
P H YS ICAL REVI EW VOLUME 140, NUMBER 5 B 6 DECEMBER 1965

Influence of Multiple Virtual Transitions on the Reorientation
Effect in Coulomb Excitation*
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Calculations of the reorientation effect in Coulomb excitation of the erst 2+ state of even-even nuclei are
extended by employing the semiclassical approximation to take into account second- and third-order virtual
E2 transitions to higher excited states. Deviations from first-order perturbation theory in the excitation
probability are investigated numerically as a function of the bombarding energy and the scattering angle
for heavy-ion projectiles. Results are presented for rotational and vibrational nuclei as a guide in the se-
lection of conditions suitable for the determination of the static quadrupole moment of the lowest 2+ state,
Conditions for the practical convergence of the perturbation expansion are discussed.

I. INTRODUCTION

'I NDER conditions of heavy-ion bombardment
higher order effects in Coulomb excitation can be

appreciable and the necessity for taking such effects
into account was fi.rst pointed out by Breit and Lazarus'
in connection with gamma-ray angular-distribution
measurements and inelastic-scattering studies. These
authors considered the second-order reorientation effect,
which can be described as a change in direction of the
nuclear spin axis during the excitation process. After
the nucleus has first been excited from the ground state
to one of the magnetic sublevels of the Anal state, a
second transition to another magnetic sublevel of that
state can take place on account of the interaction of
the projectile with the static moment of the final state.
Breit, Gluckstern, and RusselP studied effects which
arise in the case of E2(0 ~ 2) excitation from the cross
product between the first- and second-order excitation
amplitudes. Particular attention was paid to this term
because it is linear in Q», the static quadrupole moment
of the 2+ state, and therefore offers the possibility for a
determination of the sign as well as the absolute value
of the static moment. The modification of the inelastic
scattering and the angular distribution of the de-excita-
tion gamma rays, as well as the effects in certain co-
incidence experiments involving the observation of
inelastically scattered projectiles and of the de-excita-
tion gamma rays, were worked out by them in the semi-
classical (SC) approximation. ' Numerical results indi-
cated that measurable deviations from first-order theory
were to be expected.

The possibility of multiple excitations to higher

states in heavy-ion bombardment indicates that such
transitions, which can affect a measurement of the
reorientation effect in the first excited state, must also
be taken into account. Second- and third-order virtual
E2 transitions to intermediate states of spin 0, 2, and
4 were investigated in the work reported below with
reference to selected even-even nuclei. The deviations
expected from first-order theory are analyzed into
second- and third-order components and studied as a
function of the bombarding energy and the scattering
angle. Studies of the inelastic scattering were treated
first, since the interpretation of these measurements is
not affected by complications which may affect the de-
excitation gamma rays. ' 4

The higher order SC probability amplitudes are
introduced in Sec. II as a product of a nuclear-structure
factor and an orbital integral. The contributions to the
excitation probability are classified according to the
order of the interaction energy. Some general features
of the reorientation effect in the erst 2+ state of even-
even nuclei are discussed briefly in Sec. III. Corrections
due to virtual E2 transitions to higher excited states
are considered for rotational nuclei in Sec. IV and
vibrational nuclei in Sec. V.

II. OUTLINE OF THE SEMICLASSICAL THEORY
OF HIGHER ORDER EFFECTS

Application of standard time-dependent perturbation
theory yields the higher order SC probability ampli-
tudes' ' for an electric transition from an initial state
i with spin I; and projection quantum number M; to a
final state f with spin I and projection M,

(1a)arsr"' = i P t(E—X; i&f)E"'(I,M, (X)I3f) )
X=1

+ Work supported by the U. S. Atomic Energy Commission, the
U. S. Air Force Ofhce of Scienti6c Research, and the U. S. Army
Research Office, Durham.

f Based on a thesis presented in partial fulfillment of the re-
quirements for the degree of Doctor of Philosophy at Yale
University.

)present address: State University of New York, Buffalo,
N' ew York.

r G. Breit and J. P. Lazarus, Phys. Rev. 100, 942 (1955).
2 G. Breit, R. L. Gluckstern, and J. E. Russell, Phys. Rev. 103,

727 (1956).
3 G. Breit and R. L. Gluckstern, in Hundbuch der P/&ysik,

edited by S. Fliigge (Springer-Verlag, Berlin, 1959), Vol. XLI/1,
p. 496.

