STUDY OF THE

IV. CONCLUSION

We conclude that there is no evidence for nonex-
poneuntial behavior in the decay and that the mean life
of the K+ meson is 12.4434-0.038 nsec.
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In this paper is presented a brief and transparent derivation, which does not depend on the existence of a
conserved quantity, of the normalization condition for Bethe-Salpeter bound-state wave functions. A
comment on the structure of the condition is made. Application of the condition to the Bethe-Salpeter
wave-function description of physical meson states in ordinary pseudoscalar-meson theory is also described

in detail.

1. INTRODUCTION

VER since the introduction into quantum-field
theory of the Bethe-Salpeter equation,! treatment

of the normalization of the bound state or Bethe-
Salpeter wave function has presented considerable diffi-
culty. Early derivations? required the existence of a
conserved quantity such as baryon number or electric
charge and are therefore inapplicable to neutral meson
bound states, for example. Later authors, notably
Allcock? and Cutkosky and Leon,* obtained normaliza-
tion conditions without assuming the existence of a
conserved quantity and showed* that their results were
in agreement with the previous results. In the present
paper, we give (a) a new method of derivation of the
normalization of Bethe-Salpeter wave functions, which
does not depend on the existence of a conserved quan-
tity and which appears to be much more direct and
transparent than those of Refs. 3 and 4; (b) a demon-
stration of the fact that, although the normalization
condition obtained seems of somewhat odd appearance,

* Research Supported by U. S. Atomic Energy Commission
under Contract AT (30-1)-3399.

1H. A. Bethe and E. E. Salpeter, Phys. Rev. 82, 309 (1951);
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3 G. R. Allcock, Phys. Rev. 108, 126 (1957); G. R. Allcock and
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its structure is very similar to that of the normalization
conditions commonly used for one-particle wave func-
tions in quantum field theory; (c) an application of the
normalization condition obtained to the Bethe-Salpeter
wave function description of the physical meson states
in ordinary pseudoscalar meson theory. The discussion
here is similar in spirit to but of more general nature
than that given earlier by Okubo and Feldman,’ and
quite closely related to some recent work of Rowe.%

The material of the paper has been organized as
follows. In Sec. 2, we present the work associated with
(a) and (b) above, while treatment of (c) is to be found
in Sec. 3.

2. NORMALIZATION OF BETHE-SALPETER
WAVE FUNCTIONS

We illustrate our procedure by consideration of a
convenient example, that of two fermion fields, ¥4 and
¥ 8, which describe distinguishable particles of the same
mass, interacting with a neutral scalar meson field. This
allows easy comparison with many important papersi—2
on the Bethe-Salpeter formalism, as well as with the
introduction to the subject given by Schweber.” Similar
treatment of other interesting cases follows readily.

We begin with a brief review of those portions of

©S. Okubo and D. Feldman, Phys. Rev. 117, 279 (1960).

8 E. G. P. Rowe, Nuovo Cimento 32, 1422 (1964), Sec. 3.

7S. S. Schweber, Introduction to Relativistic Quantum-Field
Theory (Row, Peterson and Company, Evanston, Illinois, 1961),
Sec. 171, p. 705.
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Bethe-Salpeter formalism which are required for the
development of our work. The Heisenberg picture is
employed throughout.

A central role in the theory is played by the two-
fermion Green’s function

K (#1%9%524) = — (0| T4 (x1)¥ B (%2) ¥4 (5)¥5(24) | 0)

which satisfies the inhomogeneous Bethe-Salpeter
equation!

K (x1x2x3x4)

=5"ra (x1x3)5 "FE (x2x4)

- f d4x5d4xed4x7d“ng ’ FA (xlxs) S ’ FB (xgx.;)

X G (xsx62728) K (72082320) ,  (2.1a)
or equivalently,
K (%125%5% )
=5"p4 (xle)SIFB (x2x4)
- / 5@ nednrd v K (1209205%6) G (X526%7%5)
XS pa(%125)S p(xsxs). (2.1b)

In Eq. (2.1), S'F is given by
S'p(wax)=(0| T (x:)¥ (x;) | 0),

and G is the interaction function, corresponding to the
sum of all Bethe-Salpeter irreducible graphs.

