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In this preliminary survey of higher order corrections,
particular attention has been paid to virtual E2 excita-
tion, since the low-energy transitions in even-even nuclei
undergoing collective excitations are known to be pre-
dominantly of the electric quadrupole type. ' However,
the possibility of virtual transitions of different multi-
polarity is not ruled out. Estimates" of a second 3fj
or E4 t,ransition in the sequences 0+(E2)2+(F1)2+
and 0+(E4)4+(E2)2+ indicate that such effects are not
expected to be serious in comparison to the E2 eQ'ects,

at least in studies of the reorientation eGect in even-
even nuclei under conditions of low-energy heavy-ion
bombardment. The possibility of second-order E1
transitions via the giant dipole resonance has been

pointed out by Eichler'~ in connection with the re-
orientation eGect in Cd". Recent estimates by Mac-
Donald" indicate, however, that such eQects may not
be serious.
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The quadrupole deformation of Li~ is calculated by generating many-particle wave functions from de-
formed single-particle orbitals. In order to account for the E2 properties of Li and retain the dominance of
the basic shell-model configuration, excitation of the (1s) core must be included. The admixtures of higher
conlgurations are appreciable.

I. INTRODUCTION

ECENT detailed calculations" of the electric-
6eld gradients in LiH have led to an accurate

value for the quadrupole moment of Li~, namely

Q(Lir) =—0.043 b. van der Merwe showed' that this is
much greater than one obtains with the usual (1s)'(1p)'
configuration. He showed that an effective charge of —,'
was needed to get the experimental result and also

produce agreement with the measured B(E2) strength4

between the ground state and the erst excited state.
Recently, Present' reproduced the experimental value
for Q(Lir) by mixing sI' states from (1P)', (1P)'(2P),
and (1p)'(1f)—leaving the (1s)4 core intact. The inten-

sity found for the (1p)' component was only 35%.
The method of generator coordinates offers a direct

procedure' for calculation of such con6guration mix-

tures, starting from single-particle orbitals in a Geld of
quadrupole deformation. It is also simple to include
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Energy Commission.
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deformation of the (1s)' core with this method. Such
an effect should certainly be included since the experi-
mental value for Q(Li') is about 1.8 times the value
computed for Q(Lir) with the (1s)4(1p)' configuration.
Ps is seen from Present's results, such a large effect is
difficult to obtain by deforming only the 1p orbitals.
The objective of the calculation is to see whether one can
account for the large quadrupole effects while keeping
the (1s)'(1p)' configuration dominant in Li'.

II. PROCEDURE

The application of the generating procedure to Li~ is
considerably simpli6ed by the fact that the energy spec-
trum and magnetic-dipole properties are well described
by a model with negligible spin-orbit coupling. It has
been shown' that for Li~ the inclusion of spin-orbit
coupling within the 1p shell increases the quadrupole
moment not more than 10% above its value at the
signer supermultiplet limit

Q(Li', sEL4+3$) = —(6/25)e(r')r„, ,„. (1)

Here (r')r~, r„, the expectation value of r' evaluated with
1p radial functions, has a magnitude (r')r„,„=10—»
cm'. Therefore the desired enhancement must come
from outside the 1s and 1p shells, and thus is most
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40'=40"+euro' )

4 o =4 0"+-02„lto'"+el)4 0'f.
(2)

In Eq. (2) the single-particle functions are expanded in
terms of spherical harmonic-oscillator functions lt "'. As
described in Ref. 6 (hereafter called I) these functions
contain contributions from shells having principal
oscillator quantum numbers two units higher than those
of the lowest order contribution. The admixture coeK-
cients e; should be small and are given in erst-order
perturbation theory by

simply computed in the limit in which spin-orbit
coupling becomes negligible.

The starting point is the Nilsson diagram~ in the
asymptotic limit of large prolate deformation. The Li~
generator is formed by putting two neutrons and two
protons in the lowest level (A=0+) and two neutrons
and one proton in the next level (A. =O ). The quantity
A is the projection of orbital angular momentum
(parity &) on the nuclear symmetry axis. The spatial
wave function then has symmetry S[4+3$ as is clear
in Eq. (4). The spin-isobaric-spin function with S=2,
T=-,' is just the function of complementary symmetry
needed to give over-all antisymmetry when multiplied
by the spatial function.

