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Infrared Divergence in Quantum Electrodynamics*
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The infrared divergences of quantum electrodynamics are eliminated to all orders of perturbation theory
in the matrix elements by an appropriate choice of initial and final soft photon states. The condition for this
cancellation restricts these states to representations of the canonical commutation rules which are unitarily
inequivalent to the usual Pock representation.

need. This section is based on a more complete dis-
cussion made in the article by Yennie, Frautschi, and
Suura. 4 The parametrization of the states and its rela-
tionship to the usual occupation number parametriza-
tion are introduced in Sec. III. %'e shall make use of the
algebra of states developed in Glauber's paper. ' In
Sec. IV, the cancellation of the divergences to second
order is demonstrated in order to illustrate the methods
used in the succeeding sections. A calculation of the
matrix elements for potential scattering in Sec. V shows
that the divergences indeed cancel to all orders. In
Sec. VI, the structure and the physical meaning of the
representations are examined. Then we show that by
squaring the matrix elements and summing over the
final states results are obtained in low order which agree
with those obtained by Yennie et al. 4 by the conven-
tional treatment. Some extensions and generalizations
of our treatment are carried out in the appendices.

I. INTRODUCTION

HE matrix element in quantum electrodynamics
for the scattering from an initial state containing

a, lnite number of electrons and photons into a similar
final state contains an integral which diverges loga-
rithmically for small momentum k. The conventional
treatment of this "infrared divergence" has been to
sum the cross sections over all possible final states con-
sistent with experimental measurements. In particular,
when all states with any number of soft photons with
momenta, below the threshold of observability are con-
sidered, the divergences cancel, and the calculated cross
sections are consistent with experiment. It is therefore
possible to attribute the original divergence in the
ma, trix element to the inappropriate choice of initial
and final states to represent the experimental situation.
In an actual scattering experiment, a,n indefinite number
of soft photons are emitted, so that in some sense, states
which are eigenstates of the number operator are
unphysical.

In this paper, we shall show that there exists a repre-
sentation of the photon states for quantum electro-
dynamics which appears more appropriate for describing
scattering than the usual Fock representation in that
the matrix elements do not have infrared divergences.
These states are not eigenstates of the number operator,
and are parametrized in a manner similar to that used

by Glauber, ' Bargmann, ' and others. When certain
conditions of convergence are imposed, the states can
be shown to form irreducible representations of the
canonical commutation rules for the "in" and "out"
fields which are unitarily inequivalent to the usual Fock
representation. Similar results have been obtained by
Shroer' in certain model field theories.

In the absence of known solutions to the renormalized
6eld equations, we make no pretense to mathematical
rigor. In particular, the Feynman-Dyson perturbation
techniques are used throughout, and most questions
of order in limiting procedures, etc. , are treated
heuristically.

Section II will summarize the parts of the conven-
tional treatment of infrared divergences which we sha, ll

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

' Roy J. Glauber, Phys. Rev. 131, 2766 (1963).' V. Bargmann, Proc. Natl. Acad. Sci. U. S. 48, 199 (1962).' B. Schroer, Fortschr. Physik 11, 1 (1963).

II. SEPARATION OF THE INFRARED FACTORS

The following exposition of the separation of the
infrared parts from the matrix element can be found in

the review article by Yennie et a/. 4 We will summarize

here what is relevant to our own discussion. For sim-

plicity, we study the example of an electron scattering
from a potential, although similar results can be ob-

tained for more general situa, tions.
Consider a process in which there are a Axed number

ot photons and an electron ot momentum p in the initial
state and a 6xed number of photons with the scattered
electron of momentum p' in the final state. The photons

may or may not have interacted with the electron line.
The complete matrix element for this process is

given by

where 3E„(p,p') corresponds to the sum of all diagrams
in which there are e virtual photons which can be
distinguished from the potential interactions in the
"basic process" 350. The real photon variables have
been suppressed.