8

arri"' ——(—i)'P P P t(E);i,s)t(EX'; s,f)
8 )l,=l ) '=1

&(R"'(I,M, (X)I,(X')IM), (1b)

4 (a) G. Breit, R. L. Gluckstern, and J. E. Russell, Phys. Rev.
105, 1121 (1957); (b) G. Breit, in Proceedings of the Third Con-
erence on Reactions Between Complex Nuclei, edited by A.
Ghiorso, R. M. Diamond, and H. E. Conzett (University of
California Press, Berkeley, 1963},pp. 273, 277.
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r~"'= (—i)' 2 2 2 2 t (E); i,r)
w, s X=1 X'=1K"=1

A (I'Xl; M'tiM) =4)r (2)&+1)I'i„(v./2, 0)C(I')&I; M'pM),
Xt(EV; r, s)t(E)&"; s,f) where the standard spherical harmonics Fq„and vector
Xg(s)(I.M.(y)I ()«)I () ~~)IM) (1c) addition coeKcients C(jijijs, mimsms) have been used.

The orbital integrals are defined as
The summations over the intermediate states r and s
include both the initial state i and the final state f;
These equations contain a dimensionless factor, which
measures the strength of the coupling between the
states r a.nd s due to the electric interaction, and is
defined as

(i) (p
~ g) =

I~, i ")(g'P'g)=

E),„(w)dw,

dw Ei~&~(w ) dwE), „(w), (6)

t(E)&; r,s) = (2I„+1) '~'LZie'/()iva'")$T„, &")*, (2)

where T„,&") is the reduced nuclear matrix element' of
the electric multipole operator between the states r and
s. Here a' is half the classical dista. nce of closest approach
in a head-on collision; Z~e and Z2e are the charges of
the projectile and target, respectively; and v is the
asymptotic value of the relative velocity of the two
particles. The reduced radiative transition probability'
is related to the quantity t(E)&; r,s) by

~
t(EX; r, s) ~'= PZie/(hvu'") O'B(E), r ~ s) . (3)

The quantity 3&'.&") in Eq. (1) is also dimensionless.
It is simply a linear combination of orbital integrals,
which a,re functions of the scattering angle in the
center-of-mass system 0 and the set of adiabaticity
parameters f„ass i ated with the nuclear states r and
s involved in the excitation process. The adiabaticity
parameter is defined as usual by

where
)),=ZiZs/e'(hv, ),

and v, is the velocity of relative motion at infinite
separation, when the target nucleus is in state s. Work-
ing in the focal coordinate system' of the hyperbolic
orbit, the explicit formulas for R&") are

8&'& (I;M;(X)It3IIt)
=Q A (ItÃI, ; M»M~)I„„&')($f;, g), (Sa)

8&'& (I;M, ()&)I,(9)ItMt)
=Q Q Q A (Ith'I„Mtp, 'M.)

p, t&t 3fg

XA(I.)I;;M.I 3I,)Ii „i„&')(gt„p„;g), (5b)

E&»(I;M, ()&)I,(Z')I, ()&")I,M,)
=P P Q P g A (I,~"I.; M»"M, )

XA (I,)i'I„;M„tj,'M„)A (I„II;;M„pM,)

XI "„",„,„&')(pf„$„,p„;g), (5c)

' K. Alder, A. Bohr, T. Buss, B. Mottelson, and A. anther,
Rev. Mod. Phys. 28, 432 (1956).

y„&s) ($" $' $; g)

dw Eire ir (w ) dw'Ei „(w') dwE), „(w),

where the abbreviations

Ei„(w)= exp (io)t+it& y) (e coshw+1)-",

o)t= ](e sinhw+w),
—(e' —1)'"sinhw

q =tan '
coshw+ e

e= 1/sin(ig),

where the superscripts indicate the order of the ampli-
tudes that are involved. The individual terms for elec-
tric excitation of the final state f are

P&i, i& —P Lt(E), i f))sF&i,i& (9a)

P&'»=gP P t(EX;i,f)t(E)', i,s)
e X V,V'

Xt(EV'; s,f)F "" (9b)

P(")=g g ([t(El&; i,s)t(EX; s,f)yF, &")
s X],)2

+Q' Q' t(El&i, i,s)t(EXs, s,f)t(E)&i',. i,s')
gr gyl gnr

Xt(Elis') s',f)F &' ')) (9c)

P &' ') =P P P P P t (E);,f)t(E)„,)
rs X Pg Xg X3

Xt(EXs, r, )st(E )&,ss,f)F„,&' '&. (9d)

The prime on the summation sign in Eq. (9c) indicates
a restriction to those terms in which at least one index
is different in the two sets of indices (s,h, i,)&s) and
(s', )&i',)&s'). Since the summations over magnetic quan-

have been employed.
The excitation probability for the final state f may

be expanded as

p —p(1,1)+p(1,2)+p(2,2)+p(1,$)+. . .
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turn numbers have been performed, the indices s, s',
and r refer here only to a summation over different
energy levels.

