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Explicit Wave Functions for Any Spin
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A general method is given for calculating the exact form of the helicity eigenstates of a wave function for
any spin. Explicit expressions of the wave functions for spin S=1, -„2,and —, are listed. Examples of helicity
amplitudes for the production of S=$+ and S=-',+ isobars in proton-proton scattering are computed.

I. INTRODUCTION

lP ITH the high-energy beams that esperimentslists
now have at their disposal, more and more

higher-spin resonances are being discovered. Most theo-
retical calculations pertaining to these resonances re-
quire explicit expressions for the higher-spin wave
functions, e.g., both in polarization and partial-wave
analysis there is need to consider definite helicity states. '

In this paper we outline a general method which
enables one to compute the full relativistic wave func-
tion for any spin 5. From the examples given for the
calculation of matrix elements, one sees that dealing
with higher-order spinors is no more complicated than
dealing with spin-2 particles.

In Sec. II we construct the general spin-wave func-
tions. This is carried out for general momentum by
performing a Lorentz transformation on the rest-frame
wave functions. For these, we find an explicit expression
for the 5'=5 state, and by successive application of 5
we find all the others. This leads us to helicity eigen-
states for any spin. The Appendix contains explicit
expressions for the cases 5=1, —'„2, and -', . Section III
deals with the construction of helicity amplitudes for
scattering processes and. specific examples are given for
the production of the Ngtz+*(1238) and Nstz+*(1688)
isobars.
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which is the same as for the spin--', case.
Our aim is to find explicit formulas for the wave

functions p». ..»(p). It is more convenient to calculate
first the rest-frame wave functions, then perform a
I.orentz transformation (4) to a general p. Choosing
the direction of y as the s direction, the required Lorentz
transformation is obtained by

It can be easily verified, using (1), that under a
Lorentz transformation the wave functions transform as

II. CONSTRUCTION OF GENERAL SPIN-
WAVE FUNCTIONS

The Rarita-Schwinger wave functions tp». ..»(p) of
spin 5= Je+-,' (h integer) satisfy' '

(ip —m)p„, ...„,(p) =0,
Wats» "ysit(p) =0 s

where we use gpp= —1, gh&
——1, and tP». ..» is symmetric

&n p1' ' ' pa.
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P= v= tanhce, y= 1/(1—v')'tz= coshcos

~0
A(L) =cosh(co/2)+

~ ~

sinh(co/2),0)
where (we use Pt=c=1),

(8)

$. Mandelstam, J. F. Paton, R. F. Peier]s, and A. g. $arker and cr are the Pauli matrices. We use the following
Ann. Phys. (N. Ye) 18, 198 (1962).' W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).

'H. Umezawas Quantum Field Theory (North-Holland Pub- Wave Equatgons (Hafner Publi-shing Company, New York, 1953)s
lishing Company, Amsterdam, 1956), Chap. IV, paragraph 3; pp. 118-121. Further references concerning relativistic wave
E. M. Corson. Introduction to Tensors, Spinors and Relativistic equations can be found in these two books.
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representation for the y matrices,

(I 0) ( 0 ti)
V=zl

EO Il — k—tr Oi

(0 Iq
vk= zv'v'7'v'= —

I

U 0)

(10)

This identity follows from

a"' " &(Q).V„-.„(Q)
„...&(Q)i""tttP, "k" "(Q), (20)

which can be obtained from the second. of (12).
When performing the Lorentz transformation by (8),

the eigenstates of S' are now eigenstates of

Let us now find the rest-frame wave functions. Now,
in this frame Lwhen we write f»...»(p), we mean that
P

—(pz+ jtzz) l /2)

Attk" ttk(Q) =0
v

k. " "(o)=I
&&=0

where x and q are the two upper and lower components,
respectively. Hence, in the rest frame, f are two-
component spinors. They satisfy

(12)

Pl. ~ ~ Pk(Sz)vl ~ ~ vk 1Vzgttlvl. . .gttkvk2~

P Z&okttjv jgtttvt. . .gttiv j. . .gttkvk (21)

t'o' 0 )
EO ozj

' (22)

where now
(1/I pl)s p, (23)

8 lsl &)=y„,...„,(p) ~ " -s " "„„,...„,(p), (24)

Since y is taken to be in the s direction, this pro-
cedure gives helicity eigenstates, namely eigenstates of