'D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys,
(N. i.) 13, 379 (196i).
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The quantity p„(ki, ,k„) is defined by the relation

1
M„=—

et

e d4k

p (ki, ,k„), (2)
4-i k z—y2+ze

where P is the photon mass which we allow to approach
zero later. It has been shown that p„ is of the form

The extraction of the infrared contribution to the
matrix element for the emission of real photons has a
form similar to that in Eq. (3). In this case, we let
p„(ki, ,k„) be the matrix element corresponding to
the emission or absorption of e undetectable photons
with momenta k~, . , k„, and for some arbitrary order
in the virtual photon corrections. It has been shown that

p (ki, ,k )=S(k )p i(ki, ,k„ i)
yt('&(k„",k„,; k„), (3)

p (ki, ,k„)= aS(k„)p„ i(ki, ,k„)
+P'&(ki, ,k„ i, k„), (9)

where S(k„) contains the k„ infrared divergence, and
can have the form

1- ze' p 2p„'—k„2p„k„—
S(k-)=- — I, — (4)

2 (2zr)4 &2p'. k —k' 2p k —k'

The remainder $('& has no infrared divergence in k„, and
its infrared divergence in the other k's has not been
made worse by the separation.

By iteration of Eq. (3), p„(ki, ,k„) can be expressed
as a sum over all permutations of the k's:

n 1
p.(ki, ,k-)= Z 2

perm r=o r l(rz —r) !

r

XII S(k,)~„„(k„+„",k„). (3)
i=1

The functions (, are noninfrared and symmetrical in
the k's. If we adopt the definitions

where S(k„) is the factor containing the infrared di-

vergence and has the form

e -p'e pe
S(k) =

L2(2x-)'ko]'I' k p' p k
(10)

and the (+) and (—) signs correspond to emission and

absorption, respectively. Again the remainder $('& is
divergence-free in k„, and the divergences in the other
k's is no worse for the separation.

It has been shown that the iteration of (9) leads to
the form

n 1
p-(ki, ,k-)= 2 2(—1)

perm r=Q r!(rz r)!—
r

Xg S(k;)$„„(k,+i, ,k.), (11)

where the functions $ are noninfrared and symmetrical
in the k's and m corresponds to the number of absorbed
photons.

III. PARAMETRIZATION OF THE
PHOTON STATESd4k S(k)

~&(e,ii') = (6a)
k' —X2

~ d4k;
$,(k, ,k„),

i=1

The properties of the states which we will find con-
venient to use have been discussed by several other

=1 authors'' in different contexts from the one in which~.(P,I')=-
we intend to use them.

gf I.et (f,(k)} be a complete and orthonormal set of

then substitution of (2) (5) (6a) and (6b ) into (I )
functions defined on some region 0 of moment~ sPace
including k=0 (perhaps all of momentum space). A
typical state "belonging to the ith mode" is defined by

&=exp(nB) Q zzz .
n=Q

In this expression, mo ——po
——$e= Mo. The zrz 's in (7) are

divergence-free, so that the whole infrared divergence
has been isolated in the argument 0,8 of the exponential.
For future reference, we can write down the form of
Re(4zB) which follows from (4) and (6):

g2

Re(nB) =-
4(2 )& (k'yI z)'i'

t 2p„'—k„2p„—k„-'
(g)

&2p' k —y' 2p k —I'

a;t = d'k f;(k)at(k) (14)

is an "in" or "out" creation operator.
In this expression, o,i is a complex number which can

take on any value in the complex plane, at(k) is the
photon creation operator which obeys the commutation
rules

I a(k),a'(k'))=8(k —k'),

La(k),a(k') j=
I
a'(k), a'(k') j=0,

exp(n;a;t) (n;a, t)"

, lo)=exp( z I~'I')2 Io), (13)
exp(-', In, I

') rz!

where
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FIG. 1. Contributions
to the second-order
virtual-photon radiative
corrections. Diagram
(a) corresponds to the
original uncorrected
matrix element 3IIp.

f(s)=P c„
n (yg!)'~'

(25)

An arbitrary state of the ith mode has an expansion
in terms of the e-photon states of the form

(g t)n

n n (gg!)'I'

where P„lc„l'=1.We associate with each such state
an analytic function,

td)

Equation (24) may then be rewritten as

{c)
I f&= f(~") I

0). (26)

IP& is the state with no photons. z t obeys the Using (23), we can exPand If) in terms of the new

commutation rules

[a;,a,']=5,;, [a;,a;]=[a,',a ]=0. (16) If&=- d'~'l~;&&~'lf(~ ) Io&

From the commutation rules, it is a trivial matter
to show' that these states are eigenfunctions of the
destruction operator

i
d'a;ln, &f(n;*) exp( —-,'ln, l'). (27)

ol
~(&) l~'&=~'f'(&) l~'& In (27) we have used the fact that the states In, & are

eigenstates of the destruction operator a;:
~i ni =ei ni p

~i &i =oi &i (28)
and that the mean number of "photons" is

d'&(~'I ~'(&)~(&)
I
~'& =

I
~'I' (18)