From invariance under space time translations, it
follows that K (21x0%3%4) and G (x1%9%3%4) are functions of
only a1—2s, 23—2x4 and 3 (@1+2xs)—3%(x34x4). Intro-
ducing Fourier transforms K (pgP), G(pgP) and S’ #(p)
by means of

K (x1290524) = (2r) 8 / d*pd*qd* Pek P (artar—as—a)

><eip(m—rz)e—iq(za—u)[{(PqP) , (2.2)

an analogous equation for G, and

S’ p(x)= (21r)—4/d4pe"1’x5'p(p) ) (2.3)

respectively, we may convert Egs. (2.1a) and (2.1b)
into the forms

[avterrroerpIk@an=s-0, @t

/ d*¢'K (pq' P)[I(¢'qP)+G(d'qP)]=8(p—¢q), (2.4b)

where the quantity 7 is given by

I(pgP)=6(p— [ S raGP+p) I

X[S'r(GP—p) I (2.5)
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An obvious operator notation for Egs. (2.4a) and
(2.4b) is
(I+G)K=1,

K(I+G)=1.

(2.6a)
(2.6b)

Now, if there exists a two-fermion bound state, pos-
sibly of #-fold degeneracy, of mass M, it can only give a
contribution to K (x1xsx3x4) for 41, t2>13, 14, because of
conservation of baryon number. For such time order-
ings, the contribution to
K (x129%3%4)

=—0|TWa@)¥ s @) )T (Pa(wa)¥s(xs))|0)

is given by®

— 5 [ @PXpr (een)Xops ()0 (PO (PP4-M2),  (2.7)

r=1

where x and ¥ are Bethe-Salpeter amplitudes defined
by®
Xpr(122) = (0| T¥a ()¢5 (x2) | Pr),  (2.82)
X pr(wsa) =(Pr| TP 4 (x3)¢5(x4) | 0). (2.8b)

Here P is the energy momentum of the bound state and
7 denotes the remaining quantum numbers necessary to
describe the n-fold degeneracy (cf. Schweber,” p. 715).
On the mass shell, Po= (P*+M?)2 x and x satisfy
homogeneous Bethe-Salpeter equations

Xpr(xlxz) =— d4x5d4xsd4x7d4x85' FA (xlxa)S’FB (xzxs)
X G (wsexrs)X pr(x7%5) ,  (2.92)
X pr(23%0) = — / d*xsdxed wrd*xsX pr(x5%s)
X G (xsx607%8) S’ 7 a (Wr23)S 5 (asxs).  (2.9b)

Using invariance under space-time translations, we may
explicitly factor out of x and % their center-of-mass
coordinate dependence according to

Xpr(x12) = 2m) %2 PXX p, (%) , (2.10a)
Xpr(x52g) = 2m) 3% PX'Xp, ('),  (2.10Db)
where
X=3wita,) y X=X,
X'=%(xs+2x1), &'=x3—x4.

8 Cf. S. Mandelstam (Ref. 2). A correct derivation of this result
has never been given. Mandelstam in his paper states that Eq.
(2.7) gives the contribution of the bound state for X¢> X’ which
is incorrect. A derivation of Eq. (2.14) which takes into account
the fact that the contribution of the bound states vanishes for all
time orderings other than #, 42>, /1 is given in an appendix to
this paper.

? Note that an alternative expression for X is

X (w3,%4) = 0| Ty (a)a (x3) | PrY¥yays,

where .T orders operators antichronologically, i.e., operators with
later times stand to the right of those with earlier times.
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Then, introducing Fourier transforms by means of

Xp,(x)= (2m)~* | d*pe*X p,(p), (2.11a)

Xp (&)= (2”)_4/ dhgeie%p,(g),  (2.11b)

we may convert Egs. (2.9) ¢ and b into the forms

/ dp'[1 (pp' P)+G(pp' P) e (p)=0, (2.12a)

/ d*'Xp: (I (¢qP)+G(¢'qP)]=0, (2.12b)

for Po= (P24 M?)Y? where I is given as before by Eq.
(2.5). Corresponding operator forms are

(I+6)x=0,
x(I+G)=0.

(2.13a)
(2.13b)

Introducing the notation of Eq. (2.10), we may express
the bound-state contribution (2.7) to the two-fermion
Green’s function in the form

— (27)3 ; / d*P Xp, (%)X p+(2")
X i PE~XN5[ Py— (P24 M2)VE]/ (2Py),

and readily use Egs. (2.2) and (2.11) to derive the
result®

1
(2m)22Py Po— (P24 M%) 24-ie

K(pgP)=—

X i Xpr(p)Xpr(q)

r=1

+terms regular at Po= (P2+M2)12, (2.14)
This last result clearly exhibits the pole structure
characteristic of a bound state. One can in similar
fashion exhibit that K(pgP) has a pole at P,
= — (P2+M?)'? corresponding to the expected bound
state of two antifermions. Also, we display for later
reference, the immediate consequence

[Po— (P*4-M2)12]K (pgP) | pp=i@?r it
=—i[ 2m) 2P 1 2 Xpr(9)Xpe(g)

of Eq. (2.14).