The spin operator is

rt ' ~ ~ rk (Sl) tl ~ ~ ~ tk —
O tgrltl. . .grk tk—20

|t=g'tvo,
and the invariant normalization is

4. -zk(p)4"'"""(p)=1

(25)

(26)

Z~
jr itjgrl tl. . .gr jtj. . .grktk

)
j=l

(13) The same procedure can be carried out for the integer-
spin case. Here, using the tensor wave functions, e the
equation corresponding to (16) is

where fr't means that 'g'jtj is missing. Equation (13)
has to be understood as

Qls'I )=P.,.-„,t "(s) " ~ „...„.
Now, the state with S'=S satisfies

U„„...„(Q)= (1/2'j') t), (ti"z, ,

S being the spin. The spin operators are now

rt ~ ~ rz(Sl) tt ~ ~ 4 P z&trjt jgrttt. . .grjtj. . .grztv (28))
rk(S+)tt" tkp (s~a)(Q)=0

S+=S*+iS~ (15)
and the Lorentz transformation is performed by

It can be easily veri6ed that the desired solution is II4" p. (P )=I
I
1"' ' Ip."*IIt ', (P) "(29)

ti"z
, (s*=s) (Q) (1/2kj')

I
It)

0

The explicit expressions for the helicity states for the
(16) spin 1, 2, 2, and —', cases, are given in the Appendix.

where e, e„,e, are the number of times x, y, s appear
among tl tk The solution .(16) satisfies Eq. (15) and
the conditions (12).

All other 5*=M states can be obtained from (16) by
use of the operator S, through

S ISM)=LS(S+1)—M(M+1)]'j'ISM —1). (17)

Our wave function's normalization is

~"' " &(Q)~.,-,.(Q) =1.
The eigenvalues of S' can be most easily calculated

using the identity,

sp " "t(Q)~„...„(Q)
=4„...„t(Q)" "s v„...„(Q). '2

FIG. 1. Feynman diagram for
isobar production.
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III. HELICITY AMPLITUDES WITH HIGHER-
ORDER SPINORS

In this section we calculate matrix elements involving
higher-order spinors, and generalize the methods that
Goldberger et cl.4 have given for spin- —,'particles. As we
have made some changes in notation, we will repeat
the treatment for the Dirac spinors as well.

As the experimental setup today is such that in most
experiments both the incident and target particles have
spin S=», it is convenient to choose a set of axes so
that the momentum (pi') of the outgoing isobar is along
the positive s axis and con6ne ourselves to the xs plane.
This choice avoids the complication of having to apply
the rotation matrices for S&-,'. As an example we con-
sider the scattering of two spin-~ particles, with the
production of a single isobar.

In the center-of-mass system we use the notation

pi= (K,Ei), pi'= (q,Ei'),

p, = (—K, E2), ps'= (—q, Es'),

(Pj )Ej)

FIG. 2. Four-momenta and he-
(P', x'

licities in the c,m. system.

(a) Production of Spin-2 Isobar

We consider the process of the production of a
Arsts+*(1238) isobar in proton-proton scattering, with
the exchanged particle (in Fig. 1) taken to be a pion.
Since the pion is a spinless particle we can treat the
upper and lower vertices separately.

(i) Lower vertex

(O'Ignis&

The interaction is of the form

Lr =glt ~, (p2') vsl4, (p2)c (p2—p2') .
Spin factors which have to be evaluated are of the type

fgioy8/2X

Z++ =Z— = cos (8/2),
Z+ = —Z +=sin(8/2).

(31)

From Eq. (30) we have

&-;I ~-;&=x(p,y (p, )L~z~+qa]z-+,
(——,

'
I
a-,')=E(p,)N'(p, ')LwE'2 —qB)z++,

(32)

where ~A = (E2'+m), 8= (Es+m), and m denotes the
proton mass.

Ei+mi)
f~ (pi) =&(pi) e'"«2X,

2X,Z l

E2+m2
A (Ps) =&(P2) eio @8/2X

2X2K
(22) UPPer vertex P,i'Ixi&

where K and q denote the three-momenta of the in-

coming and outgoing particles, respectively, and ) de-
notes the helicity state of the particle. (See Figs. 1
and 2.) From Fig. 2 we see that the helicities of par- and have the values
ticles with index 2 are in the negative s direction and
thus must always be taken with a minus sign prehxed.
Taking pi, ps, and ps' to be the spin —,' particles, we
can represent these Dirac spinors as

A2' (p2 ) =&(p2 )((E2 +m2'), —D2'q)&t &2

~here E(p) =1/L2m(E+m)]'I' is a normalization factor

(1'I (0i
x+=

Ii'
Following the notation of GGMW we will denote

our helicity amplitude by (l 2'4'
I
4

I lii4&.