Therefore we can concentrate on the spatial function
which is made from the single-particle spatial functions

the spatial generator of Eq. (6) contains only odd l., the
L= 1 component is the only one that can combine with
the S=-,' spin function to give a resultant J=-,' or —,'.
The terms of Eq. (6) can readily be expanded in eigen-
functions of L by use of the raising and lowering opera-
tors L+ and L . For-example, if the (Is)4 core is sup-
pressed the term with coeKcient t.~~ can be written

$y 12))I 12)y 2))) (2)ll2C) PC(1p)22pj

+(l)"'~"C(1p)'2K, (6')
where

(&15)c)0 =3[q4' "$0 ")t)0 Pj ")/25/0'"g 2'2'4l "3-
1 2'Q—1 2)$0'2)j—~2[)II 2)y 2))3I) '"j (7)

Each term on the right of Eq. (7) is a symmetric three-
particle function indicated by the square bracket.

The complete wave function of the component of Xp

which has L= 1, normalized to unity is

c =Ã(c "C(is)'(1P)2$+%302pc"[(Is)'(1P)22P)
+ (6/7)'~20lfc P[(ls) '(1p) '1fj

+ (16/7)'~'elgC C(ls) 21d(IP) 2)}, (8)

where Ã is just the normalization coefficient. The com-
plete wave functions for the ground state and first
excited state of Li~ are obtained by vector coupling of
C~ with the S=—,

' spin function to obtain a resultant of
either J=~3 or J=~.

—0,= (H 0)0;/2i20) . (3) III. EVALUATION

Ry =2"y='. (5)

Applying R to both sides of Eq. (4) using Eq. (2) shows
that only odd L occurs in the summation.

Following the procedure in I, the generator Xp is
expanded to terms linear in the 0; by use of Eq. (2). The
result is

xo= [(~")'3C(~'")'j+2 l.[(~")'~'"j[(~'")'3
+~3",C(&")'j[(&'")'&"j

+~3 ~C(e")'j[(e'")'~"3 (6)

The magnetic quantum numbers have been suppressed
in Eq. (6) because they are all zero. The wave functions
are all normalized and have symmetry S[4+3] as
indicated by the square brackets. The states of interest
in Li' have total angular momentum J=-,' and —,'. Since

7 S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 29, No. 16 (1955),

The numerator is the matrix element of the quadrupole-
deformation term in the Nilsson Hamiltonian. The
spatial generating function, expanded in eigenfunctions
of the total orbital angular momentum L, is

xo C'lt)0 4'0 40 40 354'0 )t)0 40 j ZL CLC'0 ~ (4)

If R is defined as the rotation that reverses the y and 2,

axes, the application of R to an eigenfunction p
)' of

angular momentum j and projection m produces the
result

From Eq. (3) one can show that the 0, are proportional
to matrix elements of the quadrupole operator r'I"p'
evaluated between a lowest order single-particle wave
function and a function from an oscillator shell with
principal quantum number two units larger. Evaluation
of (r2)„l,„2 with harmonic-oscillator functions leads to
the proportionality

02 ielf2).
'
old . .1:(27/8)'I' (15/8)'I' (9)

The value of the quadrupole moment for Li', calculated
with the wave function of Eq. (8), can be expressed in
terms of e—=e2„ through the relation

e(L') =-(6/25)e(") . .
1+2(/10)e+ (90/7) 0'

X 10)
1+(285/28) 02

The bracket on the right of Eq. (10) is the enhancement
factor E, since the quantity multiplying it is the value
for the pure 1p-shell configuration given in Eq. (1).The
expression for E is good only to terms quadratic in &

since higher order terms have been omitted. Values for
the enhancement factor are listed in Table I, together
with the amplitudes of the components in the wave
function. There is a maximum value for E which one
can obtain from the expression in Eq. (10); this value is
listed in the last row of Table I. For smaller values of B
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TABLE I. Results of the calculation vrhen the enhancement
factor E has the values in column 1. The admixture coeKcients
e; of Eq. (2) are listed in columns 2—4. The amplitudes of the
components of the ground-state wave function of Eq. (8) are listed
in columns 5—8.

