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In this paper is presented a brief and transparent derivation, which does not depend on the existence of a
conserved quantity, of the normalization condition for Bethe-Salpeter bound-state wave functions. A
comment on the structure of the condition is made. Application of the condition to the Bethe-Salpeter
wave-function description of physical meson states in ordinary pseudoscalar-meson theory is also described
in detail.

1. INTRODUCTION

VER since the introduction into quantum-field
~ theory of the Bethe-Salpeter equation, ' treatment

of the normalization of the bound state or Bethe-
Salpeter wave function has presented considerable diffi-

culty. Early derivations' required the existence of a
conserved quantity such as baryon number or electric
charge and are therefore inapplicable to neutral meson
bound states, for example. Later authors, notably
Allcock' and Cutkosky and Leon, 4 obtained normaliza-
tion conditions without assuming the existence of a
conserved quantity and showed4 that their results were
in agreement with the previous results. In the present
paper, we give (a) a new method of derivation of the
normalization of Bethe-Salpeter suave functions, which
does not depend on the existence of a conserved quan-
tity and which appears to be much more direct and
transparent than those of Refs. 3 and 4; (b) a demon-
stration of the fa,ct that, although the normalization
condition obtained seems of somewhat odd appearance,

*Research Supported by U. S. Atomic Energy Commission
under Contract AT (30-1)-3399.
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See also I. Sato, J. Math. Phys. 4, 24 (1963).

its structure is very similar to that of the normalization
conditions commonly used for one-particle wave func-
tions in quantum field theory; (c) an applica, tion of the
normalization condition obtained to the Bethe-Salpeter
wave function description of the physical meson states
in ordinary pseudoscalar meson theory. The discussion
here is similar in spirit to but of more general nature
than that given earlier by Okubo and Feldman, ' and
quite closely related to some recent work of Rowe. '

The material of the paper has been organized as
follows. In Sec. 2, we present the work associated with
(a) and (b) above, while treatment of (c) is to be found
in Sec. 3.

2. NORMALIZATION OF BETHE-SALPETER
WAVE FUNCTIONS

We illustrate our procedure by consideration of a
convenient example, that of two fermion fields, f~ and
lbtt, which describe distinguishable particles of the same
mass, interacting with a neutral scalar meson Geld. This
allows easy comparison with many important papers' '
on the Bethe-Salpeter formalism, as well as with the
introduction to the subject given by Schweber. ~ Similar
treatment of other interesting cases follows readily.

We begin with a brief review of those portions of

s S. Okuho and D. Feldman, Phys. Rev. 117, 279 (1960).
s E. G. P. Rowe, Nuovo Cimento 32, 1422 (1964), Sec. 3.
7 S. S. Schweber, Introduction to Relativistic Quantum-Infield

Theory (Row, Peterson and Company, Evanston, Illinois, 1961),
Sec. 17f, p. 705.
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(2.6a)

(2.6b)

Bethe-Salpeter formalism which are required for the An obvious operator notation for Eqs. (2.4a) and
development of our work. The Heisenberg picture is (2.4b) is
employed throughout. (I+G)E= 1,

A central role in the theory is played by the two-
fermion Green's function

E(xlxsxsx4) =—(0
~

2"lf'p (x1)lt B (xs) ting (x3) lpB (x4)
~
0),

which satisfies the inhomogeneous Bethe-Salpeter
equation'

E(xrxsxsx4)

=S'P~ (xrxs)S'PB (xsx4)

d xsd x6d g7d x8S pA(x1xs)S Bp(x2x )6

XG (x5gsx7gs) E(x7xsxsx4) (2.1a)
or equivalently,

E (xtxsgsx4)

=S p~(xrxs)S pB(xsx4)

Now, if there exists a two-fermion bound state, pos-
sibly of e-fold degeneracy, of mass 3f, it can only give a
contribution to E(xrxsxsx4) for ft, ts)fs, t4, because of
conservation of baryon number. For such time order-
ings, the contribution to
E (xrxsxsx4)

=—(oI 7'(0~(»)PB(xs))2'(p, (xs)4(x4)) ~0)

is given by'

d'PX p, (xrxs) Xp„(xsx4)8(P6)8 (Ps+3II3), (2.7)
x=1

where x and x are Bethe-Salpeter amplitudes defined
by'

d4xsd'xsd'xrd4xsE(xrxsgsx6) G(xsxsx7g8)

Xp, (xtxs) =(0~ Tits(xt)lf B(xs) lPr),

Xp, (xsx4) =(Pr
~
2"ip~(xs) lt B (x4)

~
0).