We are now in a position to deduce our normalization
condition for the Bethe-Salpeter wave function Xp,(p)
directly from Egs. (2.6b), (2.13a), and (2.15). It is

(2.15)
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convenient to introduce an auxiliary quantity
Q(pgP)= / d*q'[Po— (P*+M*)"2]K (pg'P)
a
XB—P—[I((I'qP)-I—G(Q'qP)]. (2.16)
0

defined off as well as on the mass shell. Using the more
compact operator notation, the definition of Q appears
as

3
0=[Po— P+ M2 ]JK—(I+G).  (2.17)
aP,

An alternative expression, which can be obtained with
the aid of Eq. (2.6b), is

ad
Q=1~|:—6—1;0{[Po—(P ) ]K}](I-i—G). 2.18)

If we operate on Xp, with Q in the form (2.18), we
obtain, using Eq. (2.13a), which is valid for P,
= (P>+M?)'2, the simple equation

QXPT= xPr, (2.19)

for Po= (P?--M?%)'2, On the other hand, if we operate
using Q in the form (2.17), we obtain, using Eq. (2.15),

d
QX pr=—i[ 2m)2Po ] 3 XpX ps—(I+G)Xpr,
] P, (2.20)

(Po= (P*+-217)12).

for

In the absence of degeneracy, comparison of Egs. (2.19)
and Eq. (2.20) would lead directly to the normalization
condition

)
_(ZT)4i2P5(1+G)XP=2P0, (P2=—M2), (2.21)

0

which has previously been obtained by Allcock? and by
Cutkosky and Leon* on the basis of much less straight-
forward considerations. When written in full, Eq. (2.20)
takes on the appearance

9
— n) f P %2 )L aPIH G aP) )

=2Py, (P=—11).

In the case of n-fold degeneracy, we obtain in place of
Eq. (2.21)

(2.22)

n ad
S Xp. { —i(zw>-4<2Po>—1xpg;(zw)xp,—aa,}

s=1 0
=0; (P2=_M2)7

so that, if we assume the linear independence of the
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Xp,,'° we obtain the orthonormality relations

—_ (27!')*%)_(})3

(I_I'G)XPr: 21)0537' 5
(P2=—1).

0

(2.23)

It seems worthwhile to emphasize that the above
normalization condition, although apparently of un-
familiar appearance, is, in fact, a close analog of the
usual normalization conditions for free elementary-
particle wave functions. To underline the formal corre-
spondence, we may reverse the conventional procedure
of quantum-field theory and derive the normalization
condition for single-particle wave functions in a manner
parallel at each step to the one used above in the
derivation of Eq. (2.23). We illustrate for spin-}
particles, but it is evident that the procedure is quite
general.

We consider the fermion propagator

S (@1—22) =(0| T¥ (x1)¥ (x2) | 0).

It follows from the free-field equations and equal-time
commutation rules that Sr(x;—x.) satisfies

(v-34+m)Sr(x1—x2) = —10(X1—22) ,

and hence its Fourier transform Sr(p) satisfies

(2.24)

(v-p—im)Sr(p)=Sr(p) (y-p—im)=—1. (2.25)
We now consider 1>, and obtain
Sr(®1—x2)= 2 a*p(01¢ (1) | pr)pr | (x2) | 0)
XO(po)s(p>+m?), (2.26)

since only one-fermion states contribute because of
baryon number conservation. Using invariance under
space-time translations, we write

OlY (x1) | pry= 2m)' 12 (2m)32%¢ip iy, (2.27a)

(pr| P (as) | Oy= (2m)12(2m) 312~ o2qz,, . (2.27b)
thereby defining spinors #,, and #,, which satisfy
(2.28a)
(2.28b)

as a consequence of the free-field equations. From Egs.
(2.26), (2.27a) and (2.27b) and the fact that one-
fermion states do not contribute for £5> ¢1, we deduce as
above the result

(’Y'P_im)um‘=0)
ﬂm(’)"?"’im)=0;

m 2
2 Upillpr

i
po— Pkt po
+terms regular at po= (p*-+m2)V2,

SF(P)=

(2.29)