The interaction is

Lr = (G*/m-) 4.(pi')ll 2, (pi) (pi' —pi) "c(pi' —pi).

Applying Eq. (2), this simplifies to

L.=-(G*/ .)~.(p. V„(p,)p,~(p, -p,).
We can immediately write down the matrix elements

for the various helicity states using the expressions
appearing in Eqs. (A3) and (30):

(2 I as&= —(G*/m„)LN(Pi)E(Pi')/&2jL(CWEq)E sin8jZ++,

(l I ~k&= —(G*/m-)L&(p )&(pi')/v'6j
XL(C&Eq) (Z sin8)Z +—(2Ei'/3l) (CWEq) (K cos8)Z+~2q(Ei/M) (CWEq)Z++j,

(—l I ~l&= —(G'/m-)L&(p )&(p ')/v'6j
x I

—(cwEq) (E sin8)z++ —(2Ei'/M) (c~xq) (E cos8)z ~2E2(q/M) (c&xq)z +1,
(--,'

I
~'2&= —(G*/m. )I x(pi)x(pi')/v2jL —(caz'q) (z sin8)z —+j,

2 M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and D. Y. Wong, Phys. Rev. 120, 2250 (1950).

(33)
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where C= (Ez'+M) (E&+m) and M denotes the isobar mass. These amplitudes are related by

&X~X')= (—X~
—V)(—)"+"'+

This relation follows from parity invariance.
The amplitude for the required helicity state can be constructed by forming the product of the proper terms

from the two vertices, and introducing the propagator, e.g.,

&22 I
c

I 22)= (—g) (G*/~-)N(pi)N(pi')N(p~)N(p~') (1/v'6)
X[{(q&—K&))$1/(~.'—t)${L(qE&—KE&' cos8)/M j(C—Kq) (1+cos8)—2 (C+Kq)K sin'8) J,

and t = 2 (m' E2E2'—+Kq cos8).

(b) Production of Spin--,' Isobar

For the production of the Nq~2+ (1688) in proton-proton scattering with one-pion exchange we take the following
interaction at the upper vertex:

~.= (G'/ .')~.~(p ')v.~(P.)p"P .~(P '-P ),
where the spin-~ wave function is symmetric, i.e., f s=Ps, and we have used Eq. (2). The lower vertex is as in
the previous case.

Writing down the helicity amplitudes of the upper vertex in the form &X&
~ X&), we have

&'I ~2)= (G'/~ ')LN(P~)N(P~')/2jt FK'(»n'8)&+"j

&l I
~l)= (G'/ -')P (p )N(p ')/2v'5j

XL—HK'(sin'8)Z +—4F(Ey'/M)K'(cos8 sin8)Z+++4FEg(q/M)K(sin8)Z++j,

&~ ~ &2)= (G'/m ')$N(Pq) N(pq')/+10)L —FK'(sin'8)Z+++2H (Eq'/M)K'(sin8 cos8)Z +
—2HEq(q/M )K(sin8) Z ++ 2F(E "/M') K'(cos'8) Z++ 4F(E '/M'—)E~qK(cos8) Z+++ 2FE~'(q'/M')Z++ j

&
—

2 ~
+2') = (G'/tn ')$N(Pq)N(pq')/+10jL+HK'(sin'8)Z —

++2F (Eq'/M)K'(sin8 cos8)Z++
—2F (Eq/M) qK(sin8)Z++ —2H(Eq"/M')K'(cos'8)g —+

+4&(E&'/M')EiqK(cos8)Z +—2IIEp'(q'/M')Z —~g,
&
——:

I ~l)= (G'/~-')LN(P )N(pi')/2v'~3
XLFK'(sin'8)Z++ —4II(E&'/M)K'(cos8sin8)Z ++4IIEq(q/M)K(sin8)Z +j,

&
—

2 ~

a-', )= (G'/m ')(N(P, )N(Pg')/2 jg IIK'(—sin'8)g +1-
where

F=LWK(Eg'+M)+q(Eg+m)),
&=)+K(Eg'+M)+q(E, +m)],

and hence we have the helicity amplitude

&-', -', )C )-,'-,')= (G'g/m~')fN(P~)N(P~')N(Pg)N(P2')/4j/F(qB —KA)K'(sin'8)(1+cos8)jX1/(m ' t)—
All other amplitudes can be constructed in the same way. The relation &X~X')=(—X~

—X')(—)"+"'+ & relates the
various amplitudes, as before.

