmetry in the framework of the boson pole model, even if CP invariance is violated.

PPARKNT violation of CP invariance which ap-

~

~

pears in the decay mode E&~—+ x+x has been re-
ported. ' This led to a number of attempts to explain the
experimental result without CI' violation. %'e examine
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the interrelation between CI' invariance and unitary
symmetry (SU3 invarisnce) in which the nonleptonic
Lagrangian behaves as a member of the 8 and 27
representations and the strong interactions are invariant
under the transformations of the group 5U3. It is con-
venient to introduce spurions of I=—,

' and I=-,' so as to
express the E decay modes in terms of SU3 channel

(1964);S. Weinberg, Phys. Rev. Letters 13, 495 (1964);T.D. Lee,
Columbia University (unpublished}.
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amplitudes for which the requirement of CP invariance
is not imposed. %e do not imply that unitary symmetry
is more relevant than CP invariance for the E~ 2m

decays, but merely examine this "old" problem from the
present different point of view.

The states of the Ej' and E2' mesons may be written
on the basis of the CPT theorem as3 '

K '= X(K' rK—'),
K '=N(K'+rK'),

The Eqs. (2) and (3) lead to

s (E'St(o l
or+or )o

= —s(Kost(sly wo)o —(KoSt(slw+w )o
= —(KoStis l

orooro) o
——-', A s, (a+b),

s(K'Settlor or )s
= (K'Sop l

or+or-) s
——2s(K'Sots

l
orooro) s

= 2 (KoSo~s l
orooro) s ——ts&2s(K+ l

or+oro) o

'V2(K-lor or') = —(70'"/56)Bo7, (a+b),

(4)

where X is a renormalization constant, r is related to the
o6-diagonal elements of the mass squared matrix, and
CI'lE') =—lK').

The spurions St/s and Ss~s of isotopic spin I= -', (Is ——&-', )
and I=-', (Is——&-', ) that carry one unit of strangeness
transform as'

Stis= a(E+K )+'b(E K"), —
Sots= a(E +K )+b(EK), ' —

where a'+9= 1.Here E', E', E",and E"belong to the
8, 8, 27, and 27 representations of SUs, and. (K'~K')
and (K"&K") have CI'=&1. The form of the non-
leptonic interaction is not assumed at this stage.

%ith the aid of the spurions, the E' —+ vr+x—ampli-
tudes are expressible as

(K'K lor+or )o= (1/40)A27+(1/10)Asa
—(1/8)A +(1/2V'5)A-,

(KoK'
l
or+or )o= (1/40)A sz+ (1/10)A s,

—(1/8)A t—(1/2+5)A *,

s= (a+b)/(a —b) .

Then, one obtains from Eqs. (1) to (4)

s(E l7r+or )= (K lor+7r )

(Kso
l
or+or ) ' 1+rs Z(1+rs—)

R=
(Kt'l gr+s-) (1—rs) —Z(1—rs)

1+rs '

1—t's

(5)

(6)

R(Kt in+or ) v2(1 —rs) V2Z(1 —rs)—
Cly=

R(Kt
l

or tr ) (1—rs)+2Z(1 —rs)

W2 —v2Z' R(E;l + -)
—=ns, (7)

1/2Z R(Ko'l tr'or')

(E+lor+oro) ' 3Z(1+ lrl')"'/v2 '
p=

, (Et'l 7r+or )(1—r—s) (1—Z)

where
Z (701/s/28)Bsts/A ss ~(E'E'

l
or+or )s ———(70"'/56)Bo7,+ (6'"/24)Bsr. ,

(K'E
l
or+or )s———(70'~'/56)Bo'/8 (6"/24)Bsr Equations (5) to (8) are consequences of the CI'T

theorem and unitary symmetry when CP invariance is
not imposed. They are valid in the presence of 6nal
state interactions.

The relations that follow from the CPT theorem and
CP invariance of nonleptonic interactions without
unitary symmetry are

(E'l or+or
—

) = —(K'l or+%.—), (9)

where the subscripts denote the isotopic spin I, and 3;
and 8; are the channel amplitudes. %hen one considers
the transition from a (parity-violating) spurion to the
Em~ system, the state is totally symmetric among the
three particles, so that~

(K'K'
l
or+sr )o (K'K'

l
or+or

—
)o

————-', A s„
(K'K"

l
sr+sr )s (K'K

l
w+or )o ———(70——"'/56)Bsr, . and Eqs. (6) to (8) with the replacement s= —1.

Equations (7) and (8) with r= —s=1 are equivalent to
those given by Dalitz.

%e now assume that the nonleptonic interaction is
formed from a sum of products of weak currents and
their Hermitian conjugates. This requirement is equiva-
lent to the invariance of the interaction under the ex-
change of indices 2 and 3 when matrices are written in
terms of tensor notation. ' For the spurion, this corre-

R. H. Dalitz, International Conference on Fundamental Aspects
of 8'eak Interactions (Brookhaven National Laboratory, Upton,
New York, 1963), p. 378.' N. Cabibbo, Phys. Rev. Letters 12, 62 (1964};M. Gell-Mann,
ibid. 12, 155 (1964); K. Itabashi, Phys. Rev. 136, 8221 (1964);
Y. Hara, Phys. Rev. Letters 12, 378 (1964).