(2.8a)

(2.8b)

&&S'ps(xrxs)S'pB(xsx4). (2.1b)

In Eq. (2.1), S'p is given by

S'p(x;x;) =(0~ Tg(*,)y(x,) ~0),

and G is the interaction function, corresponding to the
sum of all Bethe-Salpeter irreducible graphs.

From invariance under space time translations, it
follows that E(xtxsxsx4) and G(x1xsxsx4) are functions of
only x1—xs, xs—x4 and -,'(x1+xs) (xs+x4) Intro-
ducing Fourier transforms E(pqP), G(pqP) and S'p(p)
by means of

E(x x x,x,) (27r)
—s d4Pd4qd4Pe" &*'+~3 " *"

Here I' is the energy momentum of the bound state and
r denotes the remaining quantum numbers necessary to
describe the 75-fold degeneracy (cf. Schweber, ' p. 715).
On the mass shell, Ps (Ps+3P)'13, x——and x satisfy
homogeneous Bethe-Salpeter equations

Xpr(xrxs) = d x5d gsd x7d xsS pg(grx5)S pB(xsxs)

&&G(xsxsx7gs)xp, (xrx,), (2.9a)

xpr (xsx4) = — d xsd xsd xrd gsxpr(xsxs)

)&G(xsxsgrxs)S'pg(x7xs)S'pB(x, x,). (2.9b)

)(e &P
(&1 &21e 48(&3 &41E(PqP)

an analogous equation for t", and

(2 2) Using invariance under space-time translations, we may
explicitly factor out of x and g their center-of-mass
coordinate dependence according to

S'p(x) = (27r) 4 d4pe'&*S'p(P), (2.3)
Xp„(xtxs) = (27r) 313e'Pxxp„(x),

xp, (x3x4) = (27r) 31 e ' x'xp„(x'),

(2.10R)

(2.10b)

respectively, we may convert Eqs. (2.1a) and (2.1b)
where

into the forms &=-', (gt+xs), x=x,—x, ,

X 3 (X3+X4) y g X3 X4

d'P'f1(pp'P)+G(PP'P)lE(P'qP) =~(p q), (2.4 )—
d4q'E(pq'P) fI(q'qP)+G(q'qP) j=f(p q), (2.4b)—

where the quantity I is given by

I(PqP) =o(p q)fS'»(l P+P)3 '—-
x fs'»(-;P —p) 3-'. (2.3)

' Cf. S. Mandelstam (Ref. 2). A correct derivation of this result
has never been given. Mandelstam in his paper states that Eq.
(2.7) gives the contribution of the bound state for Xp) Xp which
is incorrect. A derivation of Eq. (2.14) which takes into account
the fact that the contribution of the bound states vanishes for all
time orderings other than t1, t~)t3, t4 is given in an appendix to
this paper.

P Note that an alternative expression for X is

Xp. (»»4) =(olf'NB(»)ka(») l&r)*74V4,

where V' orders operators antichronologically, i.e., operators with
later times stand to the right of those with earlier times.
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Then, introducing Fourier transforms by means of convenient to introduce an auxiliary quantity

xi „(x)= (2m) ' d4pe'"*xp, (p), (2.11a) Q(pqP) = d q I:Po (p—+M')v']E(pq'P)

xp„(x') = (2w)
—4 d'qe —'&''xi „(q), (2.11b)

X P(q'qP)+G(q'qP)], (2.16)
BPp

we may convert Eqs. (2.9) a and b into the forms

de6ned off as well as on the mass shell. Using the more
compact operator notation, the definition of Q appears
RS

d4p'p (pp'p)+G(p p'P)]x p„(p') =0, (2.12a)
Q= LPO —(P'+M')" ]E (I+.G) .

