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The infrared divergences of quantum electrodynamics are eliminated to all orders of perturbation theory
in the matrix elements by an appropriate choice of initial and final soft photon states. The condition for this
cancellation restricts these states to representations of the canonical commutation rules which are unitarily

inequivalent to the usual Fock representation.

I. INTRODUCTION

HE matrix element in quantum electrodynamics
for the scattering from an initial state containing
a finite number of electrons and photons into a similar
final state contains an integral which diverges loga-
rithmically for small momentum %. The conventional
treatment of this “‘infrared divergence” has been to
sum the cross sections over all possible final states con-
sistent with experimental measurements. In particular,
when all states with any number of soft photons with
momenta below the threshold of observability are con-
sidered, the divergences cancel, and the calculated cross
sections are consistent with experiment. It is therefore
possible to attribute the original divergence in the
matrix element to the inappropriate choice of initial
and final states to represent the experimental situation.
In an actual scattering experiment, an indefinite number
of soft photons are emitted, so that in some sense, states
which are eigenstates of the number operator are
unphysical.

In this paper, we shall show that there exists a repre-
sentation of the photon states for quantum electro-
dynamics which appears more appropriate for describing
scattering than the usual Fock representation in that
the matrix elements do not have infrared divergences.
These states are not eigenstates of the number operator,
and are parametrized in a manner similar to that used
by Glauber,! Bargmann? and others. When certain
conditions of convergence are imposed, the states can
be shown to form irreducible representations of the
canonical commutation rules for the “in” and ‘“out”
fields which are unitarily inequivalent to the usual Fock
representation. Similar results have been obtained by
Shroer?® in certain model field theories.

In the absence of known solutions to the renormalized
field equations, we make no pretense to mathematical
rigor. In particular, the Feynman-Dyson perturbation
techniques are used throughout, and most questions
of order in limiting procedures, etc., are treated
heuristically.

Section IT will summarize the parts of the conven-
tional treatment of infrared divergences which we shall

#This work was performed under the auspices of the U. S.
Atomic Energy Commission.
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3 B. Schroer, Fortschr. Physik 11, 1 (1963).

need. This section is based on a more complete dis-
cussion made in the article by Yennie, Frautschi, and
Suura.* The parametrization of the states and its rela-
tionship to the usual occupation number parametriza-
tion are introduced in Sec. ITI. We shall make use of the
algebra of states developed in Glauber’s paper.! In
Sec. IV, the cancellation of the divergences to second
order is demonstrated in order to illustrate the methods
used in the succeeding sections. A calculation of the
matrix elements for potential scattering in Sec. V shows
that the divergences indeed cancel to all orders. In
Sec. VI, the structure and the physical meaning of the
representations are examined. Then we show that by
squaring the matrix elements and summing over the
final states results are obtained in low order which agree
with those obtained by Yennie ef al.* by the conven-
tional treatment. Some extensions and generalizations
of our treatment are carried out in the appendices.

II. SEPARATION OF THE INFRARED FACTORS

The following exposition of the separation of the
infrared parts from the matrix element can be found in
the review article by Yennie e al.* We will summarize
here what is relevant to our own discussion. For sim-
plicity, we study the example of an electron scattering
from a potential, although similar results can be ob-
tained for more general situations.

Consider a process in which there are a fixed number
of photons and an electron of momentum p in the initial
state and a fixed number of photons with the scattered
electron of momentum p’ in the final state. The photons
may or may not have interacted with the electron line.
The complete matrix element for this process is
given by

M(p,p)= f M.(p,p), (1)

n=0

where M, (p,p’) corresponds to the sum of all diagrams
in which there are # virtual photons which can be
distinguished from the potential interactions in the
“basic process” M. The real photon variables have
been suppressed.

4D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys,
(N. Y.) 13, 379 (1961).
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INFRARED DIVERGENCE IN QUANTUM

The quantity p,(k1,- - -,k») is defined by the relation

1 / /InI d*k
=— [ .. (1, B 2
2l i=1ki2—)\2+iep ( 1 ): ( )

where X is the photon mass which we allow to approach
zero later. It has been shown that p, is of the form

pn(ksys - k) =S (kn)pn1(ks,” - * fn—1)
+£(1)(k17 *y n—-ly n), (3)

where S(k,) contains the %, infrared divergence, and
can have the form

1€ 2p)—k,
S n)——[ I -
(2m)4d\2p - k—F?
The remainder £ has no infrared divergence in %,, and
its infrared divergence in the other %’s has not been
made worse by the separation.

By iteration of Eq. (3), pa(k1, - -,kx) can be expressed
as a sum over all permutations of the £’s:

(4)

217,,—]8,4)
2p-k—k2)

pulkyy )= T 5 ———

perm r=0 r'(%-——-f) !
XH S(ki)Sn—-r(kr+l,' v 7kn) . (5)
=1

The functions £, are noninfrared and symmetrical in
the &’s. If we adopt the definitions

ak Sk
aB(p,p)= / ( ), (6a)

mT(p:p )—~ H ~T_Er(kl) k") ) (6b)

7! =1

then substitution of (2), (5), (6a), and (6b) into (1)
results in the simple expression

M=exp(aB) é . )