6=C2y tlf
1.50 0.082 0.150 0.112
1.79 0.142 0.261 0.194
2.00 0.211 0.387 0.289
2.13 (max) 0.358 0.657 0.490

AQ A2y Al f Alp

0.968 0.136 0.135 0.164
0.910 0.224 0.220 0.268
0.830 0.303 0.298 0.362
0.659 0.408 0.401 0.488

there are always two solutions for e but only the smaller
value is consistent with the assumption of small c used
in deriving Eq. (10).

If the value computed for the quadrupole moment
at the signer supermultiplet limit is taken to be
—0.024 b, the observed value of —0.043 b is obtained
with an enhancement factor of E=1.7'9. For such a
value one sees from Table I that the (1s)'(1p)' configu-
ration is still dominant in the wave function. However,
the admixtures required to obtain this E are appreciable.

Table II contains the matrix of the electric quad-
rupole moment in the space of the wave functions that

TABLE II. Matrix of the electric quadrupole moment of Li' in
the space of the component wave functions that make up Eq. (8).
All are Ps/2L4+3j states, and the matrix is given in units of
(1/25) e(r') g„, &„.

cQ

C IJf

CQ

—6
—(5) (30)'"
—(5) (7o)'"
—(21)&/&

C 227

—(5)(3o)'"
—(38/5)
—(8/15) (21)'/'

0

CIy

—(s)(70)'"
—(8/15) (21)"'
—(46/15)

0

(2l ) 1/s

0
0

—(29/4)

make up Eq. (8). The wave function in the last row of
Table I is very nearly that corresponding to the largest
negative eigenvalue of the matrix in Table II. However,
it is also clear from Table I that near this extreme value
there are wave functions that have appreciably different
composition but give nearly as large a magnitude for
the quadrupole moment. Such great sensitivity makes it
dBBcult to deduce the composition of the wave function
just from the observed quadrupole moment.

If one does not include deformation of the (1s)4 core,
the enhancement factor becomes

1+(~10)e+ (215/28)e'

1+(165//28) e'

This expression attains a maximum value of E'=1.82
for &=0.52. Since the experimental quadrupole moment
indicates 8=1.8, a model with no (1s)4 deformation is
being pushed to its limit to fit experiment. This result is
very close to that of Present' who obtained an enhance-
ment E'=1.86 by diagonalizing the matrix of the
quadrupole operator in a representation of 'EL4+3j
functions allowing no excitation of the (1s,)4 core. The
resultant wave function for the ground state of Li~ is
also similar to that of Present since for E'=1.82 the
intensity of the (1p)' configuration is only 38%. How-
ever, very large values for e» and e&~ are required to fit
the experimental result if one does not deform the (1s)4
core. This would imply that configurations with two
nucleons excited into the (2p, 1f) levels are also impor-
tant and would destroy the validity of the shell model
for nuclei in this region.

IV. CONCLUSIONS

The main conclusion of this calculation is that the
generating procedure permits one to construct a shell-
model picture which accounts for the observed quad-
rupole moment of Li' while still retaining the (1s)'(1p)'
configuration as the dominant one. Such a procedure
requires including excitations from the (1s)' core in
order that the out-of-shell admixtures are not un-
reasonable. Consistency between the quadrupole mo-
ment and the B(E2) strength between the first two
states of Li~ is automatically ensured in this model since,
as shown by Elliott' the relationship between these two
quantities is the same as in the usual collective model.

The effect of going awa, y from the limit of negligible
spin-orbit coupling will give a slightly larger quadrupole
moment. This effect can compensate to some extent for
the neglect of the center-of-mass contribution in this
calculation.

The results in Table I indicate that appreciable
admixture coefficients are required to reproduce the
experimental E2 properties of Li'. The magnitude of
these admixtures is notable especially since the method
of obtaining them is designed to produce large E2 effects
with a minimum of admixture. The amplitude of about
0.9 for the basic configuration is large enough to ensure
that properties such as energies and M1 strengths are
determined by the basic configuration. However, the
several other components, each with 5—10% intensity
are quite important, and should acct other properties
such as form factors in electron scattering.

s J. P. Elliott, Proc. Roy. Soc. (London) A245, 128 (1958).