BPp
(2.17)

An alternative expression, which can be obtained with

( )LI(q qP)y G ( P)] 0 (2 12b) the aid . of Eq . (2 .6b), is

8
Q=1— (P,—(F2+M~)'2]E} (I+G). (2.1S)

QPpfor P,= (P'+M2)"' where I is given as before by Eq.
(2.5). Corresponding operator forms are

If we operate on Xi „with Q in the form (2.18), we
(2.13a) obtain, using Eq. (2.13a), which is valid for Po

= (P'+M')'I', the simple equation
(I+G)X=0,

x(1+G)=0. (2.13b)
Qxi„=xi„, (2.19)

Introducing the notation of Eq. (2.10), we may express
the bound-state contribution (2.7) to the two-fermion f» Po= (P'+M')"'. On the other hand, if we oPerate

using Q in the form (2.17), we obtain, using Eq. (2.15),

—(2~)-' p d'P xi, (x)xi, (*')

)(~(P(x x')fi[P (—P2+M2)l'2]/(2P )

(III

Qxi „—— i[(2m—)42PO] ' g Xpaxps (I+G)Xi „,—
&Po (2.20)

for
(Po——(P'+M')'").

and readily use Eqs. (2.2) and (2.11) to derive the In the absence of degeneracy, comparison of Eqs. (2.19)
result' and Eq. (2.20) would lead directly to the normalization

1 condition

E(pqP) =-
(2m)42PO Po (P'+M')'"+—ie

&( p x„(p)x,„(q)

+terms regular at Po= (P'+M')"'. (2.14)

8—(2m) 'ixp (I+G)xr = 2PO, (P'= M'), (2.21)—
BPp

which has previously been obtained by Allcock' and by
Cutkosky and Leon4 on the basis of much less straight-
forward considerations. When written in full, Eq. (2.20)
takes on the appearance

= 2Po, (P'= —M') . (2.22)

In the case of e-fold degeneracy, we obtain in place of
Eq. (2.21)

LPO—(P +M ) i ]E(PqP) ~ za—(p~+i(radii

=—i[(2~)'2PO] ' E.X~.(p) x~.(q), (2 15)

This last result clearly exhibits the pole structure
characteristic of a bound state. One can in similar ( ir) i d q& q X&(q ) P(q qP)+G(q'qP)]xi (q)
fashion exhibit tha, t E(pqP) has a pole at P, 0

= —(P'+M')'~' corresponding to the expected bound
state of two antifermions. Also, we display for later
reference, the immediate consequence

of Eq. (2.14).
We are now in a position to deduce our normalization

condition for the Bethe-Salpeter wave function Xi „(p)
directly from Eqs. (2.6b), (2.13a), and (2.15). It is

(P'= —M2),

so that, if we assume the linear independence of the
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X&„I we obtain the orthonormality relations

—(2') 4iXi, (I+G)Xr„=2Pp5 „,
BPp

(P'= —M') . (2.23)

It seems worthwhile to emphasize that the above
normalization condition, although apparently of un-
familiar appearance, is, in fact, a close analog of the
usual normalization conditions for free elementary-
particle wave functions. To underline the formal corre-
spondence, we may reverse the conventional procedure
of quantum-6eld theory and derive the normalization
condition for single-particle wave functions in a manner
parallel at each step to the one used above in the
derivation of Eq. (2.23). We illustrate for spin- —',

particles, but it is evident tha, t the procedure is quite
general.

We consider the fermion propagator

Sr, (x —x )= (0 I T&(x )P(x ) I 0). (2.24)

It follows from the free-field equations and equal-time
commutation rules that Sr(xr —xs) satisfies

(7 8+m)Sr (xi—xs) = —i5(xi—x,),
and hence its Fourier transform Sr(p) satisfies

(y p im. )S—r (p) =Sr(p) (y p im) =——1. (2.25)

We now proceed exactly as above —introduciog an
auxiliary off-the-mass-shell quantity

8
Lpo —(y'+m')"'jSI (p) (7 p —im), (2 30)

8 p

and using Eqs. (2.25), (2.28a), and (2.29), to deduce the
orthonormality relations"

or simply

8 ppiu„(y p —im)u„= ——8„,
Bpp m

ut„u„= (pp/m)8. ..

(2.31)

(2.32)

in the familiar form.