The functions E introduced in Eq. (9) are defined as

Fo "=(2I;+1) ' Q LRo&(I;M;(71)ItMt))2, (10a)
Ms, My

P o '& = (2I~+1) ' P 2R&'&(I;M;(7)ItMt)
Ms, Mf

III. REORIENTATION EFFECT

In order to avoid confusion with other processes the
words "reorientation eAect" will refer here exclusively
to higher order virtual transitions between the magnetic
sublevels of the final state. Preliminary results of a
calculation of the third-order reorientation effect for
E2(0~ 2) excitation have been reported by Lin and
Masso. ' In this case, when all other higher order effects
are neglected, the probability ratios take the form

XImRt'&(I;M;(71')I, (71")IfMf), (10b)

P (2,2& —(2I .+1)—1

x p IRt'&(IuM', (it&)I, (712)IfMf) I', (10c)
Ms, Mf

P, (2,2& = (2I~+ I)—1

X p 2 Rel R1'&*(IJE;(&1)I,(X2)ItMt)
Ms, MJ'

where

EQ$ —XD2] p

832= P D32,

f'35~»2 P o 2&

D21(t; ff) =I —
I

&22rl Fo '&

P (1,2)

(35)1/2 LP (2,2&+P (1,3)g
D (~;f)=l —

I

&2~i

(15)

(16)

(17)

(18)

XR"'(I;M;(Xr')Ie (712')ItMt) y (10d)

P ""=—(»,+1)-' P 2R ' (I M (~)I,M )
Ms, Mf

XReR ' (I;M;(711)I,(its)I, (712)ItMt) . (10e)

where

plpf"&= I+R21+R»+"
= I+R21(I+Res+ ),

R21=P&' 2&/Po '&

I
po. s&+.p(2, 2& j/p(1, 1&

LP (1,3&+P (2,2&7/P (1,2&

(11a)

(11b)

(12)

(13)

(14)

The third-order effect P&"& is included with the term
P(2 2) that arises from a product of second-order arnpli-
tudes, since both contributions are of fourth order in
the interaction energy and, in typical cases, were found
to be of the same order of magnitude. The probability
ratios introduced above are investigated numerically as
a function of t7 and t.

The quantities F are real functions of 0, the multipole
order of the transitions, the spins of the intermediate
states, and the adiabaticity parameters coupling these
states. The phases of the nuclear wave functions have
been chosen so that the reduced matrix elements are
real. For a particular nucleus, once the energy levels
and spins have been measured for the states which are
involved in the Coulomb excitation process, the func-
tions P can be computed numerically as a function of
fl and the set of $'s. All other nuclear structure informa-
tion is contained in the t factors.

In searching for practical convergence conditions for
the perturbation series, it is convenient to introduce the
ratios of successive terms of different order

and & without any subscripts refers to the 0-+ 2 transi-
tion, i.e., )=$22. The energy separation between the
magnetic sublevels of the 2+ state has been neglected.
The negative of the function D2~ is plotted in Ref. 7,
where it is denoted by L, (e,)). The reorientation effect
for this special case is characterized by a dimensionless
parameter, '

(19)

which enters into a calculation of successive orders of
the reorientation effect. The term Po 3), which arises
from the cross product between the first- and third-
order amplitudes, and P(2'~, the direct second-order
reorientation contribution, are both of order )' and
were found numerically to have opposite signs for
)&1.5; since these two terms are of the same order of
magnitude for (&0.8, a strong cancellation occurs for
this range of $. This circumstance reduces the over-all
contribution of order X' to the excitation probability.

Numerical calculations were carried out for 0.05($
&3 and 10 &0&180' employing an IBM 7094 com-
puter for the projectiles He', C" N" 0",S" Ne" and
A '

bombarding Fe", Se~', Cd", Sm'" Er'", and Pt'"
in order to survey a variety of conditions. The ratio
kD» of the second-order reorientation probability P2(' ')
to the first-order probability P(") is a monotonically
increasing function of the scattering angle in the
center-of-mass system. The angular variation of XD»

2 D. L. Lin and J. F. Masso, in Proceedings of the Third Con
ference on Reactions Between Cont ply Nuclei, edited by A. Ghiorso,
R. M. Diamond, and H. E. Conzett (University of California
Press, Berkeley, 1963), p. 267.