' T. D. Lee, R. Qehme, and C. N. Yang, Phys. Rev. 106, 340
(1957);R. G. Sachs, Ann. Phys. (N. Y.}22, 239 (1964).' R. G. Sachs, Phys. Rev. Letters 13, 286 (1964}.' T. ¹ Truong, Phys. Rev. Letters 13, 358a (1964); T. T. Wu
and C. N. Yang, ibid. 13, 380 {1964).' It is assumed that K' and K' belong to the same octet; X"andE" to the same 27-piet; and, further, that the CP=~1 parts of
S1/~ and S3/2 have the same coefhcients a and b, because the as-
sumption that they belong to different multiplets does not add
anything new. In the interaction that is considered here, CK'
= —g' and CK"= —E", so that CPK'=E' and CPK"=g".' The symmetric condition can be imposed by requiring
&»t(&'It'Is+s )= (s. R'(It's )=(s+E')7r+X') sod (E'IC'i~+a. ).
=(7r+If'~s X')=(s E'~2P )frsom which follows that Ao, ——Ao7= —)A1 and A,s=0. Corresponding relations for (K'E"led )
lead to B27 =0.



K. TANAKA

sponds to invariance under K' —+K'(K"~E") or
b=0, s=1."

If we combine this s= 1 with s= —1 that follows when

CP invariance of nonleptonic interactions is imposed,
the relation Ag, ——8~7,=0 follows from Kq. (5) with s= 1

and Eq. (9). This is an alternative proof that then all
the E—+ 2x decay modes vanish. In other words, the
E—+ 2m decay modes owe their existence to the violation
of CP invariance or unitary symmetry or both, provided
current-current form of the Lagrangian is assumed.
Therefore, a model of E—+ 2m decays with CP invari-
ance and violation of unitary symmetry is closely re-
lated to that with unitary symmetry and CP violation.
The following model assumes that CP is violated in
nonleptonic interactions.

We now attempt to 6nd the values of rs, I
r I', and Z

that are consistent with the experimental data, '9
8=2 6X10 ', aq=2, and P=2X10 '. The choice

leads to
~=

I (~)/(2 —~) I',
ag ——2

I (1—Z)/(1+2Z) I
',

p= I3z/2(1-Z) I~.

The values
I «I 3.2X10 ' and IZI 0.03 would 6t

R, n&, and P. The value of rs is approximately —1.Since
unitary symmetry is assumed here s=1 which leads to
r= —1. This value of r requires CPIK0) = IK') rather
than CP I

K') =—
I
K') which has been assumed. In this

sense, we have maximum violation of CP invariance.
LThis is evident also because s= 1 is taken rather than
s= —1 that one found in Eq. (9) from CP invariance. $

It is amusing that a model that requires unitary sym-
metry, CPT theorem, and almost maximal violation of
CP invariance can be consistent with the experimental
data of E—+ 2x decays. In view of the fact that strong
interactions respect CP invariance to a higher degree
than unitary symmetry, " the present model is of
academic interest. So far as the E~' —+ 2x and E~'~ 2m

' This statement is equivalent to Gell-Mann's statement (Ref.
9) that the strangeness-changing part of this nonleptonic inter-
action is the sixth component of a unitary octet plus 27-piet."The present lmowledge of time reversal in nuclear interactions
is discussed by K. M. Henley and S.A. Jacobsohn, Phys. Rev. 113,
225 (1959).

decays are concerned, they are not forbidden by unitary
symmetry alone, so that the existence of these modes
does not give information on the possible violations of
unitary symmetry.

We now examine the decay modes E&'~3m' and
E~' ~ 3w' in a similar manner within the framework of
the boson pole model in which the structure of the
diagrams consists of a weak vertex (PIP), a boson
propagator D, and the amplitude of strong interaction

(PI PPP) or (PPI PP), where P represents the pseudo-
scalar mesons. The weak vertex is assumed to transform
like (K'+K') and is CP-invariant, i.e., (K'I x )
= (E'I x'). It was shown that, if the strong interaction
is SU3-invariant (and also CP-invariant) the K +3s. —
decays are forbidden. "

When the weak vertex is not CP-invariant, one has
from Eq. (2)

(KOI xa) ~(KO
I ~)

It is assumed that the weak vertex is independent of
momentum. From Kq. (1) decays KP ~ 3m and
E&' —+ 3m' are then expressible as

X(K'I s') (1asr) I
—(s'm'I vr's')+ (K'x'I K'x')

+ (K'1r'
I
1r'K')+ (K'K'

I
1r'%')jD=0

because the sum of the amplitudes in the square bracket
vanishes. " In a similar way, the modes E&' —+ m+m

—&'

and. E~' —+~+m—~' also vanish. In other words, SUB
invariance alone forbids these decays even if CP in-
variance is violated. Moreover, the mode Ej' —+ 3m' is
forbidden while the mode E'P —+ 3x is allowed by CP
invariance. However, if CP invariance is violated in
nonleptonic decays, E~ —+ 3m shouM not be suppressed
compared to the mode E~' —+ 3x'. The mode E~' —+ 3m'

gives information on the extent of SU3 violation in the
framework of the boson pole model.

The branching ratios of the nonleptonic decay of
hyperons are given by relations similar to those of Ej'
in Eq. (7) and thus are uneffected by maximal violation
of CP invariance.
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