In this expression, mo=po= fo=M . The m,’s in (7) are
divergence-free, so that the whole infrared divergence
has been isolated in the argument a.B of the exponential.
For future reference, we can write down the form of
Re(aB) which follows from (4) and (6):

e? ack
Re(aB)= /
402y ) (B2
2p—Fk 2pu—ku\?
X( V4 K 74 ) ®)
29" k—N\2 2p-k—N\?
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The extraction of the infrared contribution to the
matrix element for the emission of real photons has a
form similar to that in Eq. (3). In this case, we let
pu(k1,” - +,kn) be the matrix element corresponding to
the emission or absorption of # undetectable photons
with momenta k1, - - -, ks, and for some arbitrary order
in the virtual photon corrections. It has been shown that

5n(k1;' * ',kn)zj:s(kn)ﬁn—l(kl) n)
+ E(l) (kla i) ka1 5 n) ’ (9)

where S(&,) is the factor containing the infrared di-
vergence and has the form

S"(k) e I‘p e P e]

10
L2020k 12LE-p pok (10

and the (+) and (—) signs correspond to emission and
absorption, respectively. Again the remainder £® is
divergence-free in k,, and the divergences in the other
F’s is no worse for the separation.

It has been shown that the iteration of (9) leads to
the form

(s, - - k)= 22 Z( )m——

perm r=0

ri(n—r)!

Xﬁ SkDEr(bryr, - kn), (11)

=1

where the functions £ are noninfrared and symmetrical
in the %’s and m corresponds to the number of absorbed
photons.

III. PARAMETRIZATION OF THE
PHOTON STATES

The properties of the states which we will find con-
venient to use have been discussed by several other
authors'? in different contexts from the one in which
we intend to use them.

Let {f:(k)} be a complete and orthonormal set of
functions defined on some region 2 of momentum space
including 2=0 (perhaps all of momentum space). A
typical state “belonging to the ith mode” is defined by

xp(ea;t) (as T)"
2y —exp(— s

l%)— |0> (13)

exp(3|ai|?)
where

- [ swai) (1)
is an “in” or “out” creation operator.

In this expression, «; is a complex number which can
take on any value in the complex plane, af(k) is the
photon creation operator which obeys the commutation

rules
La(k),a’ (k) ]=8(k—F'),

La(k),a (k") 1= La' (k),a" (k) ]=0, (15)
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(a) (b)
%x %x
(c) (d)

and |0) is the state with no photons; a;" obeys the
commutation rules

LaiaT]=6i, [asne;]=[ai,ae]1=0.

From the commutation rules, it is a trivial matter
to show that these states are eigenfunctions of the
destruction operator

a(k)|ai)=aifi(k)|a:)
or 17

ailai)=a;| i),

F16. 1. Contributions
to the second-order
virtual-photon radiative
corrections.  Diagram
(a) corresponds to the
original uncorrected
matrix element M.

(16)

and that the mean number of ‘“photons” is
(el ¥lai= [ b ol B o= 2. 19

It is sometimes useful to note that the state in
Eq. (13) can be “created” by a unitary operator

D (a;)=explaia —a*a:], (19)
which has the following ‘‘translation” property :
D(a:)D(B:) = exp[ 5 (@B —ai*B:) 1D (aitB:) . (20)

The states defined in this manner are nonorthogonal;
the overlap between two states |a;) and |8;) is given by

[{os| B:) 2= exp{— |ai— B[} . (21)

However, it follows from (21) that the states are
normalized, 1i.e,
{es]es)=1. (22)

Another property which these states possess is com-
pleteness. In fact, it is easy to show that

1
;/dzaifa,;xail =Zl7’h><nz| =T, (23)

where the state denoted by %, is an eigenstate of
the number of photons which have the momentum
distribution : described by the function f:(%), and
d’e=d (Rea;)d (Ima;) is real.
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An arbitrary state of the /th mode has an expansion
in terms of the #-photon states of the form

(e
| V=2 caln)=2 ci——|0),

i (24)

where >, |c.|2=1. We associate with each such state
an analytic function,

3

f(z)=2n: Cn(n e (25)
Equation (24) may then be rewritten as
| f)=f(a)]0). (26)

Using (23), we can expand |f) in terms of the new
states:

1
n=- [l salo

1
— / Padad () exp(=3|a]?).  (@D)

™

In (27) we have used the fact that the states |a;) are
eigenstates of the destruction operator a;:

(28)

In a similar fashion, the adjoint state vectors (g| can
be shown to possess an analogous expansion,

ai[ai)zaila».

1
(gl == / Co(8:)1#(:] exp(—3|8:| D% (29)

A basis for the whole electromagnetic field is a direct
product of the states |a;) of the individual modes

| Y=1L:le)=|{a}),

and the mean number of photons in such a state is

2ilasl?. €2))

Equations (25), (27), and (30) ensure that states
containing a finite number of photons (the usual Fock
representation) can be expanded in terms of the states
| {a:}) which satisfy > ;|a;|2< «. This will be shown
in Sec. VI. However, this restriction will not be imposed
in the discussion that follows, i.e., we shall allow for the
possibility that there exist states in which the average
number of photons is not bounded.

(30)

IV. CANCELLATION OF THE INFRARED
DIVERGENCES TO SECOND ORDER

In order to illustrate the general procedure, we shall
choose two particular photon states parametrized in
the manner just discussed in Sec. III and calculate in
lowest order the matrix element for potential scattering
from one to the other. The photon is assumed to have



INFRARED DIVERGENCE IN QUANTUM ELECTRODYNAMICS

a finite mass N which is allowed to approach zero at
the end of the calculation.