It is sometimes useful to note that the state in
Eq. (13) can be "created" by a unitary operator

D(n;) = exp[n;a, t —n;*a,], (»)

In a, similar fashion, the adjoint state vectors &g I
can

be shown to possess an analogous expansion,

1
[g(P;*)]*(O'Iexp( —

2 IP'I')d'P, . (29)

A basis for the whole electromagnetic field is a direct
product of the states ln;) of the individual modes

which has the following "translation" property: I &=II;I '&=—I{;}), (30)

D(& )Q(p, ) = exp[& (~;p.~—& +p )]D(~,.+p,.) . (2p) and the mean number of photons in such a state is

The states defined in this manner are nonorthogonal;
the overlap between two states ln, &

and
I P;) is given by

I &~'I P'& I'= exp{—
I
~'—O'I'} (21)

&~'I ~'&=1

Another property which these states possess is com-
pleteness. In fact, it is easy to show that

However, it follows from (21) that the states are
normalized, i.e,

(22)

(31)

Equations (25), (27), and (30) ensure that states
containing a finite number of photons (the usual Pock
representation) can be expanded in terms of. the states

I {n,}& which satisfy P;In, l'( ~. This will be shown
in Sec. VI. However, this restriction will not be imposed
in the discussion that follows, i.e., we shall allow for the
possibility that there exist states in which the average
number of photons is not bounded.

d'n;ln;&(n;I =P les;&(n;I =I,
ni

(23)
IV. CANCELLATION OF THE INFRARED

DIVERGENCES TO SECOND ORDER

where the sta, te denoted by ei is an eigenstate of
the number of photons which have the momentum
distribution, described. by the function f;(k), and
d'o;=d(Ren;)d(Imn;) is real.

In order to illustrate the general procedure, we shall
choose two particular photon states parametrized in
the manner just discussed in Sec. III and calculate in
lowest order the matrix element for potential scattering
from one to the other. The photon is assumed to have
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(e) The formal expansion of Eq. (45) also leads to (m+l) initial-state photons and (m'+l) Gnal-state
the factors photons ~can be distributed among m initial-state inter-

acting photons, m' final-state interacting photons, and
/ noninteracting photons:i

exp( —:2 I ."I')
(m+ l)!(m'+l)! (m+l)! (m'+l)!

m fu m'ft f.

(50)
Xexp( —:2 Iv."'I') (49)

c,X'

After summing over all numbers m, m', and /, we
(f) In addition to the above, there is a combinatorial arrive at the following expression for the matrix

factor which accounts for the number of ways that element%:

1 1 - (m+l)!(m'+l)!-~=e"2 2 2, , Lexp( —k ZI~."I') exp( —' Zlv. "I')]Ll!]I:&~."~.*"]'
~=o =o '=o (m+l)! (m'+l)! — m!m'!l!l!

m onym'

X I II Z~." d'k f.(k) I II 2 v.*"' d'k" f.*(k") lp+-!""'(k~, ",k-+-) (51)
(r=l X,e (r'=no+1 V, c

Another factor corresponding to the contribution from the scattering of photons by photons could have been
included explicitly, but since this term does not contribute to the cancellation of infrared divergences, nor does
add to the divergences, it has not been considered in this analysis.

Making the appropriate cancellations, and combining the terms with a little bit of careful counting, we arrive
at the expression

j.
M'=e e Q—

g=o gf

00 f 00 m' mt m'f

, I:Z~."v.*"]' 2 Z
~=o m! m' om !=a, k j=o i' oj!(m=—j)!j'!(m'—j')!

wI1ele

and

X,aX,ac,)'

(S",f,)g=— d'k $&»(k)f,(k), (f, ,S')n= d'k S~"'(k)f,*(k),

xL—p ~.~(s~,f.).]Lp, ,*'(f.*,s~').]'~,... , (p', p~) L-p( —l 2 I ."I') "p(—l ~ lv."I')], (52)

.( &, „ll'"P, '=—(—1)'I H d'k & ~ "f.(k ) II II d'k" Z ~.*"'f'(k") l&~+i""'(k~ k+').
(r=l X,a ) ( r'=1 X', o

(53)

Defining the "residuals" m;,; by
p"'

m;, , (p;,pf)=
2'fJ f

and reordering the sums in (52), we can write

XI=e expl ——', P [a."I'7 expL ——,
' Ply."I']expl P n."y.*"]