7A. C. Douglas, W. Bygrave, D. Eccleshall, and M. J. L.
Vates, in Proceedings of the Third Conference on Reactions Between
Complex Nuclei, edited by A. Ghiorso, R. M. Diamond, and H. K.
Conzett (University of California Press, Berkeley, 1963), p. 274.
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mation may not be accurate. Secondly, the bombarding
energy should be sufFiciently below the Coulomb
barrier so that nuclear reactions other than electric
excitation are negligible. This requires that there be a
large geometric separation or gap between the nuclear
surfaces of the projectile and target. '

IV. CORRECTIONS DUE TO VIRTUAL E2
TRANSITIONS IN ROTATIONAL NUCLEI

Besides the reorientation effect other virtual transi-
tions to higher excited states during the collision can
populate the final state. In studying the reorientation
effect in the first 2+ level of even-even nuclei displaying
a rotational energy spectra with the spin sequence 0+,
2+, 4+, ~ ~ ~ virtual third-order E2 transitions to the
ground state and to the 4+ state will introduce correc-
tions to the term I'" ",

P (1,3) P (1,3)+P (1,3)+P (1,3) (20)

TABLE I.Estimates for rotational nuclei at g =0.4 and g= 180'.
The static moment Q22 was taken as —1.69b for Sm'" and —2.14b
for Er163.

Nucleus

Sm'"

Projec-
tile

C12
O16
Ne20
S32
A4'

Lt,
'

(MeV)

10.4
14.1
17.9
29.9
35.9

—0.037—0.049—0.060—0.089—0.11

R32

—0.093—0.12—0.14—0.21—0.26

mately 0.4 for 0&60', the ratio E» increases quite
sharply in absolute value, becoming much greater than
unity, indicating that to this order the perturbation
expansion cannot be expected to be accurate for this
range. Small values of $ correspond to high bombarding
energies, since $ depends on 1/Ests. When )=0.4 the
incident laboratory energy for a S"projectile on Sm' '
is about 30 MeV and on Er'" about 24 MeV. Some
estimates are presented in Table I. For low energies

where the subscripts indicate the intermediate states in
the third-order excitation. The individual terms are

p33t' 33 = (T/e)4B (E2, 0 ~ 2)B(E21 2 —& 2)F33" "'1, (21a)

p o 3&= (T/e)4LB(E2 0 —+ 2))'F 3" @/+5 (21b)

Er168 C12
016
Ne20
S32

A4'

8.3
11.3
14.3
23.8
28.4

—0.029—0.037—0.046—0.069—0.080

—0.066—0,086—0.11—0.16—0.19

p34t' 31 = (0.6+5) (T/e)4B (E2, 4 —+ 2)

&(B(E2, 0 -+ 2)F,41' 31 (21c)
where

T=Ztes/(l'tt a") . (22)

Virtual excitation to states beyond the 4+ level is
neglected. Measured B(E2) values, which were taken
from Ref. 8 for Er'" and from. Refs. 9 and 10 for Srn'",
were used in the calculation. To obtain an estimate of
the higher order corrections, the static moment is
approximated by the value from the rotational model'

eQ33 ———(2/7) I (163r/5)B(E2, 0 —+ 2)]'t3, (23)

which gives Q33= —2.14 b for Er"" and Q33 ———1.69 b
for Sm'"

The ratio

R —LP (2,3}+P (1,3&+P33o,33+P34it»1$/Po»1 (24)

is illustrated as a function of $ for S"bombarding Er'"
in Fig. 5, where curves for several scattering angles are
included to show how the lower limit for $ must be
raised, if measurements are made at smaller angles. The
rather strong $ dependence of R33, especially at the
lowest $, is in contrast to the slow variation of R31

with $ for all energies. The value of $ at which the curve

for E» increases rapidly is observed to become larger
as 0 is reduced from 180' to 60'. For $ below approxi-

8 A. C. Li and A. Schwarzschild, Phys. Rev. 129, 2664 (1963).
9 R. Graetzer and E.M. Bernstein, Phys. Rev. 129, 1772 (1963).
'0 G. Goldring, J. de Boer, and H. %inkier, in Proceedings of

the Third Conference on Reactions Bettoeen Complex Nttclet, edited
by A. Ghiorso, R. M. Diamond, and H. E. Conzett (University
of California Press, Berkeley, 1963), p. 278.

when $&0.4 and Z1& 16, the results for Er'" show that
IR31I &0.07 and IR31I &0.01, if Q33 ———2.14b. Since
the ratio R33 is less than 16'po in absolute value, meas-
urement of the second-order reorientation effect may
not be seriously complicated by these third-order cor-
rections. In the case of Sm'", the limits on the ratios
are IR31I&009, IR31I&0.02, and IR33I«» «»11
angles, when $ &0.4 and Z1&16, if Q33

———1.69 b.