Let the initial momentum of the electron be p; and the
final momentum of the scattered electron be py. For the
initial state, we choose

| >i=exp{—% 5 f [SMk)I?d%}

2

><exp{ 5 / o Si<l><k>e<l><k>a<l>f<k>} 1 (p))

=1

Z]Biall2}

la

=exp{—3

Xexp{lz B / o fa(k)e(”(k)a””(k)} 19(52),

where (32)

pir e
[2(27)3ko V2 k- ps

is a function which depends on the momentum of the
initial electron. |¥(p;)) is the wave function for the
electron, and ¢ (k) are the polarization vectors. The
superscript (!) is the polarization index. Since Eq. (33)
is meant to define the momentum distribution only
as |k|— 0, the function S;(k) for 270 can be chosen
in any manner which makes the integrals in (32) con-
verge as k — . The second form given above exhibits
the relation to the discussion in Sec. I1I. The coefficients
Bia' are the coefficients obtained in the expansion of
S:!(k) in terms of the chosen orthonormal set.

The initial state can then be expanded in lowest
order to give

| »%(1—%;21 / |§,~<”(k)[2d3k>

Si®(k)= (33)

x(1+l§21 dskSi<l><k>e<l><k>a<l>f<k>)l\II(p,-».
(34)

Similarly, the final state can be expanded to give

D1ty / 15,00 )

x(1+§ o S,<l><k>e<l><k)a<l>*(k>) 1%(p)),

where (35)

e Pf‘e(l)
[202m)%k V2 Beps

Let the basic interaction given by the matrix element
M be the single-potential interaction shown in Fig. 1(a).
In order to calculate the .S matrix to order ¢, the con-
tributions from all the diagrams in Fig. 1 and Fig. 2
must be summed. Diagrams (b), (c), and (d) of Fig. 1

3,0(k)=
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F16. 2. Contributions
to the second-order cor-
rections due to emission

é >‘/\x ;\x
(a) (b)
or absorption of real x

soft photons. Diagram

(a) accounts for the (c)

possibility ~ that the
A’>'\NX k‘x
(d) (e)

photon does not interact
with the electrons at all.
correspond to the virtual photon radiative corrections
to M. Diagrams (b), (c), (d), and (e) of Fig. 2 account
for the possibility of emission or absorption of single real
photons, while diagram (a) of Fig. 2 accounts for the
possibility that the photon does not interact with the
electrons at all.

From the discussion in Sec. IT of this paper, one
knows that the diagrams in Fig. 1 will contribute

Mo"l— (aB—I—n)Mo,

where 7 is a quantity which is not infrared divergent
as A — 0. The contribution from diagrams (b) and (c)
of Fig. 2 gives a term with a factor

(36)

> / S, O@EOWMAER], G

where S® (%) was defined in Eq. (10). A similar con-
tribution from diagrams (d) and (e) of Fig. 2 is

- /d% SiORSO (k)M o+ (k)] (38)
1
The disconnected diagram (a) of Fig. 2 is given by
My /d% SiOE)S; V(). (39)
7

Summing Eqgs. (36) to (39) with the proper normali-
zation given by Eq. (54), one finds the result

M,,-*f%’(l—}—aB-i—n)Mo(l—%Zl /ISi”)(k)IQd%)
X(l—%il“, /[S‘f“>(k)]2d3k)

+[5 [Eo-smsemarti i,
l

MY / B 5PRS,OF), (40)
l
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—
]
Fic. 3. Representa-
) X tion of / noninteracting
P real soft photons, 7 real
soft photons absorbed
by the electron line, and
X m' real soft photons
— emitted by the electron
£ P line.
i—i——d
m

where 7 is noninfrared divergent. Thus

Mioy=Q+eB)Mo+(+0)Met+Mo Y / |S© () |2d%
i

—M % / RS O®) ]SO 0) |
i
=5, 0®)S: (k)3 +0(e")

=(1+aB+%Z /IS“”(k)lzd“k)MO
!

+(+2)M+0(e), (41)
where we have used
SO R)=5,D (k)—S;V (k). (42)
From (10) we have the relation
2
v [ 150w
=1
=23:_ & /dsklip"l'e(l)—P.e(l)T(_gu)
1=0 4(27)3k, Pk bk
2 / 2
- /d%[h ﬁ} =aB. (43)
4(2m)%ko pk pk
Thus
Misp= (14+aB+aB)Mot (n+7)Mo+0(e*). (44)

By comparing Eq. (43) with Eq. (8), one can see that
the infrared divergence which occurs when A — 0 has
been canceled in Eq. (44).

Note that it is the matrix element which is finite.
Thus in the calculation of the cross section, there will
be no need to deal with an infinite sum of divergent
integrals, as must be done in the conventional treatment
of infrared divergences.

V. CANCELLATION OF INFRARED
DIVERGENCES TO ALL ORDERS

It is now a matter of algebra to calculate the matrix
element for the transition from a state of electron mo-

CHUNG
mentum p and photon “quantum numbers” {«,*} to a

state of electron momentum p’ and photon “quantum
numbers” {y}, where

exp ; [a,}‘[ d"'/afa(k)e,,(")(k)a“”(k)]
e

[{er})=11 [0).

exp[2 3|aa*|?]
* (45)

The superscripts (\) refer to the polarization indices.

Consider all the diagrams represented by Fig. 3, in
which there are 7 real photons absorbed by the electron
line, ' real photons emitted by the electron line, and
I photons which do not interact with the electron at all.