X,a

(54)

m, m'=o'A, c
XexpL —P ~."(S",f.)o] expl P y.*'(f.*,S")o]{ P m, ). (55)

),a

To simplify the notation further, we de6ne the coeKcients P,~ by

p x=(f os')
Since the function S is real, Eq. (55) becomes

~=e ~ expl —
o 2 i~."I']expl —

o 2 Iv."I']expire ~."v.*"]
X,a

(56)

~,m'=oX,aX,a
XexpL —P ~."P.'"7 expLZ P."v.*"]{2 m-, - (P.,Pf)), (5'I)-
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As in Sec. IV, it proves convenient to split the function S&"& into two parts:

p. .e(&)e
S;("'(k)=

L2(2a)'k(&j'" k p

p .e(X)e
Sg'" (k) =-

L2(2a)'kaji(2 k pr
(58)

We can then define the coefficients P;," and Pr," by

so that by Eqs. (10) and (56),
P. i—(f e S.(i)) P X —(f 4 S (X))n

pX —p i p, i

(59)

The complex coefficients {(r,"}and {&,"'}which specify the initial and final states of the photons may be re-
garded as a set of coordinates in some complex infinite-dimensional space X. It is then possible to simplify Eq. (57)
by making a translation of the coordinate system in X by the amounts defined in Eq. (59):

Thus
~ i—Pr X+e„X ~ i P. i+~. i

e a{exp pp [p. i+a. X(2 r
~p i+a X(9+.(p. Rye. x)(p x+e x)a

(Pia +&ra )Pa +Ps (Pfo +&fa ) j}{Z '&)('mm'},
m, m =0

=e n{exp PL+2 IPf—P;I'—a I er e;I'—+i Im(P, *e;+P er* P;Pr*—+e;sr*)g}{ P m, },
a, X m, m'=O

(62)

where the mode and polarization indices have been suppressed for convenience.
By Eqs. (43), (53), (56), and (60), we have

X,a X,a
d'k S("&(k)f.(k) dak' S("&(k')f.*(k')

1
d'k S("&(k)S("&(k)=(rB. (63)

Substituting Eq. (63) into (62), we arrive at the
important result

M= exp(nB+(rB) exp( ——,
' Q ~

eg."—e;."
~

')
X, a

Xe'4{ Q m, }, (64)
m, m'-0

where g is real.
The argument of the first exponential was shown in

Sec. IV to be infrared divergenceless in the limit of
zero photon mass. The third exponential has modulus
unity, and the last sum is term by term divergence-free.
If the possible states of the system are restricted by
the condition

(65)
X,a

the second exponential is nonzero, but less than or equal
to unity. Kith this condition satisfied the infrared
divergences have been eliminated. The interpretation
of this restriction is discussed in the next section.

VI. INTERPRETATION OF THE
PHOTON STATES

In the beginning of this section, we will show that
Eq. (65) delnes a separable Hilbert space. To do this,
we study a related space 8 which will turn out to be
identical to the ordinary Fock space 5„.Translations
like Eq. (61) will not change the intrinsic properties
of this space. Finally, a calculation of the total
cross section will relate this whole discussion to
experiment.

Much of the mathematical material here will be
treated heuristically, but a more rigorous formulation
of the statements can be found in the papers by
Bargmann. 2'

Ke will define a separable Hilbert space 5 in the
following manner: Let {8;}be an infinite sequence of
complex numbers. A set of "principal vectors"

~ {tt,}) is

' V. Bargmann, Comm. Pure Appl. Math. 14, 187 (1961).
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then defined by the equation

I «'})=III8')

=II «p[—l Ig'I'] exp[8;~ t]lo&

=II p[—llg;I'] xp 8; f'(&) '(&) lo) (66)

and the condition

P I g,. I

2 & ao . (67)

&«xp[—2 2 I
8""I'] expL —

k E I
8'"'I']) (6g)

The elements of 5 are taken to be the closure of all
6nite linear combinations of the principal vectors.

From (66) and the commutation rules for at(k), the
inner product of two elements,

I f)=P;=@X;l{8"))
and

I
f')=g&=i&pi, l{8,&'&)), is given by

(flf'&=/ X,*p {exp[/ 8;*&"8;&'&]

I {8,&'&) ) and
I
{8;&"&)) has the property

I(«."') 1{8""))I'
=

I
~LE'8'*"'8""] m[—l Z'I 8""I']

xe~[——', 2;I 8,&"I']I'
=«p{-2'I8""—8""I'), (69)

so that the principal vectors are all normalized to unit
length. Moreover, by Eq. (67), no two principal vectors
are normal to each other.