V. CORRECTIONS DUE TO VIRTUAL E2
TRANSITIONS IN VIBRATIONAL NUCLEI

Kxcitations of higher excited states of spin 2 have
been measured in many cases of even-even medium
weight" and heavy" nuclei. Second-order excitation of
the lowest 2+ state via the second and third spin-2
states contributes to the term

P (1 3) —P (1,3) +P, (1,2)+P O, 21 (25)

jp(1,2) p (j '2iC2 (26)

where C2 represents the correction factor to E(' '~ due

P. H. Stelson and F. K. McGowan, Phys. Rev. 121, 209
(1961);F. K. McGowan, R. L. Robinson, P. H. Stelson, J. L. C.
Ford, and W. T. Milner, Bull. Am. Phys. Soc. 9, 107 (1964);
F. K. McGowan, R. L. Robinson, P. H. Stelson, and J. L. C.
Ford, Jr., Nucl. Phys. 66, 97 (1965).

'2F. K. McGowan and P. H. Stelson, Phys. Rev. 122, 1274
(1961).

where the subscript indicates the intermediate state in
the second-order excitation; here 2' and 2" designate
the second and third 2+ states, respectively. This term
may be represented as
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FIG. S. The ratio R» ——LE&& 8&+8&"&g/P&'3& plotted as a func-
tion of g for S" bombarding Er"' at several scattering angles in
the center-of-mass system with Q» ———2.14 b.

where

5'= ~LB(E2, 2' —+ 0)B(E2, 2' ~ 2)/
B(P2 2 ~ 0)e2j&12

5"=~LB(P2, 2"~ 0)B(E2, 2"~ 2)/
B(g2 2 ~ 0)e2$1/2

and T is defined in Eq. (22). The factors S' and 5"
depend on the relative signs of the combination of re-

duced nuclear matrix elements contained in the above
brackets. Contributions due to excitation of higher
spin-2 states have been neglected, since the corre-
sponding matrix elements may be expected to be small

relative to the matrix elements for the states which are
included. The quantities F are positive for 0.2(/&2,
so that the correction contained in C2 is quite sensitive
to the signs of the matrix elements involved, which are
generally unknown. For larger values of $, E» becomes
less dependent on these signs, because the correction
due to virtual excitation of higher spin-2 states de-

to the addition of the last two terms in Eq. (25). The
ratio of Eo '~ to the first-order probability P&"& may be
expressed as

821——T{(35/32&r)')'Q22F2(' "+5'F2 &"'

+5»P „&1,2))/Po 1) (27)

creases relative to the reorientation effect P2&' '&/P&' '),
which is approximately independent of E. The factor
C2 is approximately independent of the scattering angle;
it changes by only a few percent as 0 is varied. When
both S' and S"have the same sign, the correction due
to virtual excitation of higher spin-2 states is largest,
amounting to 12'Po of the second-order reorientation
effect in the lowest 2+ state of Cd"4, if Q22

———0.6 b and
/=0. 6. This correction decreases, when $ is increased,
as illustrated in Fig. 2 for O" bombarding Cd"4

Virtual third-order E2 excitation of intermediate
states of spin 0, 2, and 4 introduces the correction

P(1,8) P (1,8)+P (1,3)+P (1,3)+P, (1,3)+P, (1,8)

+P, (1,8)+P, (1,3)+P, , (1,8)+P „(1,3)

+P „(1,8)+P, (1,8)+P „(1,3)+P „,(1,8)

+P2-2"""+P23 ""+ . (28)

where the subscripts indicate the sequence of inter-
mediate sta, tes in the third-order transition. The excited
states of spin 0 a,nd 4 are designated by 0' and 4, re-
spectively. In order to study contributions to the
excitation probability of fourth order in the interaction
energy, one must add to E' i") the term

P(2,2) P (2,2)+P, (2,2)+P „(2,2)+P, &2,2)

+P22"""+P22, "" (2~)

where the last three terms arise from cross products
between second-order transition amplitudes involving
different intermediate states.

Numerical results will be discussed for the reorienta-
tion of the 558-keV 2+ level in Cd"4; the excitation
energies of the 0'+, 2'+, 4'+, and 2"+ levels are 1133,
1208, 1282, and 1363 keV, respectively. Second- and
third-order transitions involving six intermediate states
are computed. The last five terms in Eq. (28) are
neglected along with terms referring to transitions in-

volving a second excited spin-0 state, since these con-
tributions are expected to be small relative to the prin-
cipal terms represented by P&4(") F20&' ') P» (' ')

P22 ("), E'» &' ". All nucle a r matrix elements are ob-
tained from measured B(E2) values, " with the excep-
tion of Q22, which was assigned different values in the
calculation. The unknown signs of the matrix elements
are not important in the third-order correction, because

they enter only the terms in E(") and E&2' 2) which are
relatively small.