The matrix element for the process |[{a.}},p:) —
[ {7y },p,} is then a sum over all dlagrams of the kind
shown in Fig. 3 for all values of m, m’, and [, and with
the proper factors determined by Eqs (45).

Considerations which enter the calculation of this
matrix element are expalined below :

(a) There is an infrared divergent factor ¢*B due to
the virtual photon corrections. [See Eq. (7)].

(b) The overlap of the / initial-state noninteracting
photons with the / final-state noninteracting photons
contributes a factor

l
ll[ 2y f d3kfc*(k)fa(/€)eu“’(k)eu“')(/e)]

Hs@sCy
AN

ZZ'EZ aa)‘yc*)‘,ﬁxx'(sac]l- (4’6)
AN,

a,c
(c) Equation (11) gives the contribution due to the

interaction of # initial-state photons and 7' final-state
photons with the electron line

m+m'
e N (R, = femam)= 22 2 (— 1)”‘(H S®(k:))
perm (=0
k's
1
X £m+m’—t{ M (kH—l; e 7km+m’)"~—'-' . (47)

tW(m~+m'—1)!

(d) Contribution (c) must be integrated over the
momentum distribution that is obtained from the formal
expansion of the initial and final states [see Eq. (45)]:

[(1;"11 % a2 / &, fa(kr)>

X( mﬁm, 2 vt

r’=m+1 N,¢c

v / Pl Jl*(kw))

Xﬁ?ﬂ-}-m'()\’)\,)(kla' : ';km+m’):l . (48)
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(e) The formal expansion of Eq. (45) also leads to
the factors

1
(m+D! (m'+1)!

exp(—3% leaaxl )
Xexp(—% %Z,Ivc"l2)- (49)

(f) In addition to the above, there is a combinatorial
factor which accounts for the number of ways that

N w ©  ® 1 1 rGm+0) (m'+1)!
M=eB
¢ Eo mZ=0 mz'=o|:(m+l)! (m'+1) ']l:

mlm' !

x[(ﬁ 5 / &, fa<kr))( T 5

r’=m+1 N,c

r=1 \,a
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_ (m41) initial-state photons and (m’4I) final-state

photons can be distributed among # initial-state inter-
acting photons, 7’ final-state interacting photons, and
I noninteracting photons:

(m+D! (m'+1)!
mll w'i

(50)

After summing over all numbers m, m/, and I, we
arrive at the following expression for the matrix
element 4/ :

][exp<—% £ a2 exp(—} £ 7| STHILE a1

'/d3kr’ fc*(kr’))ﬁrn-l—m’()")\/) (k1,- - .,km+m,):| . (51)

Another factor correspondlng to the contribution from the scattering of photons by photons could have been
included explicitly, but since this term does not contribute to the cancellation of infrared divergences, nor does
add to the divergences, it has not been considered in this analysis.

Making the appropriate cancellations, and combining the terms with a little bit of careful counting, we arrive

at the expression

m'!

w1l o 1 m’ m!
M=e2 3 -3 = % ~—[za %**Jl{

1=0 [l m=0 ! m'=0 ' a,\

=0 3'=0 jl(m— 7)1 j"N(m'— 7')!

X[~ a (S TS w*x'<fc*,3*')ﬂjf'mj,mr_f<pi,pf>}[exp<—-;—xz 0 (%) exp(—} T, 62)
where ' , ' '
(S foda= f FESOBLE), (f4,5)e= / IOVAIOH
and ’ ?
; p
P (T [t Zadf@d)(IL [#he 5 v @) o e pins). 69
r= /=1
Defining the “residuals” m; ;» by
Pj;
m;, i (Pisps) ——""I—' (54)
73
and reordering the sums in (52), we can write
M=e® exp[—} T |a T exp[—} X vo} T expl T ayet]
\a Ao Na
Xexp[ — Z NS, fa)a] eXp[Z YNEANH L ). (55)
m,m’=0
To simplify the notation further, we define the coefficients 8,* by
Bar=(f*,5Mq. (56)
Since the function S is real, Eq. (55) becomes
H=e expl—} X |a| T expl—} T v ] expl X arbye]
\a Na \a
XeXP[—F ag8a*] exp[g: B X M (pips)}. (57)
,a a m,m'=0
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As in Sec. IV, it proves convenient to split the function S® into two parts:

_ e i e™
5:(k)= ,
[2(27)%k0 1% k- p:

We can then define the coefficients 8;,* and 8y,* by

ﬁia)\= (fa*;s‘io‘))ﬂ ’
so that by Egs. (10) and (56),

ﬁa)‘zﬁfa)‘_ﬂia)‘ .

. p(N)
M@= (58)
L2 k] b py
ﬁfﬂ)‘= (fa*)gf()‘))ﬂy (59)
(60)

The complex coefficients {a,} and {y.*'} which specify the initial and final states of the photons may be re-
garded as a set of coordinates in some complex infinite-dimensional space X. It is then possible to simplify Eq. (57)
by making a translation of the coordinate system in X by the amounts defined in Eq. (59):

Thus

M= C“B{ €xp )‘Z [—% lﬁia)‘+ €ia® I 2—% I ,Bfa)"l‘ ffa)‘ | 2 (ﬁia)‘-l*' 51‘41)‘) (ﬁfa"—l- Efa)‘) *

where the mode and polarization indices have been suppressed for convenience.