10 This is not an additional assumption. It can be seen from
reference to Gell-Mann and Low’s derivation (Ref. 1) of the
Bethe-Salpeter equation, that the linear independence is already
required if one is to obtain Egs. (2.9a) and (2.9b).
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We now proceed exactly as above—introducing an
auxiliary off-the-mass-shell quantity

J
[po— (0*+m?)]S F(i))g(’% p—im), (2.30)

and using Egs. (2.25), (2.28a), and (2.29), to deduce the
orthonormality relationst

a

bo

(7'?—1'7")%,,3:——( )a (2.31)

Uy
PO m.
or simply

'l prthps= (Po/M)rs (2.32)

in the familiar form.

3. BETHE-SALPETER WAVE-FUNCTION DE-
SCRIPTION OF PHYSICAL MESON IN
PSEUDOSCALAR MESON THEORY

In order to give an illustration of the use of the
normalization condition for Bethe-Salpeter amplitudes
derived in Sec. 2 and a demonstration of the consistency
of the formalism developed there, we consider in this
section a bound-state problem similar to that studied by
Okubo and Feldman® and by Rowe.¢ In this problem
we study the Bethe-Salpeter amplitudes

Xp (xle)aﬁ= <0| T‘//a (xl)iﬁ (x2> [ P):
X p(w221) pa=(P l T (1)s(x2) [0),

corresponding to a meson bound state |P) having the
same spin and parity quantum numbers as the meson
field ¢ in a Yukawa theory with interaction Lagrangian

L=iGolysid. (3.2)

The amplitudes x and ¥ are shown to be determined (to
within a factor since x and x satisfy homogeneous
equations) in terms of the basic Green’s functions of the
theory. We then determine the proportionality factors
by means of the normalization condition for x and %,
derived by the methods of Sec. 2. The possibility of
obtaining expressions for x and ¥ in closed form in
terms of the basic Green’s functions stems from the fact
that the bound state | P) can be shown in this case to be
simply a dressed quantum of the field ¢. This feature
also allows a direct evaluation of x and ¥ by means of
the reduction formulas of Lehmann, Symanzik, and
Zimmermann (LSZ).'? Comparison of the results of the
two approaches affords a demonstration of the con-
sistency of the Bethe-Salpeter formalism developed
here.

(3.1a)
(3.1b)

1 The form Eq. (2.31) of the normalization condition for one-
particle wave functions arises naturally in the formulation of
quantum field theory developed by Y. Takahashi and H.
Umezawa, Nucl. Phys. 51, 193 (1964).

2 H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
Cimento 1, 205 (1955).
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We begin by quoting the basic equations for x and X
in the present theory. Defining the Fourier transforms
Xp.(p), Xp,(q) of the Bethe-Salpeter amplitudes (3.1a)
and (3.1b) by means of Egs. (2.10) and (2.11), we may
write the Bethe-Salpeter equations in the forms

Xp(8) s = — "5 (p-+3P) o / GG Parsrs

XXp(q )y 5 S #(p—5P)srg, (3.3a)
Qo= —S'F(Q*%P)ﬁﬁ’fd4l"7_‘P(P')ﬂ'a'
XG(P'qP)argry5S #(q+5P)vy. (3.3b)

It is convenient®® to write the interaction function
G(pgP) as the sum of two terms

G(pgP)=G(pgP)+A (pgP),

where A describes the annihilation graph of Fig. 1 and G
contains the effect of all other Bethe-Salpeter irreducible

(3.4)

F16. 1. The annihilation graph.

graphs. An explicit form for 4 is

A(PgP) apys=— (21) 4GP Ar (P)VsapYssy »

where Ap(P)= (P?>+us*—1ie)! is the bare meson propa-
gator with uo the bare meson mass. To order G¢? only
the graph displayed in Fig. 2 contributes to G, and the
expression for it is

G (PgP) apys=1G*Ysavy558(2m)*Ar (p—0q) .
Hence, to order Go?, Eq. (3.3) appears as'?

Xp(p)=—1iS"r(p+3P)vs

(3.5)

(3.6)

X / 0 Xp (¢ s o (p— 4 P) (2m)GiAr (p—¢)
+iS" p (p+3P)vsS r(p—3P)
X (@) Gear(P >/ a4 Tevxe ()], G.7)

13 We omit spinor indices wherever this can be done without loss
of clarity.
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¥i16. 2. The one-meson-exchange graph.