The properties of the space could in fact have been
derived by using Eq. (69) instead of Eq. (66), but we
wish to retain the connection with the previous sections
of this paper.

The separability of 5 follows from the existence of a
countable sequence of vectors which is dense in K Let
I{8,)) be any principal vector. From Eq. (67), it is
known that for any 5~&0 there exists an integer S such
that P;&N I

8;I'&8&. Moreover, for any i(N and g) O

it is always possible to find rational numbers {R,) such
that

I 8,—Z;ln(g.
Consider a principal vector

I
{8 })such that 8,'=0

for i)N, and 8 =E; for i&N Let .P;lg, l2=A'. Then

Q;I 8 8; I'&~NB—+B~
In particular, the inner product of two principal vectors and

I
Im 2' 8'*8''

I
=

I
Im &' 8'*8'+Im 2' 8'*(8''—8') I ~& I 2' 8'*(8''—8~) I ~& (2'I 8'I' Z*l 8'' —8'I')'" &~ (»+'~)'"

Thus,
II{8'))-l{8''))I'=2- ({8'}I{8''}&-({8'')l{8')&

2 e"pl ~i & '18'I'] exp[——', P;I 8 I']{exp[&;8;*8,']+exp[&; 8;*'8;]}
= 2—exp[—~ Q, I

8,'—8; I
']{exp[i Im g; 8;*8 ]+exp[i Im P; 8;*'8;])

= 2{1—(exp[—2 g;I 8,'—g, l']) (cos[Im Q, 8;*8 ])}~& (A'+1) (Nb+5~) .

Since
I {8;}),g~, and 5 were arbitrary, we have shown

that any principal vector can be approximated by
another principal vector belonging to a denumerable
set. The denumerable set which consists of all finite
sums of principal vectors like

I {8,})is dense in K
In the case of massless soft photons, there is no

reason to restrict the photon states by Eq. (67). Let
{8,"&) be a sequence of complex numbers which are not
square-sunnnable, i.e.,

2'I 8'"'I'+ ". (7o)

Then the states defined by the complex numbers {8;),
and which satisfy the condition

(71)
form a separable Hilbert space F(" with all the prop-
erties of P, except Eq. (67). F'o~ is unitarily inequivalent
to 5, i.e., it forms a unitarily inequivalent representation
of the canonical commutation rules.

In Sec. III, we discussed the connection between the
Fock states and the principal vectors for a single mode.
Ke will now brieAy study the relationship between the
occupation number parametrization and the principal
vector parametrization.

The states in the Fock space F„are specified by a set
M of infinite sequences of nonnegative integers {m;},
or "occupation numbers" of which a finite number are
diferent from zero. An orthonormal basis of Fock space
is given by

(72)

An arbitrary state I f) of P„ is given by

(73)

where the complex coefficients p~ ~
satisfy

At this point, it should be apparent that FQ 5„,since

(8 .a t)mi.
l{8'))= & ll

(~}gM i m t
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g.)mi 2 m g. 2mi

II =III E
{m!GM i (m !'') I i km=0 m !

But we know from Sec. IV and Eq. (63) that

pIpf, "—p;."I'=-' p I5&'&(k)I'd'k=nB, (85)
X,a

= xP(ZIg*'I')& ~ (76) and E3~~ as the photon mass approaches zero.
Therefore

The scalar product of two vectors
I f) and

I
f') in F„

can be obtained from (72) and (73):
Z I v."I'~~ (86)

(flf')= 2 v!-!*v!.!'.
{m}gM

(77)

Let Q {m;}be the truncated sequence

Q„{m;}= (mi, m2, ,m„,0,0, ), (78)

and define a projection on F„by

I f)=+ Q 'r! !I2if !)= Q p! l IN! !), (79)
{m}gM {m}QMn

where M „is the set of all sequences of the form given by
Eq. (78). Then it follows from Eq. (74) that E„If)
converges strongly to

I f) as n—&~., We will show that
E„If) is contained in P, which implies that F„—= P.

The expansion of E„If) in terms of the principal
vectors follows directly from Eq. (27):

as the photon mass approaches zero. Thus the final
state cannot belong to K

Neverthesless, the coeflicients {y,~} define a final
state. It must be that the final state belongs to an
inequivalent representation of the canonical commuta-
tion rules whose most outstanding feature is that the
average number of photons is infinite. Not any final
state will do, however, for the boundaries of this new
space 5' are restricted by the condition Eq. (65).