By Egs. (43), (53), (56), and (60), we have

= 1l —p =T 3182= T [on 30w || v 3w 18 |

'Ya)=ﬁfa)\+€fa)\y aa)‘—:ﬂia)\'i_eia)‘- (61)

_—(ﬁia)"*"Eia)‘)ﬁa*)"}'ﬁu)\(ﬂfa)\‘,_ffa)‘)*:l}]{ i mm.m’}

m,m’=0
=e*B{exp z)‘[‘i‘%lﬁf‘"ﬂilz'—% er— & *+i Im(B:* 4B, — BB+ eses*) TH i Mm,m} 5 (62)
a, m,m'=0

1 - ~ ~

=25/d3k SME)VSM(k)=aB. (63)
A

Substituting Eq. (63) into (62), we arrive at the
important result

M=exp(aB+aB) exp(—} T | era*—eia|?)
A\a

0
Xeit{ > Mm,m’} 5 (64)
m,m’=0
where ¢ is real.

The argument of the first exponential was shown in
Sec. IV to be infrared divergenceless in the limit of
zero photon mass. The third exponential has modulus
unity, and the last sum is term by term divergence-free.
If the possible states of the system are restricted by

the condition
2| st et | 2< 0 (65)
.G

the second exponential is nonzero, but less than or equal
to unity. With this condition satisfied the infrared
divergences have been eliminated. The interpretation
of this restriction is discussed in the next section.

VI. INTERPRETATION OF THE
PHOTON STATES

In the beginning of this section, we will show that
Eq. (65) defines a separable Hilbert space. To do this,
we study a related space & which will turn out to be
identical to the ordinary Fock space %, Translations
like Eq. (61) will not change the intrinsic properties
of this space. Finally, a calculation of the total
cross section will relate this whole discussion to
experiment.

Much of the mathematical material here will be
treated heuristically, but a more rigorous formulation
of the statements can be found in the papers by
Bargmann.2®

We will define a separable Hilbert space § in the
following manner: Let {6} be an infinite sequence of
complex numbers. A set of “principal vectors” |{8:}) is

5V, Bargmann, Comm. Pure Appl. Math. 14, 187 (1961).
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then defined by the equation
|{o)=1T10

=TT exp[—#6:|] exp[0ie:'][0)

~ITesol=Hlo:{ T o[ £00) 10> 60

and the condition

2 0:]2< . (67)
The elements of & are taken to be the closure of all
finite linear combinations of the principal vectors.
From (66) and the commutation rules for af(%), the
inner product of two elements, |f)=Y;_1? \;|{6:})
and | f)=3 11 ui|{6:®}), is given by

<flf’>=Zk A *uwi{exp[2 0:40,*)]
Xexp[—% 2|60:|*Jexp[—5 Z|6:®|*]}. (68)

In particular, the inner product of two principal vectors

Thus,

S 04(0/—6:)| <
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[{6:9}) and |{6;}) has the property

(€093 o))
= |exp[2_: 0*@0;™ ] exp[—3 X0:]0:|2]
Xexp[—1 Y :|6:;®|2]|2

=exp{—>_:|0:P—0;® |2}, (69)

so that the principal vectors are all normalized to unit
length. Moreover, by Eq. (67), no two principal vectors
are normal to each other.

The properties of the space could in fact have been
derived by using Eq. (69) instead of Eq. (66), but we
wish to retain the connection with the previous sections
of this paper.

The separability of & follows from the existence of a
countable sequence of vectors which is dense in §. Let
|{6:}) be any principal vector. From Eq. (67), it is
known that for any 65> 0 there exists an integer NV such
that Y i>n|0:|2<8y. Moreover, for any +<N and §>0
it is always possible to find rational numbers {R;} such
that |6;— R;|2<8.

Consider a principal vector |{6/}) such that 6/=0
for >N, and 6/=R; for i<N. Let >_;|6:|>= A% Then

> |0/ —0;|2 < No+ox
and

(Zzl 0|2 Z,| 0./— 0;|2)112< A (No4-8x)172.

[1{0:)— {0/ )P=2—({0:}[{6/})—({6/}]{6:})

=2—exp[—}

22:]6:]2] exp[—3% 3°:10/ | 2]{exp[ 2 : 040/ J+exp[>: 046.]}

=2—exp[—§ > :[6/—0:|*]{exp[i Im 3_; 046/ ]+exp[i Im 3=, 0:+0.]}

=2(1—(exp[—3

Since |{6:}), 8, and § were arbitrary, we have shown
that any principal vector can be approximated by
another principal vector belonging to a denumerable
set. The denumerable set which consists of all finite
sums of principal vectors like |{6:}) is dense in &.

In the case of massless soft photons, there is no
reason to restrict the photon states by Eq. (67). Let
{6:} be a sequence of complex numbers which are not
square-summable, i.e.,

Zilﬁi(o)lz{oo, (70)

Then the states defined by the complex numbers {6},
and which satisfy the condition

>il0i—0:92< 0 | (71)
form a separable Hilbert space $© with all the prop-
erties of &, except Eq. (67). §© is unitarily inequivalent
to &, i.e., it forms a unitarily inequivalent representation
of the canonical commutation rules.

In Sec. III, we discussed the connection between the
Fock states and the principal vectors for a single mode.
We will now briefly study the relationship between the
occupation number parametrization and the principal
vector parametrization.

22:|6/—6:]2]) (cos[Tm 3_; 046,/ 7)} < (A2+1) (Né-+6y).