The alternative forms of Egs. (3.3a) and (3.3b),

f 0TI (gP)+-G(paP) JupriXe()rs=0, (3.80)
/ A% (D)ol (PgP)+G(pgP) Jeprs=0, (3.5b)
where
I(PqP)a,315= ES,F(P'F%P)JRIM
XLS'e (=3P Fasd(p—q), (3.9)

will also be useful later. Finally, we note that the
relation

/ dgoX p(g)=— / dgoy Xp(Q) s, (3.10)

where ¢=(qo,q), can be deduced directly from the
definitions, Eq. (3.1), provided that one recalls that the
Heisenberg fields ¢(x;) and §(x,) anticommute when-
ever x,— x is space-like.

We now turn to the relation of X and X to the gener-
alized vertex function T's of the Yukawa theory. The
Fourier transform I';(p+3P, p—1P), corresponding to
the diagram of Fig. 3, satisfies the inhomogeneous
integral equation'®

Po(p+3P, p—3P)us
oa— / 04 Q(pq' P)upriS' s ((+3P)

XTs(q+3P, ¢ —3P)S' # (¢ —3P)]vs.

It is crucial for what follows that the G which appears
here is exactly the same function as occurs in the Bethe-
Salpeter equations, (3.3) with (3.4), given above. The
truth of this statement can be checked to any desired
order of G¢* by means of explicit developments of Eqs.

(3.11a)

p+a P

Fic. 3. Complete vertex in
momentum space. P

p-'%P
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(3.3a) and (3.11a). When one recalls that the generalized
vertex function I's is obtained from <5 by adding to it
contributions from all proper vertex diagrams,'* the
reason for the occurrence of @ rather than G in Eq.
(3.11a), or alternatively for the explicit separation of 4
from @ is understood : insertion of 4 in place G in Eq.
(3.11a) would give rise to improper vertex diagrams. In
course of the above-mentioned explicit development of
Eq. (3.3), one can also verify, to any desired order of
G¢, the identity

G(Pqp)aﬁ*/é:@(qp—l))évﬁaa (3.12)

which allows one to transcribe Eq. (3.11a) into the form

Ts(—3P, +3P)sy
— / 09/ G 0P)apil S (¢ —P)

XTs(¢' =3P, ¢+3P)S r(¢+3P) Jse.

To proceed further toward the relation of X and X to I's,
it is convenient to introduce an auxiliary function
¥r(p), proportional to Xp(p) by means of

(3.11b)

Xp (P) = { - (277')_4’1:G02AF (P)
X / da‘p’ Tr[v:,xp(p’)]]app(p). (3.13a)

It is easily seen from Eq. (3.3), the 4 contribution to
this equation being the same as the 4-contribution to
Eq. (3.7), that ¢p(p) satisfies the inhomogeneous
equation

¢P(p)(!l3= _S,F(P—*_%P)aa’ {’Yﬁa'ﬁ"i‘/d4qlé(p(]’P)azﬁ;7/,§,
x‘l’P(q/)y’«S’]SlF(p”"%P)gqg, (314&)

and, comparison of Egs. (3.14a) and (3.11a) leads to the
immediate identification

ve(p)=—3S"r(p+3P)
XTs(p+3P, p—5P)S' v (p—3P). (3.13a)

This important result will allow now the determination
of the values of the bound-state mass (— P?) for which
Eq. (3.3) has solutions. Indeed, if, for any solution
Xp(p), we multiply Eq. (3.13) by s, take the trace,

F16. 4. Fermion loop.

4, J, Dyson, Phys. Rev. 75, 1736 (1949).
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integrate over p, and divide by JSd* Tr{ysXp(p)}, we
get

Pt = @G [ 4 Tetras ), 316
and, hence, using (3.152)
Prpd= 204Gy / @ Tr{vsS s (p+1P)

XTs(p+2P, p—3P)S' v (p—1P)}
- GOZH* <p2)

3.17)
(3.18)

where II*(P?) is the well-known expression!s for the
fermion loop shown in Fig. 4. Thus we see that the
allowed values of (—P?) are just the solutions u? of the
familiar meson mass-renormalization equation!

pr—po’=—GPI* (—p?) = du2(u?) . (3.19)

In other words, the bound states | P) of the problem are
the physical (dressed) quanta of the field ¢ occurring in
the Lagrangian. Result (3.15a) also allows the writing
of the desired equation relating x to I's, namely