3. BETHE-SALPETER WAVE-FUNCTION DE-
SCRIPTION OF PHYSICAL MESON IN

PSEUDOSCALAR MESON THEORY

In order to give an illustration of the use of the
normalization condition for Bethe-Salpeter amplitudes
derived in Sec. 2 and a demonstration of the consistency
of the formalism developed there, we consider in this
section a bound-state problem similar to that studied by
Okubo and Feldman' and by Rowe. ' In this problem
we study the Bethe-Salpeter amplitudes

We now consider t~&t2, and obtain
xi (xixs)„e=(ol TP (xr)Pe(xs) IP),

x~(»»)e-=(&I Tk-(»)ke(») I o),

(3.1a)

(3.1b)

since only one-fermion states contribute because of
baryon number conservation. Using invariance under
space-time translations, we write

(0 I p(xi) I pr) = (2m)'"(2m) '"e'"*'u„„, (2.27a)

(prI p(xs) I
0)= (2m)"'(2m) '"e '""u (2.27b)

thereby defining spinors u„„and u~„which satisfy

(y p im)u~„=o, —

u„„(y.p —im) =0,
(2.28a)

(2.28b)

as a consequence of the free-Geld equations. From Eqs.
(2.26), (2.27a) and (2.27b) and the fact that one-
fermion states do not contribute for t2& t~, we deduce as
above the result

z m
Sr(p) = —P u,„u„,

pe —(y'+m')"'+is pp .=i

+terms regular at Pe= (y'+ms)'". (2.29)

"This is not an additional assumption. It can be seen from
reference to Gell-Mann and Low's derivation (Ref. 1) of the
Bethe-Salpeter equation, that the linear independence is already
required if one is to obtain Eqs. {2.9al and (2.9b).

s, (»—x ) = 2 d4p(oil (») I p.)(prig(») I o)

)&0(pe)8(p +m ) (2.26)

&=iG&4'%sf' (3.2)

The amplitudes g and x are shown to be determined (to
within a factor since z and z satisfy homogeneous
equations) in terms of the basic Green's functions of the
theory. We then determine the proportionality factors
by means of the normalization condition for p and p,
derived by the methods of Sec. 2. The possibility of
obtaining expressions for y and x in closed form in
terms of the basic Green's functions stems from the fact
that the bound state

I E) can be shown in this case to be
simply a dressed quantum of the field @. This feature
also allows a direct evaluation of z and x by means of
the reduction formulas of I.ehmann, Symanzik, and
Zimmermann (LSZ)."Comparison of the results of the
two approaches affords a demonstration of the con-
sistency of the Bethe-Salpeter formalism developed
here.

"The form Eq. (2.31) of the normalization condition for one-
particle wave functions arises naturally in the formulation of
quantum 6eld theory developed by Y. Takahashi and H.
Umezawa, Nucl. Phys. 51, 193 (1964).' H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
Cimento 1, 205 (1955).

corresponding to a meson bound state
I P) having the

same spin and parity quantum numbers as the meson
field p in a Yukawa theory with interaction Lagrangian
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Ke begin by quoting the basic equations for y and g
in the present theory. Defining the Fourier transforms
xi „(p), X~„(q) of the Bethe-Salpeter amplitudes (3.1a,)
and (3.1b) by means of Eqs. (2.10) and (2.11), we may
write the Bethe-Salpeter equations in the forms

FIG. 2. The one-meson-exchange graph.

&P(p)-~= S'—F(p+ 'P)--d'q'G(pq'P)- s

»~(q')'~ S'~(p 'P—)f-~, (3»)

~(q) ~.= —S'~(q —kP)» d'p'x~(p') t-

The alternative forms of Eqs. (3.3a) and (3.3b),

d'qL~(pqP)+G(pqP) j-~ ~ X~(q),~= o, (3.»)

XG(p'qP). ~, , S', (q+-', P),.„. (3.3b) d'p" (P)s-P(pqP)+G(pqP)]. s, =o, (3.»)