The calculation of matrix elements for the production of isobars via vector-meson exchange can be tackled as
in the above. The one difference is that for this case we cannot treat the upper and lower vertices separately. The
appearance of Dirac gamma matrices between the two-component spinors x is treated as for the spin-~ case. Useful
results are contained in GGMW, 4 Eqs. (4.11) to (4.16).

IV. APPENDIX

Below are listed the explicit forms of the wave functions for different helicity states:

S=1
Sz

S'=0:
S'=—1:

Ug ——1/v2,

Up=0,

Ug ———1/V2,

Um ——i/v2,

U2=0,

Um ——i/v2,

Up=0,

Ug E/m, ———
U3=0,

UO=O.

Uo= —p/m.

Uo=0
(A1)
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The wave functions U„, are symmetric in p; and v, i.e., U„„=U„„.
Sz 2

Sz=1

S'=0:

S'= —1.

Sz

Ull= 2, Usa=i/2, Usa= —2,
U18= U28= U33= U00= U01= U02= U08 =0.
Uls —— E/—2m, Uas= iE/—2m, Ulp= P—/2m, Uao= s—P/2m,
U11= U22= U12= U38= U80= Uoo=o

Ull= —1/+6, Uaa ———1/Q6, Uss ——(2/Q6) E'/m' )

Uso= (2/Q6) pE/ma) Upp
——(2/g6) p'/m',

U12= U18= U28= U10= U20=0 ~

Uls ——E/2m, Uas= iE/2—m, Ulp ——P/2m, Uap= iP—/2m,
U11 U22 U12 U83 U30 U00

Ull 21 U12 2/2y U22 2 l

U18= U28= U38= U00= U01 U02 U08

(A2)

Using the notation

vrhere

S=-'
2

)E+m~ pE+mq
4'+= &I

p I E —p/

@re have

S'=-':2'

X=1//2m(E+m) O'", X+——
( [, arid X =

(

&oi
'

z

A=++, @=A=&;

Sz x.
2 ~

2 pM+'
6m

2 E 2 pA= — —4-, &=-
+6m +6m

1 z
S*=——,: le= — lp~, lpa lp+,

——

Z 2 8
A= 4-, A= 4-, A= — —4+ &=-

+6m
(A3)

z
S*=——',: lP1= —~, pa=~, $2=$0=0.

v2 v2

S'=—''
(where lP„,=lP.„)

1 z 1
4'll 4'+y 4'12 4'+y 4'22 4'+y2' 2' 2

4'ls gas 4'ss $00 4'01 $02 4'ps 0 .
Sz 3.2'

2 5 2+5
Aa=—

2+5

Ii
As=-

+5m
i 8

As= — —4+
gs m

ass psp 4'00 0 ~

1 p
Ao= — —4'+~ As�-

=+5
i p—4+,

sm
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4+
+10

As= — 4+
+10

E i E
ass= — f—, —/os=-

+10m +10m
2 Z2

As= ~+
10 m'

1 p s p 2 pE
4 1o= — ——0, /so= — —~, &so= 4'+

+10m +10 m +10 ms

goo=
2 p'

M+
10 m2

S*=——
+10 +10

8 z

M+, As= — —4+
+10m +10m

'p 'p 'p'
As= —4- Ao= M+, Ao= — M+, Ao=

+10m' +10m +10 m +10 ms

goo=
ps

$1s=0.
10 m2

S'= —-'2'
4+,

2 5
As= — 4+,

2+5
As= — 0+,

2/5

8
As= —4'-

QS m

i E
As=-

+5m

As 430 foo

1 p ' p
tpso=—

QS m +5m

Sz 5.
Q ~

2

z
As= —-0-

2
ass=

2

/is $23 ass goo $01 /os /os
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