One of many ways to satisfy Eq. (65) which preserves
symmetry between the initial and final states is to
write these states as

i2a = Oia +Pia +OOa

Va Ofa +Pfa +OOa

and to restrict the states by

Z I or."I'&~

where

(8.4)m;
X I (gi, g2, ,8.,0,0, )), (80)

(m;!)'"

dp;= Or
' exp[—2 I

8, I'jd(Reg)d(img) . (81)

From Eq. (69), it is clear that principal vectors
I {8,})

which do not satisfy Eq. (67) are orthogonal to E„If).
Therefore E

I f)g P and the result P„=F follows, i.e.,
the Fock space built from states with a finite number
of photons, and the space of principal vectors satisfying
Eq. (67), are the same space.

In order to satisfy the requirement Eq. (65) for finite
matrix elements, it will be necessary not to restrict the
scattering states to K For if the initial state were in F,
i.e., the {i2,"}of Eq. (45) satisfied the condition

(82)
X,a

~ X —~ X+(P X P. X)+(O X O, X) (83)

where we have used Eq. (61), and the o's would satisfy

pI or." o;."I2& ~—
X,a

then the final state parametrized by the sequence of
complex numbers {y,"}would be given by

Then we would get different theories by different choices
of the sequence {oo,~}.Kith such a choice, the photon
states would have a dependence upon the momenta of
the participating electrons.

So far we have not spoken at all about 0, the region of
rnomenturn space on which the single photon states {f,}
were defined. In an experimental situation, there is
always a threshold below which a single photon cannot
be detected. Ke identify 0 with what we shall call the
"resolution region, " i.e., all photons with momentum
k&0 are not detectable, while those which satisfy k+0
are detectable. In what follows, the nondetectable
photons will be spoken of as "soft" photons, while the
others will be called "hard. " Furthermore, we shall
indicate the resolution of the momentum space by a
subscript, e.g. , Xg.

In a practical calculation where one wants to treat,
for example, the scattering of an electron with the
emission of hard photons, the hard photons can be dealt
with by the conventional occupation-number parametri-
zation, while the soft photons are described in terms of
the translated principal vectors. More specifically, con-
sider the calculation of the cross section for an electron
of momentum p; scattering into a state with an electron
of momentum pr plus several hard photons. The in-
coming electron is associated with a photon field de-
scribed by a sequence {i2 "}and the outgoing electron
has a photon field {p "}.In Eq. (64), the "basic matrix
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element" moo corresponds to diagrams with only the
detectable real photons and those virtual photons
necessary for the process to occur. The terms m;; for
i, j= 0 contain the effects of the noninfrared parts of the
real and virtual soft photons to higher order in the
coupling constant.

To lowest order in the noninfrared photons, the
squared matrix element for a particular diagram mo 0 is
from Eq. (64): e«1

m i N ~l &Iv Iv

ic p
f

0
0

I ~I '= ewL2(«&&+Ma) j
XexpL —P I

er." e;—."I'jI mooI
'.

, (87)
X,a

O
O

O O 0 O r4 o 0 PO D
0

0

m"
m" N

We can then sum over final states. The result (to lowest
order) is independent of the initial state:

fina
states

X lim (m=')" d26ye I ~f I

=expl:2(«~&+~a)3
I
~o, 0 I

'

The remaining exponential contains part of the effect
of the choice of S,(k ) and the region of resolution II, and
we obtain a similar result to what lennie et al. obtained
(for a nonenergy-conserving potential). In fact, the
"reason" why the results are the same is that, in the
summation over all final states in the conventional
treatment of the infrafed divergence, the main con-
tributions carne from states which were not in the usual
Fock space, but were in a nonseparable space defined

by Eq. (72) without any restrictions on the sequence
{m) of occupation numbers. In particular, the separable
space of final states 5' is contained in this nonseparable
space.

In the above computation, and in Sec. V, the resolu-
tion regions for the initial and final states were assumed
to be the same. One can argue that the resolution region
of the initial state can be made arbitrarily small, but
finite, by waiting a suKciently long time before the
scattering experiment. The situation where the initial
resolution region is smaller than the final state resolu-
tion region is discussed in the Appendix.
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FrG. 4. Representation of l noninteracting real soft photo»,
mg" real soft photons associated with the pth electron and absorbed
by the vth electron, and mq'" real soft photons associated with
the (th electron and emitted by the vth electron.

exp P(P;."+e,.") d'k f.(k)at(k)

IO&, (A1)

where

The final-state soft photons are described by a similar
expression.