Xp(p)=cS'r(p+3P)Ts(p+3P, p—3P)S'r (p—3P),
(PP=—p?), (3.20a)

where the constant ¢ is given by

c= (2m)~%G32Ar(P) / d*p TrlysXp(p)]
(Pr=—u2) (3.21a)

and is at present undetermined : This is because we have
required only that Xp be a solution of the homogeneous
Bethe-Salpeter equation. Before proceeding to use the
appropriate normalization condition for Bethe-Salpeter
wave functions to determine the value of ¢, we note that
¥r(p) defined by

% (p) = { — Qm) 4G EAL(P)

X/d417/ Tr[’YE)ZP(P/)]}‘/—/P(P) (3.13b)
obeys
JP(P)«Sy:—S'F(P_%P)as'{’Ysaw"f‘/d49/G(PQ'P)a'ﬁ'v'a'

X\(—/P((]I)afa'}S'F(p+%P)7/7 (3.14b)

so that comparison with Eq. (3.11b) yields
Ye(p)=—5"r(p—3P)
XTUs(p—3%P, p+3P)S v (p+3P),

15 Qur notation here coincides with that used in D. Lurié¢ and
A. J. Macfarlane, Phys. Rev. 136, B816 (1964).

(3.15h)
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and, hence,

Xp(p)=c'S'r(p—3P)Ts(p— 3P, p+3P)

XS'r(p+3P), (P:=—u?), (3.20b)

where the constant ¢’ is given by

¢ = QR 4iGEAR(P) / &4 Tlve (8)],

(Pr=—p?). (3.21b)

We also need the following alternative form of Eq.
(3.14):

/ T (pgP)+ G (PP Jurste (@)= —veus,  (3.222)

f *pUp(P)sal I (pgP)+G(pgP) Japrs=—vssv, (3.22b)

where I is given by Eq. (3.9).

We now turn to the determination of ¢ and ¢/, which
completes the specification of the relation of the Bethe-
Salpeter wave functions X and X to the vertex function
T's. We first note that although the previous discussion
does not determine ¢ and ¢/, it does relate them. Inser-
tion of Eq. (3.10) into Eq. (3.21b) and comparison with
Eq. (3.21a) immediately provides the relation

=—c*.

(3.23)

We now use a normalization condition for the Bethe-
Salpeter wave functions X and X to determine ¢ to
within a phase. By means of a procedure similar to that
followed in Sec. 2, we obtain such a condition in the
form

_ 0
(2m)4 / d*p f PG Do UL (o) GpaP o

XXP(9)75=2P0; (P2= - 2) ) (3-24)
with the same I and G as in Egs. (3.9) and (3.3). We
consider the 4 and (I4+@) contributions to the left side
separately. In the former case, insertion of Egs. (3.5),
(3.20a) and (3.20b), and direct performance of the
differentiation yields (P?= —pu?)

Cryic 4 TrdBo0)10P) Pty
X @y (=iG2 [ a4 T 0],
Inserting Eqs. (3.15a) and (3.15b) for ¢ and ¢, and

using Eq. (3.17) twice immediately reduces this to

—2Pocc’Gg2 N (.P2= —,11.2) . (3.25)
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Turning next to the 74+G@ contribution, we use Egs.
(3.20a) and (3.20b) and write it (still with P?=—p?) as

cc’ (2#)—4%fd4P/d4q \[-/p(p)pa
a _
X—[1(pgP)+G(pqP)Jasvs¥r(q)vs
0P,
~coaryti [ it [ a0 o a0+ C0P L

, X (—8¢p(g)4s/P0)
=cc’ (2n)% / qu}T{TI‘ [ysvr(9)]}.

Herein, use of Egs. (3.22a) and (3.22b) has been made
in the second and third lines, respectively. Inserting the
form (3.15a) for ¢ converts this contribution into

a
——CC'(27r)_4i/d“q—-—{Tr[‘YﬁS'F(Z’+%P)
P,

XFE(?'*-%P; P—'%P)S,F P_%P)]} ’ (P2= _#2) )
e T
P,
=2Pocc'IT¥(—p?), (PP=—p?), (3.26)

where IT* is defined by Eqgs. (3.17) and (3.18) and II* is
its derivative. Final evaluation of the contribution now
follows use of the result!®

Zitl= l—GQZH*I(—p,g) N (327)
and, putting together of Egs. (3.24) to (3.27) yields
CC,= —Z:;Go2 . (328)

Hence, if we demand that ¢ be real and positive,
Egs. (3.23) and (3.28) give

6=Za”2Go, C/=—Z31/2Go, (3.29)

and the relation of X and X to I'; is fully specified.