The states in the Fock space &, are specified by a set
M of infinite sequences of nonnegative integers {m.},
or “occupation numbers” of which a finite number are
different from zero. An orthonormal basis of Fock space
is given by

'f)mo
m . 72
| stm))= I‘I m')wl 0) (72)
An arbitrary state | f) of &, is given by
1= X vim|utm), (73)
(m}eM
where the complex coefficients y(»; satisfy
Y ymi<o. (74)
{m}eM

At this point, it should be apparent that FC &, since

(0:a:")m
2 II

{myeM i m,

[{0:})= |0)
{m;eM i (m ')/ "
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and
(0:)m

i (mahu

(m}eMm

2 © l 0il 2m;
_I-;‘[("LZ;:O m! )
=exp(Z|0]2) <. (76)

The scalar product of two vectors | f) and | f’) in &,
can be obtained from (72) and (73):

= Z v v (77
{m}eM
Let Qn{m:} be the truncated sequence
Qn{mz} = (ml,m2, ce ,mn)0,07 o ) ) (78)

and define a projection on &, by

| f)=En { 2

m}EM

2 vimtlu), (79)

{m) EMn

Yim} | %im}) =

where M, is the set of all sequences of the form given by
Eq. (78). Then it follows from Eq. (74) that E,|f)
converges strongly to | f) as # — . We will show that
E,|f) is contained in &, which implies that F,=5.

The expansion of E,|f) in terms of the principal
vectors follows directly from Eq. (27):

En'f>= 2 ’Y{m}ﬁ du;

{m)EMn =1
(0{*)mi
X I (017027' o 70n;010w' : )> ) (80)
(i
where
dp;=7"1 exp[—3|6;|2]d(Red,)d(Jmd;).  (81)

From Eq. (69), it is clear that principal vectors |{6.})
which do not satisfy Eq. (67) are orthogonal to £,| f).
Therefore E,| f)EF and the result F,= & follows, i.e.,
the Fock space built from states with a finite number
of photons, and the space of principal vectors satisfying
Eq. (67), are the same space.

In order to satisfy the requirement Eq. (65) for finite
matrix elements, it will be necessary not to restrict the
scattering states to §. For if the initial state were in &,
i.e., the {a,*} of Eq. (45) satisfied the condition

> |P< e, (82)
\a
then the final state parametrized by the sequence of
complex numbers {y,*} would be given by

’)/a)\:aa)‘—l— (Bfa)‘—,Bia)‘)'*" <€fa)‘_ fz‘a)\) y
where we have used Eq. (61), and the €’s would satisfy
(84)

(83)

> l efa)'_eia)‘l <o,
A\a
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But we know from Sec. IV and Eq. (63) that
2
Slso-s =1 ¥ [ 1300 04=B, (5
Na =1

and B—» as the photon mass approaches zero.
Therefore

;l'raklz—m, (86)

as the photon mass approaches zero. Thus the final
state cannot belong to .

Neverthesless, the coefficients {y,*} define a final
state. It must be that the final state belongs to an
inequivalent representation of the canonical commuta-
tion rules whose most outstanding feature is that the
average number of photons is infinite. Not any final
state will do, however, for the boundaries of this new
space §’ are restricted by the condition Eq. (65).

One of many ways to satisfy Eq. (65) which preserves
symmetry between the initial and final states is to
write these states as

aa)\: éia)\+ﬁia)\+ GOa)\ 3

'Yax__- éfu)\“f’ﬂfa)“*' an)‘ 5
and to restrict the states by
Zléia)‘[2<°° ) Z]efax12<°° .
Na \a

Then we would get different theories by different choices
of the sequence {eo*}. With such a choice, the photon
states would have a dependence upon the momenta of
the participating electrons.

So far we have not spoken at all about @, the region of
momentum space on which the single photon states { f,}
were defined. In an experimental situation, there is
always a threshold below which a single photon cannot
be detected. We identify @ with what we shall call the
“resolution region,” i.e., all photons with momentum
k& Q are not detectable, while those which satisfy k&Q
are detectable. In what follows, the nondetectable
photons will be spoken of as “soft” photons, while the
others will be called “hard.” Furthermore, we shall
indicate the resolution of the momentum space by a
subscript, e.g., Xo.

In a practical calculation where one wants to treat,
for example, the scattering of an electron with the
emission of hard photons, the hard photons can be dealt
with by the conventional occupation-number parametri-
zation, while the soft photons are described in terms of
the translated principal vectors. More specifically, con-
sider the calculation of the cross section for an electron
of momentum p; scattering into a state with an electron
of momentum p; plus several hard photons. The in-
coming electron is associated with a photon field de-
scribed by a sequence {a,*} and the outgoing electron
has a photon field {y,*}. In Eq. (64), the “basic matrix
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element” oo corresponds to diagrams with only the
detectable real photons and those virtual photons
necessary for the process to occur. The terms m,; for
1, j=0 contain the effects of the noninfrared parts of the
real and virtual soft photons to higher order in the
coupling constant.

To lowest order in the noninfrared photons, the
squared matrix element for a particular diagram o, is
from Eq. (64):

| M | 2= exp[2(ReaB+aBg) ]
Xexp[— )‘Z: I éfa)‘—‘ eia)\] 2_-_” M(),()] Z, (87)

We can then sum over final states. The result (to lowest
order) is independent of the initial state:

Y | M|*=exp[2(ReaB+aBg) ]| mo,|?

final
X lim (T_l)n[/d26fe—l€f|2]

states
=exp[2(ReaB+aBg)]|moo|2. (88)

The remaining exponential contains part of the effect
of the choice of S;(k) and the region of resolution @, and
we obtain a similar result to what Yennie ef al. obtained
(for a nonenergy-conserving potential). In fact, the
“reason” why the results are the same is that, in the
summation over all final states in the conventional
treatment of the infrafed divergence, the main con-
tributions came from states which were not in the usual
Fock space, but were in a nonseparable space defined
by Eq. (72) without any restrictions on the sequence
{m} of occupation numbers. In particular, the separable
space of final states §' is contained in this nonseparable
space.