The interaction is illustrated in Fig. 4. In this
diagram, our attention is focused on the vth electron
line. The integer m. ~" denotes the number of photons in
the initial state which "belongs" to the $th electron and
interact with the vth electron line. Similarly, m~ " is the
number of photons in the final state belonging to the
/th electron which interact with the vth electron line.
The number of noninteracting photons coming from the
gth incoming electron, and, becoming part of the P'th

outgoing electron, is given by the integer /~~ .
We arrive at an equation analogous to Eq. (64)

through the following considerations.

one another will be outlined here for completeness. It is
possible to make an extension to positron scattering,
pair production, and other processes, but we shall not
do so here.

Since the cancellation of the infrared divergences in
this more complicated situation requires a proliferation
of subscripts and superscripts, we drop all notation
having to do with the polarization of the photons.
Superscripts will now designate the electron line.

The initial state consists of E incoming electrons with
momenta p, i, p, 2, , p;„. , p,~, along with some
photons. They scatter into a final state of T outgoing
electrons with momenta p„, , pf ' ' ' pfN again
with some photons. Ke have assumed that all resolution
regions are identical.

Thus the soft-photon initial state can, for example,
be conveniently written as
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(a) The overlap of the l,=g« l« initial-state noninteracting photons with the 1 final-state noninteracting
photon contributes a factor

II D«!(Z ~.'v.*')'«'j,

where
&a =Pic +4a r 'Ya =Pfa +&fa ~

Note again that the superscript $ refers to the electron line, and not to the polarization.
(b) A contribution from the interaction of m=g„gm~" initial-state photons, and the m'=P„, Pm~'"

final-state photons with the Ã electron lines, gives

m" +m'"

f([mr"}{mt'"})=II 2 II(—1) "~(k..')k "+ '"-(k. . .k, "+ ")
v t=P i=1 3!(mr+m'r —3) t

where m"=P~ m~", m'"=P~ mr'".

(c) Contribution (b) must be integrated over the momentum distribution that is obtained from the formal
expansion of the initial and final states,

|' ml ( ml +my'

II I II Z .' d'k, .f.(k,.) I II 2 v.*' d'k, . f.*(k,") [ ([ "),{ '"); k , »-, ,k-+- ))
kr=l a kr'=my+1

where m~= P„mp, m~' ——Q„m~'".
(d) The formal expansion of Eq. (A1) also leads to the factors

expL —
k 2 [2 ~J I

'3 exp[:—k 2 I 2 V.'['3,
(m(+lr)! (m('+lp')!

(my+i))!

rI( ).II(~ ). II( ").II(~ )

(m('+Jr. ')!

V V

where f( Qp l(p, t('——=g( l«.
(e) In addition to the above, there is a combinatorial factor which accounts for the number of ways that the

(m+1) initial-state photons, (m +/) final-state photons, and the / noninteracting photons, can be distributed
among themselves:

(f) There is an infrared divergent factor due to virtual photon corrections (see Yennie et at. '):
F=expLnBj.

To get the matrix element M, the contributions are summed over all values of (m~"), (m~'"), [l«),
e) oo oo [ 1 1 (mr+ l))! (mp'+lp')!z II, , II II

u, 1 =0! ") =0! "I =o & (mr+i~)! (mq'+&q') I & II(mp)! II(i«). ~ II(m&")!rI(&«).
V V

&& [exp[ —-' g [P,&['j exp[ —-,'P [P y,&[']tLII l«!(P,&y,*&')'«'j
a

( ml ) rag +my'

&& II I II (—1)-' & -' d'k
, f.(k, ) I II » *' d'k, "f *(k

,") (k ,k-+- )
(r=l a j r' =ml+1 c

The last factor in the braces can be reduced by separating out the divergent terms:

(mr'")!(mr" ) 1

where

m) m$

II Z Z . . —, , (—2 ~.'(~. f.))'&"(2 v.*'(f.* ~.))'1'"&
rid rp;, "r=0 (jp)!(m," jtr)! (j,")!(m,"—j,") t a a

t' i 1" ) ( il"+il'"
I'([je)[jY");[p'), [p ))=

I II d'k. 2 .'f-(k) II II
(r=l a j r' = fir+1

d'k; Q y,*&f,*(k) [$il"+i) "(kl, ,kil +i, ")
c j
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Again„one defines a divergence-free "residual" by

so that

j!d'=~{IIexp[2 n'7."'ll exp[—Z I & n.'I'3 exp[—BIZ v'I'3

X {gexp[—p n.'p.*"]exp[& y.*'p."g][g p Z»({jp} {jY"})3.
vg a Q V$ j)V Q j(&V —Q

Making the translation to a new coordinate system, we get

na =Pea +&ia y Va =Pfa +&fa y Pa Pfa Pfa

and with a little additional algebra, the final result is exhibited:

j!d'=~exp[2 &l&Pf' —P"I')exp[—
2 &I& efJ—' 'I'3e"[H & &»({jr}{j~'"})&

a a V$ j]V Q j]IV Q

(A3)

The divergences in the factor F and the 6rst exponential cancel (Yennie ef, at.'). Again the condition for finite
matrix elements is

APPENDIX B: THE PROJECTION OF ENERGY-MOMENTUM EIGENSTATES

For completeness, the procedure for projecting out energy-momentum eigenstates will be given here. Consider
a typical soft photon state described by a principal vector

I {n,&}):

l{n."})=expL—
2 &In."I'3 exp 2 n." d'k f.(k)e'"'(k)a'""(k) 10)

X,a 'h, a g

=exp[—
~ +In "I'] P —P n" d'ki f,(ki)e'"'a&"'t(k) P a," d'k„ f,(k„)e'"'a&"'t(k ) I0). (B1)

=0 ~t a, X g

Using the formula
1

e' &dy= 8(x),
2'

(B2)

it is then possible to project out from
I {n,i})the eigenstates of energy momentum:

00

~(~,K) I {-."})=exp[—:2 I-. I 3 2—
m=0 g, I

n

d'k; . d'k. II [Z ."f.(k;)e'"'(k')a'""(k, )l&(&—2 ')~'(K —Z 4) Io)
i=1 a, X i

1
=exp[——,

' p ln."I') Q — — dyd'x e'e&e'x
a a=0 ~!(2m')4

d'k; . .d'k g[P n,"e '""e '~"f,(k;)e&"&(k;)a&"it(k~)g I0)

dyd'xexp[ —-,'pln, "I'ge'e&+'*'*exp p n," d'ke '"&e '"'*f,(k)ei"i(k)a&"&t(k)
(2n-)' X,e X,a

(B3)
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APPENDIX C: INITIAL AND FINAL STATES
WITH DIFFERENT RESOLUTION

REGIONS

Suppose that we are dealing with the situation where
the resolution region 0 for the initial state is smaller
than the resolution region 0' for the final state (Q( 0').
In other words, the threshold for detecting low-energy
photons is lower before the scattering experiment than
afterwards. Then an infrared divergenceless matrix
element in a form analogous to Eq. (64) may be ob-
tained with very little additional complication.

Let us define a domain D of momentum space such
that

O'= QUD,

where QUD=O. Then we suppose that there exists a
complete set of orthonormal functions ig;(k) }defined on
D. A typical final state is now given by

right-hand side the additional factor

expL —-' Z I v
'"

I
'j expLZ v '*"(g.*P("')~j

X, c

and the divergenceless sum

X,c

X,a

yn, m'=0

contains integrals of the functions (g,}over the addition
region D.

We now define new coefficients P,'" and variables
ey, '~ in a similar way to Eqs. (59) and (61):

P Q —
(g

+ g(w) v ~i —P ~x+e ~x (C2)

Then the additional (noninfrared-divergent) factor
becomes

exp g v; d'k f;(k)ut(k)
0

expB Z Iv'I'j

It is natural to define

X,a
(C3)

exp g v d'k g;(k)u"(k)

IO). (C1)
expBZlv I'j

The indices having to do with polarization have been
suppressed. The result of the modification is that in the
derivation of Eq. (55) one must mal e the substitutions

v x f e(x) ~ v x f e(x)+v ix
g e(i)

0 0 D

so that Eq. (64) becomes

3II=exp(()(B+()(8()+e(Bg)) expL —-', P I eg."—e;."I ')

)&expL ——', P I eg.'" I
'je'~ P m, . (C4)

m, m'=O

In this expression the infrared divergences cancel in
the sum nB+c(Bo of the argument of the first ex-
ponential. The term exp(nB))) accounts for the differ-
ence in resolution regions. The condition for finite
matrix elements is now

so that Eq. (55) is correct only if we have on the X,a
(C5)