Before proceeding to the use of the LSZ formalism to
confirm the results just obtained, we may note the
following argument which sheds considerable light upon
them. In the theory defined by Eq. (3.2), the fermion-
antifermion Green’s function is known to have a pole at
Po= (P2 u2)!2 arising from a term of the form

(2r)4GeA r (P?)
XS r(p+3P)Ts(p+3P, p—3P)S'r(p—3P)]
X[S'r(g—3P)Ts(g—3P, ¢+3P)S'r(g+3P) .

This term corresponds to the one-boson exchange dia-

16 This choice of phase leads to agreement with the alternative
method of obtaining X and X in terms of I's employed below.
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F16. 5. Diagram giving pole
in fermion-antifermion Green’s
function.

gram shown in Fig. 5. The residue at the pole Py
= (P>+-u?)'2 is simply
(ZW)_4GOZi23(— 2P0)’1

X[S'r(p+-3P)Ts(p+3P, p—3P)S v (p—3P) ]
X[S'r(g—3P)Ts(¢—3P, ¢+3P)S'r(g+3P)],

evaluated at Po= (P?+u?)V/2 By virtue of Egs. (3.20a),
(3.20b), and Eq. (3.28), this equals the quantity
(27)~%(2Po) X p(p)Xp(q), evaluated at Po= (P?-+u2)12,
in agreement with the analog in the present theory of
Eq. (2.14). We now conclude the section by employing
the reduction formula technique of Lehmann, Symanzik,
and Zimmermann'? to evaluate the Bethe-Salpeter
amplitudes (3.1a) and (3.1b). The availability of this
approach stems from the fact that the boson bound
state |P) is just the dressed quantum of the field ¢,
appearing in the Lagrangian.

Direct application of the reduction formula tech-
niques to X and X as defined by Egs. (3.1a) and (3.1b)
yields the results!”

Xp (@) = — (2m) 9% Zi 02 / diyesu (01— p2)

X T ()¢ (x2)9 ()| 0),  (3.30a)

Kp (aer) = — ()2 Z 02 / diye=iPy(0,— 1)

X[ TP (w2 (1) () [0},

with P?=—u2 u being the physical meson mass. A
comment on the occurrence of the factor Zs7'/2 in these
equations seems necessary.!® It stems from our use of
the asymptotic condition

Jlim (a]¢ (@) [0)=Z5"a|,,,, () |0),

(3.30b)

(3.31)

7 Qur normalization of single-particle states is (P'|P)
=2P¢(P—P’). This is consistent with the conventions followed
in Sec. 2.

18 Cf. Y. Takahashi and H. Umezawa, Ref. 11, and H. Ezawa,
Ann. Phys. (N. Y.) 24, 46 (1963).
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¢(x), like ¢(x) and Y(x), being an unrenormalized
Heisenberg field operator.

By standard procedures, we can evaluate the vacuum
expectation value (0] 7Y (1) ¥ (%2)¢ () | 0) obtaining

O] Ty (x1)¥ (x2)9 () | 0)
= Go(2m)~%i / d / O ¢ ¥ sag=i= k)
XS p(R)Ts(k,E)S r(B)A p(k—F'),

where A’r(P) is defined by
O[T () (y) | Oy= —iA"r (x—2)

(3.32)

=—2n)4 / dpe DA g (p).

We may combine Egs. (3.302) and (3.32) and derive the
result

Xp (xlxz) — (2,".)—3/2GOZ3—1/2(21‘.)—4 /d“[)e* 1P(z1+ z2) g ip(21—23)

XS'r(p+3P)Ts(p+3P, p—3P)

XS'r(p—3P)A r(P)(P+u?), (3.33)
which is to be evaluated at P?=—u?, using the well-
known result

lim (PHu)A'p(P)=2Z;. (3.34)
Po—o—p2

Introducing the Fourier transform of Xp(x122) by means
of Egs. (2.10a) and (2.11a) now gives

Xp(p)=GoZs S r(p+3P)

XTs(p+3P, p—1P)S'r(p—3P), (3.35)

which agrees with the previous results, cf. Egs. (3.20a)
and (3.29).

We may also handle Eq. (3.30b) in a like manner and
thereby confirm the previous results, cf. (3.20b) and
(3.29), for Xp(q).