The ratio of P&"&+P&"& to P&"& can be written as

881——T'( (35/32~)Q22'LF2 &"&+F2&")]+5"F2.&"&+5'"F2"""
+(0.6+5)B(E2, 4 —+ 2)e 'F &")+(+5)B(E2, 2 ~ 0)e 'F28(")+B(E2, 2' ~ 2)e—'F22 &'»

+0.2(+5)B(E2, 0' —+ 2)e 'F23. &' 3)+ (+5)B(E2, 2' —+ 0)e 2F2.8&")+(35/32&r)&12Q22$5'(F22 &")

+P, ( )+Q, ,Q
—P. . . ))+5"(P „,)+P „& . ))$+5'5' P, „(,) jLP1(1, )j— (30)



J. MA[SSO AND D. LIN

This form of expression erophasizes that E3~ can be
regarded simply as a product of Ts and the quantity
contained in curly braces, which is an explicit function
only of $, 8, and the nuclear matrix elements, but not
of the projectile. On the other hand, the parameter T
de6ned in Eq. (22) does depend on the charge, mass,
and incident energy of the projectile. The ratio R» has
been represented in Eq. (27) as a similar product of T
and another quantity, which is an explicit function of

$, 8, and the target nucleus. It is possible to distinguish
at least partly between second- and third-order sects
by investigating the variation of the excitation proba-
bility with $, 8, Z&, At, and Z."For example, ~™ybe
possible to separate out the quantities discussed above
by keeping $ and 8 6xed in measurements employing
different projectiles.

-Qel0—

-0.08—

~ -Qe06-
O

A

.~ -0.04—
D
EO

K

-Oe02—

IS II4
0 on Cd

Q22 = -0.51

05—
16 1140 on Cd 0—

0.5
I

l.0 l.5 2.0

F&o 7. The quantities XD»=Ps&"&/P&"& R»=P&'»/P&'»
and (Ra+Re) =PP&'»+P&"&+P&'»$/P&"& plotted as a func-
tion of g for O«on Cd»'at 8=180'with Q» ———0.$ h.

-05-

-lo—

I

0.5
I

l.5

a wide range of $ in the case of A~ bombarding Cd"4, if
~ Q» ~

&0.6 b. These results imply that the perturbation
approximation is less useful the heavier the projectile.

The quantity Rst+Rst, which represents the sum of
second- and third-order eGects relative to the Grst-
order excitation probability, is illustrated in Figs. 7 and
8 as a function of $ for 0' on Cd" at e=180'. Devia-
tions from first-order theory are indicated even at large
$. Generally, when $&0.6 and Qss is negative, the ratio

Fro 6 The ratio R3s $P&&»+P&s'&g/P&''& plotted as a func-
tion of g for 0'6 bombarding Cd"4 at 0=180' for several values
of Q22. Curves a, b, and c correspond to the assigned values for
Q~2 of —1.0, —0.6, and —0.4 b, respectively.

-O. I0-

The ratio Rss= [P&'s&+P&"&)/E&"& which includes
these higher order corrections, is illustrated in Fig. 6
as a function of $ for O" on Cd"4 ates= 180' for several
choices of Qss. The relative signs of the matrix elements
have been chosen as positive and $ refers again to the
0 —+ 2 excitation. The results indicate that for f below

0.4, which corresponds in this case to an incident energy
of 33.3 MeV, the absolute value of R» increases sharply.
This implies that for the /&0. 4 the perturbation ex-

pansion to this order cannot be expected to be accurate.
At larger $, Res decreases in absolute value and these
corrections due to virtual excitation of higher states
become less important relative to the second-order re-
orientation effect. When employing projectiles much
heavier than Ne, R32 can exceed unity even at low in-

cident energies. For example, this difhculty occurs over
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o 006
Q.