In the above computation, and in Sec. V, the resolu-
tion regions for the initial and final states were assumed
to be the same. One can argue that the resolution region
of the initial state can be made arbitrarily small, but
finite, by waiting a sufficiently long time before the
scattering experiment. The situation where the initial
resolution region is smaller than the final state resolu-
tion region is discussed in the Appendix.
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APPENDIX A: GENERALIZATION OF THE
CANCELLATION TO SEVERAL
ELECTRON LINES

For simplicity, only the case of a single electron line
interacting with a potential was treated in Sec. V. The
generalization to several electron lines interacting with
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v

S TE
e %2/,}";0,

F16. 4. Representation of / noninteracting real soft photons,
my” real soft photons associated with the £th electron and absorbed
by the »th electron, and m;’* real soft photons associated with
the £th electron and emitted by the »th electron.

one another will be outlined here for completeness. It is
possible to make an extension to positron scattering,
pair production, and other processes, but we shall not
do so here.

Since the cancellation of the infrared divergences in
this more complicated situation requires a proliferation
of subscripts and superscripts, we drop all notation
having to do with the polarization of the photons.
Superscripts will now designate the electron line.

The initial state consists of V incoming electrons with
momenta pi1, Pi2, *°, Piv, *-*, Pin, along with some
photons. They scatter into a final state of N outgoing
electrons with momenta ps, «-+, pp, -+, Psn, again
with some photons. We have assumed that all resolution
regions are identical.

Thus the soft-photon initial state can, for example,
be conveniently written as

eXP[Z(Bia”-f‘ fiay)/ d*k fa(k)af(k)]
v Q

10y, (A1)

IaI exp[3 |2 Bid+ e’ | 2]

where

Bi= (fa*,Ss(pw))a. (A2)

The final-state soft photons are described by a similar
expression.

The interaction is illustrated in Fig. 4. In this
diagram, our attention is focused on the vth electron
line. The integer m ¢ denotes the number of photons in
the initial state which “belongs” to the ¢th electron and
interact with the »th electron line. Similarly, ;> is the
number of photons in the final state belonging to the
£th electron which interact with the »th electron line.
The number of noninteracting photons coming from the
£th incoming electron, and, becoming part of the ¢'th
outgoing electron, is given by the integer /¢

We arrive at an equation analogous to Eq. (64)
through the following considerations.
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(a) The overlap of the =3 Iy initial-state noninteracting photons with the / final-state noninteracting
photon contributes a factor
H EZEE' !(Z Ola,E'Ya*s )lEE ]1
1334
where
aaeEBiaE'*_eiaE, 'YaEE,BfaE‘i_equ-

Note again that the superscript ¢ refers to the electron line, and not to the polarization.
(b) A contribution from the interaction of m=y_, ;" m¢ initial-state photons, and the m'=Y, N ms"
final-state photons with the IV electron lines, gives

wtm s _ ) 1
p({mg¥{m:"}) =11 [ 2 IT(=D)mSy, ) e +m =tk p1, -+ v +m) ——:I ,
’ =0 =1 Hm+m"—1)!

where m*=> "¢ my, m'""=_¢ m¢".
(c) Contribution (b) must be integrated over the momentum distribution that is obtained from the formal
expansion of the initial and final states,

m mg+tmg’
{I;[ l:(IIE Z aaE/dakE.r fa(kfv’))( EH—:- Z VC*E/dzkf,T' f‘l*<k5:7")):” {:5({7”5,,}7{7”5/”} s kl;' : ')km;' . ‘,km-;—m’)} )
r=1 a y'=me 1 ¢

where mg=3_, m¢, m¢ =Y., m¢".
(d) The formal expansion of Eq. (A1) also leads to the factors

1 1
| Jexpl=3 215 el T expl—3 TIZ 7811,
£ (m;-l—lg) ! (’mg'-ﬁ-l;’)! : e ¢ : c &
where le=23 ¢ Lpr, I/ =2 ¢ Ley.
(¢) In addition to the above, there is a combinatorial factor which accounts for the number of ways that the

(m--1) initial-state photons, (m'4I) final-state photons, and the ! noninteracting photons, can be distributed
among themselves:

(metlg)! (mg' +1¢)!
[I;I I (m)! Ig(lss') ':I[ ¢ JI(me™)! I}(lzs') !:I .

(f) There is an infrared divergent factor due to virtual photon corrections (see Yennie ef al.t):

F=exp[aB].
To get the matrix element 17, the contributions are summed over all values of {my}, {m;"}, {l'},
- © © ) 1 1 (m£+ lf) ! (mE',+l5',) !
SRR LU
g’} =0 (mg} =0 (me”} =0 L & \(mgt-lg)! (mg'+1¢)!

£ H(ms”)ll;l(lez')l ¢ H(ms'”)!l;l(lsz')l

v

X[exp[—3 X % aaf|*]exp[—3 X g vat| 2]][g leg (X aaby *¥) ]

X {H [(ﬁ(~ S 0t / ks, faaeg,r))( "I g / Bk fo*(hm))]ﬁ(ky ) } .