APPENDIX: DERIVATION OF EQ. (2.14)

The contribution (2.7) of the bound states to the two-
fermion Green’s function may be written as

n dsP _
— (271.)—3 Z —Xpr (x) Xp, (x’)e iP+(X—X") p—iw P(Xo—X0’)
r=1 wp

XX —X"—%[x[—3[2']), (A1)
where wp= (P24 M?)!/2. The above expression represents
the contribution of the bound states for any time
ordering, since, as is easily verified, the factor
0(X—X'—1%|x|—1%|4'|) equals 1 when &y, 4p>13, ¢4 and
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zero otherwise. We now insert the formula
0(y)=— (2mi)™? / dKo(Kotie)te Koy (A2)

into (A1) and make the change of variabl es K¢— Py—wp
to obtain

n dP 0
— Q)4 Y | d*P—Xpr(x)

r=1 2(,) P

X XPr (x’)eiP- (x—x')e— 1 Po(Xo—X0’)

X (Po—wptie)letiPo—wp) (aol+a’D  (A3)
If we now define new amplitudes X’ and X’ by

X/Pr(x) = ¢}i(Po—wP)| rolxpr(x) ,

)—(/Pr(x’)=g%i(Po—wP)|z0'|)_(Pr(x’) , (A4)
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and their Fourier transforms as in (2.11), we find, using
(2.2), that the contribution of the bound state to
K(pgP) has the form

—1

5 X (D)X 2(0).

(AS)
(27{')420}13 Po—wp+ie r=1

As is evident from (A4), the amplitudes X'p,(x) and
X'pr(x') go over into Xp,(x) and Xp,(x") on the mass
shell Po=wp. The same is true of the Fourier transforms
X' p-(p) and X’ p.(¢) as can be verified through use of the
formula

¢l z0l = — (27ri)1

X/ dw e[ (A4w+ie) '+ (A —wtie)1].

—

This completes the proof of Eq. (2.14).
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The completely antisymmetric solution ¥4 to the problem of the scattering of a fermion by a finite
system of identical fermions is studied by means of the expansion ¥4 =2 /s, where {¢.} is a complete
set of antisymmetric states for the target and y. are one-particle functions. Coupled equations for the Y,
are found that obey the proper boundary conditions. This is done by means of the integral equation for ¥4
and the use of projection operators. The elastic-scattering (optical-model) wave function ¥, is shown to
obey an inhomogeneous differential equation, rather than a Schrédinger equation. The homogeneous
solution is identical to the elastic wave function obtained when the projectile is distinguishable, while the
inhomogeneous solution is due entirely to exchange effects. The function ¥, is identical to the optical-model
wave function found by Bell and Squires, who showed that ¥, obeys a Schrodinger equation with an optical
potential containing direct and exchange contributions. It is shown that ¥, yields the exact elastic amplitude
including direct and exchange contributions, and a phase-shift analysis of the exchange term is given. The
more standard form of solution ¥4=2G{¢,f.}, where @ is an antisymmetrizer, is briefly discussed. The

extension to the cases of inelastic scattering and deuteron elastic scattering is made.

1. INTRODUCTION

ANY of the collision phenomena encountered in

physics involve projectiles containing particles
identical with those in the scattering system. In such
cases, proper account must be taken of the relevant
statistics. The purpose of this paper is to study the
exact, symmetrized scattering wave function using the
eigenstate-expansion method. This leads to a simple set
of coupled-channel equations which take account of the
relevant symmetry. Only the case of Fermi statistics is

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

T Present address: Theoretical Physics Division, Atomic Energy
Research Establishment, Harwell, England.

treated, although the extension to Bose particles is
indicated.

The eigenfunction-expansion method is well known
when the projectile is a single distinguishable particle.!
If {¢a(£)} is a complete set of states for the target
(whose coordinates are {£}) and ¥ is the exact scat-
tering solution satisfying the Schrédinger equation
(E—H)¥=0, then the expansion ¥=Y_, 0a(£)u.(7)
leads to a set of coupled equations for the %,(7). Here, 7
is the coordinate of the incident particle. The %, obey

1 A comprehensive discussion is given by H. Feshbach, Ann.
Phys. (N. Y.) 5, 357 (1958). An alternative approach is given by
G. E. Brown, Rev. Mod. Phys. 31, 893 (1959). See also, P. G.
Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962), and refer-
ences cited therein, for a discussion of the electron-hydrogen
scattering problem, including exchange effects.