4l

a
~-0,04—
lL

"0,02—

0
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I
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I
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'8 This point has been emphasized frequently by G. 3reit.
F&o. 8.The quantities XD», R», and (R»+R») plotted as a func-

tion of g for 0'6 on Cd'" at 8= 180' with Q22= —0.7 b.
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E» is positive, while E» is negative. As the adiabaticity
parameter is increased above 0.6, the ratio Eai becomes
smaller in comparison to the absolute value of R~i. This
may permit an approximate separation of the second-
order reorientation effect from the other higher order
effects at the lower incident energies. Similar results
were found for other heavy ions. When /=0. 6, the
bombarding energy in the laboratory is approximately
1.6 MeV/21 for C" N" 0",S" and Ne" and the gap
distance between the nuclear surfaces in a head-on
collision with Cd"4 is about 14 F.

VI. DISCUSSION

As a check on the applicability of the perturbation

approximation in heavy-ion Coulomb excitation, some
second- and third-order excitation amplitudes have been
computed. The relative magnitude of successive terms
in the expansion of the excitation probability in powers
of the interaction potential has been investigated as a
function of the scattering angle and of the incident
energy for heavy ions bombarding selected even-even
nuclei. In searching for practical convergence conditions,
a range of values of the adiabaticity parameter $ was
found for which the double requirement that the ratio
E2i of second-order to first-order effects and the ratio
R32 of third-order to second-order corrections be small
in comparison to unity can be satisfied under suitable
circumstances. The procedure employing the perturba-
tion approximation may therefore still be used in
studies of low-energy heavy-ion Coulomb excitation to
provide some reasonable estimates, if the corresponding
values of $ for the transition are restricted by the lower
limits indicated above.

The primary objective of the work has been to And
conditions for which the second-order reorientation effect
is appreciable, and corrections due to higher order effects
can be applied in the analysis of experiments. In the
cases studied, a range of $ was found for which

i
2&.

'esca

(1,
while E2i is appreciable. The second-order reorientation
effect relative to the 6rst-order probability always in-
creases slowly as $ is reduced. On the other hand, higher
order effects increase much more sharply as ( is reduced,
exceeding the second-order effect usually when )=0.4.
These higher order corrections can be reduced relative
to the second-order effect by increasing ] or lowering
the incident energy. However, E» itself becomes smaller
in absolute value for larger (.The total excitation proba-
bility E also decreases rapidly as $ is increased. These
circumstances affect the accuracy to which Q» can be
determined from a perturbation calculation.

For heavy deformed even-even nuclei, as long as the
bombarding energy corresponds to a value of $ above
the approximate lower limit of 0.4, effects of higher
order than the second are not expected to introduce
significant corrections. Some quantit. ative estimates are
given in Table I for Sm'" and Kr'". Although these

TABLE II. Estimates for Cdu4 with Qss
———0.6b and 8= 180'.

The measured B(E2) values were taken from Ref. 11, and the
relative signs of the matrix elements were assumed to be positive.

Projec-
tile

E
(MeV) Ps&"&/P &"& Rg2

(ff21++$1—XDs&)

Ol.6

S32

0.6
0.8
1.0
1.2
1.4
1.6
2.0
0.6
0.8
1.0
1.2
1.4
1.6
2.0

25.8
21.3
18.4
16.3
14.8
13.5
11.7
55.0
45.7
39.4
35.0
31.6
28.9
25.0

—0.089—0.082—0.077—0.073—0.069—0.066—0.062—0.159—0.147—0.137—0.130—0.124—0.119—O.iii

—0.52—0.43—0.32—0.25—0.20—0.17—0.13—0.92—0.76—0.58—0.45—0.36—0.30—0.22

0.048
0.037
0.027
0.020
0.016
0.013
0.010
0.140
0.109
0.079
0.059
0.046
0.038
0.028

corrections are appreciable, they may not prohibit an
estimate for Q».

For vibrational nuclei, higher order corrections are
expected to be more important relative to the second-
order reorientation effect than for deformed even-even
nuclei, especially if Q» is small. However, a larger
range of $ may be accessible to experiment. Some esti-
rnates for Cd"4 are presented in Table II as an illustra-
tion of the magnitude of the eGects under discussion.
Caution is necessary in applying the results presented
here, since t.hey are sensitive to t,he choice of the relative
signs of the reduced matrix elements and to the B(E2)
values employed. As $ is increased from 0.6 to 1.2, 2&!»

is reduced by 50%%u~, while Ps&& rs&/8&1'l is reduced by
only 20%. In general, as the incident energy is lowered,
832 decreases much faster than E2i,' the ratio of the
second-order effect P2&' ') to the erst-order probability
P|'"& is nearly independent of energy so that it might
be possible to achieve an approximate separation of this
effect from other higher order corrections. For suS.-
ciently low bombarding energies, detection of the re-
orientation effect, which is linear in the quadrupole
moment of the excited 2+ state, may not be seriously
complicated by virtual E2 excitation of higher states.