£ r=1 7' =mg+1 ¢

The last factor in the braces can be reduced by separating out the divergent terms:

P N () 5 _
{H[ SR mz (=3 @l )Y w*f(fa*,Sy))ff’”PjH,

vt Ljg=0 g =0 (&) {meg— 7)) (F¢") \me"— ) e a
where

J& Je& e
PG {p,-y},{pﬁ»{(ﬁ / Y aaifaae))( big / F Y %**fc*(k))ﬁie”we'"(kn' ‘ -,kjevw)} .

r=1 P =g +1
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Again, one defines a divergence-free “residual” by

. . P
m(J,j)=——

iy
so that

M=F [g exp[ 2 aabys*¥ ]l exp[—X| Z o] *] EXPE—Z | Z vat|*]

[II exp[— Zaueﬁa*y] exp[Z va*82 71T Z Z m({7¢},{7¢")].

vE -75 =0 JE'V—O
Making the translation to a new coordinate system, we get
aaizﬁiae'l" €iat ’ 'Yaezﬂfaé‘}' Gfae y Bd=Bsd—Bsd,
and with a little additional algebra, the final result is exhibited:
M=F exp[} ZIZ Brat—Biat|*] exp[—3 ZIZ efa‘—ewelﬂe“”[fg S % mlGen el (A3)
v JE =0 JE"’—-O
The divergences in the factor F and the first exponential cancel (Yennie ef al.*). Again the condition for finite

matrix elements is
2ol Xk erat—€idf[2< 0. (A4)

APPENDIX B: THE PROJECTION OF ENERGY-MOMENTUM EIGENSTATES

For completeness, the procedure for projecting out energy-momentum eigenstates will be given here. Consider
a typical soft photon state described by a principal vector |{ea,t}):

{a})=expl—3 X [a|2] exp[z a / o fa(k)e“’(k)a“”(k)]l0>
\a Na Q

=exp[~1 T laawﬂz [zaa f d%ﬁ(/e:)e(wa@”(k)]--»[gaax / d3knfa(kn)e‘”a(m(kn):l]0>. (B1)

n=0 n

Using the formula

1
— /e“”dyz&(x), (B2)
2

it is then possible to project out from | {aa"}) the eigenstates of energy momentum:

P(EK)[{a})=exp[—3 ZlauW] Z —

n=0 n'

X { f Phi- -l TLLE @ fulb)e® (k)a™ (k) To(E— Z w)8*(K—=2_ k,)} 10)

=1 a,\

—expl3 Tl £ ~

/ dydix eifve™-x
n=0 nl (2mr)4

i \e

X { / $hir - - [I[Z aa*e-iwr“‘""fa(ka)e‘“(ki)a“”(ks)]} |0)

/ dyd®x exp[—3% 2 |ag}| ]eiButiKex exp[z agt / d3ke—iwyg—ikx fa(k)e(")(k)a("”(k):l . (B3)
(27r)4 \a \a '
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APPENDIX C: INITIAL AND FINAL STATES
WITH DIFFERENT RESOLUTION
REGIONS

Suppose that we are dealing with the situation where
the resolution region @ for the initial state is smaller
than the resolution region @’ for the final state (QCQ’).
In other words, the threshold for detecting low-energy
photons is lower before the scattering experiment than
afterwards. Then an infrared divergenceless matrix
element in a form analogous to Eq. (64) may be ob-
tained with very little additional complication.

Let us define a domain D of momentum space such
that

Q=oUD,

where QD =0. Then we suppose that there exists a
complete set of orthonormal functions {g;(%)} defined on
D. A typical final state is now given by

eXPI:I;I Vs /9 d*k fi(k)a'*(k)

f = i Y3’ >=
=) exp[3 X |74l]

exp[g ¥ /D kg D) | N

(1)
expl} T[]

The indices having to do with polarization have been

suppressed. The result of the modification is that in the
derivation of Eq. (55) one must make the substitutions

'yak/ fae()‘) —_ 'Ya)\‘/» fae()\)_i_—yaI)\f gae()\) ,
Q Q D

so that Eq. (55) is correct only if we have on the
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right-hand side the additional factor
exp[—3 z l7ve™ ] exp[? v *M gt SM)p],

and the divergenceless sum

)
Z Wom ,m*

m,m’=0

contains integrals of the functions {g.} over the addition
region D.

We now define new coefficients 3,’* and variables
€so’> in a similar way to Egs. (59) and (61):

600‘: (ga*;go‘))D 3 'Ya’)‘=18a”\+ e,fal)‘- (CZ)

Then the additional (noninfrared-divergent) factor
becomes

eXPRZ (3182 2= [ €ra™| 241 Tmes*?8a™)].

It is natural to define

aBp= eXp[?j 3182171, (C3)

so that Eq. (64) becomes
M= exp(aB+aBQ+aBD) exp[—% Z l Efa)‘— fia)‘l 2]
Na

S . (C4)

m,m’=0

Xexp[—3 X |era™|*]e™
\a

In this expression the infrared divergences cancel in
the sum aB4aBg of the argument of the first ex-
ponential. The term exp(aBp) accounts for the differ-
ence in resolution regions. The condition for finite
matrix elements is now

Zlefa)\_fia)\]2<°° ) Zlefal)‘lz<°° . (CS)
\a Aa