Since it is possible to determine the dependence of
some of the higher order effects on energy, angle, and
charge of the proj, ectile in the bombardment of the same
target, even if the transition moments needed for the
complete calculation are not available, it should be
helpful to have experiments in which the bombarding
energy and projectile charge are varied so as to enable
the determination of the proportionality constant to
be made empirically. "A partial step in this direction
has been made in the recent measurements of the re-
orientation effect in Cd"4 by de Boer et a/. '4 and
Stelson et al."

J. de Boer, R. G. Stokstad, G. D. Symons, and A. Winther,
Phys. Rev. Letters 14, 564 (1965).

5P. H. Stelson, W. T. Milner, J. L. C. Ford, Jr., F. K,.
McGowan, and R. L. Robinson, Bull. Am. Phys. Soc. 10, 427
(1965).
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In this preliminary survey of higher order corrections,
particular attention has been paid to virtual E2 excita-
tion, since the low-energy transitions in even-even nuclei
undergoing collective excitations are known to be pre-
dominantly of the electric quadrupole type. ' However,
the possibility of virtual transitions of different multi-
polarity is not ruled out. Estimates" of a second 3fj
or E4 t,ransition in the sequences 0+(E2)2+(F1)2+
and 0+(E4)4+(E2)2+ indicate that such effects are not
expected to be serious in comparison to the E2 eQ'ects,

at least in studies of the reorientation eGect in even-
even nuclei under conditions of low-energy heavy-ion
bombardment. The possibility of second-order E1
transitions via the giant dipole resonance has been

pointed out by Eichler'~ in connection with the re-
orientation eGect in Cd". Recent estimates by Mac-
Donald" indicate, however, that such eQects may not
be serious.
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The quadrupole deformation of Li~ is calculated by generating many-particle wave functions from de-
formed single-particle orbitals. In order to account for the E2 properties of Li and retain the dominance of
the basic shell-model configuration, excitation of the (1s) core must be included. The admixtures of higher
conlgurations are appreciable.

I. INTRODUCTION

ECENT detailed calculations" of the electric-
6eld gradients in LiH have led to an accurate

value for the quadrupole moment of Li~, namely

Q(Lir) =—0.043 b. van der Merwe showed' that this is
much greater than one obtains with the usual (1s)'(1p)'
configuration. He showed that an effective charge of —,'
was needed to get the experimental result and also

produce agreement with the measured B(E2) strength4

between the ground state and the erst excited state.
Recently, Present' reproduced the experimental value
for Q(Lir) by mixing sI' states from (1P)', (1P)'(2P),
and (1p)'(1f)—leaving the (1s)4 core intact. The inten-

sity found for the (1p)' component was only 35%.
The method of generator coordinates offers a direct

procedure' for calculation of such con6guration mix-

tures, starting from single-particle orbitals in a Geld of
quadrupole deformation. It is also simple to include

[~orle performed under the auspices of the U. S. Atomic
Energy Commission.

' S.L. Kahalas and R.K. Nesbit, J.Chem. Phys. 39, 529 (1963).
' J. C. Browne and F. A. Matsen, Phys. Rev. 135, A1227 (1964).
3 J. H. van der Merwe, Phys. Rev. D1, 2181 (1963).' P. H. Stelson and I'. K. McGowan, Nucl. Phys. 16, 92 (1960).
5 R. D. Present, Phys. Rev. 139, B300 (1965).
' D. Kurath, Nucl. Phys. 14, 398 (1960).

deformation of the (1s)' core with this method. Such
an effect should certainly be included since the experi-
mental value for Q(Li') is about 1.8 times the value
computed for Q(Lir) with the (1s)4(1p)' configuration.
Ps is seen from Present's results, such a large effect is
difficult to obtain by deforming only the 1p orbitals.
The objective of the calculation is to see whether one can
account for the large quadrupole effects while keeping
the (1s)'(1p)' configuration dominant in Li'.

II. PROCEDURE

The application of the generating procedure to Li~ is
considerably simpli6ed by the fact that the energy spec-
trum and magnetic-dipole properties are well described
by a model with negligible spin-orbit coupling. It has
been shown' that for Li~ the inclusion of spin-orbit
coupling within the 1p shell increases the quadrupole
moment not more than 10% above its value at the
signer supermultiplet limit

Q(Li', sEL4+3$) = —(6/25)e(r')r„, ,„. (1)

Here (r')r~, r„, the expectation value of r' evaluated with
1p radial functions, has a magnitude (r')r„,„=10—»
cm'. Therefore the desired enhancement must come
from outside the 1s and 1p shells, and thus is most