It is convenient" to write the interaction function
G(pqP) as the sum of two terms

G(pqP) =G(pqP)+A (pqP), (3.4)

where A describes the annihilation graph of Fig. 1 and 6'

contains the effect of all other Bethe-Sa, lpeter irreducible

where

1(pqP)-~.~= L~'~(p+kP)3 '-~
XLs'. (p ,'P)j-' —~~(p q), (3-&)

will also be useful later. Finally, we note that the
relation

dq, xi (q) = — dq, vg(p(q) v (3.10)

where q=(qo, p), can be deduced directly from the
definitions, Eq. (3.1), provided that one recalls that the
Heisenberg fields P(xi) and f(x2) anticommute when-
ever xi—x2 is space-like.

We now turn to the relation of X and g, to the gener-
alized vertex function I'5 of the Yukawa theory. The
Fourier transform P5(p+-', P, p—-', P), corresponding to
the diagram of Fig. 3, satisfies the inhomogeneous

13

FIG. I. The annihilation graph.

integral equation
graphs. An explicit form for A is

A(pqP)-t. ~= (2~) '~Go'—~~(P)v~«sos~~, (3 5)
1'5(p+kP P 2P)-~—

where hr (P)= (P'+go' —ie) ' is the bare meson propa-
gator with p, o the bare meson mass. To ordel Go, only
the graph displayed in Fig. 2 contributes to 6, and the
expression for it is

d'q'G(pq'P)-~ ~P'~(q'+ ;P)-
XFs(q'+i2P, q' —2P)S'p(q' ——',P)j,s. (3.11a)

G"'(pqP)-~~~ =iG"»-v»~s(2~) '~~(p q)—
Hence, to order GO2, Eq. (3.3) appears as"

x~(p) = iS'p(p+ ',P)ys—-
(3.6) It is crucial for what follows that the 6' which appears

here is exactly the same function as occurs in the Bethe-
Salpeter equations, (3.3) with (3.4), given above. The
truth of this statement can be checked to any desired
order of Go' by means of explicit developments of Eqs.

X d'q'X~(q')V sS'~(p kP) (2~) 'Go'~~(p—q')—
+iS' (p+ ', P)y S' (p ',P)-—-

0

X(2~)-'Go'&~(P) d'q'TrLv~&p(q') j (3 &)

FIG. 3. Complete vertex in
momentum space.

"97e omit spinor indices wherever this can be done without loss
of clarity.
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(3.3a) and (3.11a).When one recalls that the generalized
vertex function I 5 is obtained from p5 by adding to it
contributions from all proper vertex diagrams, '4 the
reason for the occurrence of 6 rather than 6 in F,q.
(3.11a), or alternatively for the explicit separation of A
from 6 is understood: insertion of A in place 6 in Eq.
(3.11a) would give rise to improper vertex diagrams. In
course of the above-mentioned explicit development of
Eq. (3.3), one can also verify, to any desired order of
Go', the identity

G(p&P)-s»=G(sp P)p—va- (3 12)

which allows one to transcribe Eq. (3.11a) into the form

F, (&
—-,'P, Z+-', P)„

=vsp, — d'O'G(AP)-a pl~'~(C' sP)—

XFp(g' —pP, q'+ ,'P)$'s (q'-+ ,'P)]a . -(3.11b)

To proceed further toward the relation of X and x to F5,
it is convenient to introduce an auxiliary function
pi (p), proportional to X~(p) by means of

and, hence, using (3.15a,)

P'+@ps= (2pr)'iGps d'P Tr(ypS'p(P+-, 'P)

XF,(p+-,'P, p ', P)S',—(p-',P)) —(—3.17)

=G 'll"'(P') (3.18)

where II*(P') is the well-known expression" for the
fermion loop shown in Fig. 4. Thus we see that the
allowed values of (—P') are just the solutions y' of the
familiar meson mass-renormalization equation"

I p'= —Gp'II*(—u') =~I —'(~') . (3.19)

In other words, the bound states
~
P) of the problem are

the physical (dressed) quanta of the field p occurring in
the Lagrangian. Result (3.15a) also allows the writing
of the desired equation relating x to F5, namely

Xr (p) =cS'&(p+ ,'P)I, (p+ ',-P, p ,'P)-S'&(p ', P—)—, —-
(P'= 7i'), (3.20a)—

integrate over P, and divide by J'd'P Tr f&sXr (P)), we
get

Ps+p ps =—(2pr)4iGpp d4p Tr(7rgkr (p) ), (3.16)

( )] f ( ) (3 13 )
where the constant c is given by

It is easily seen from Eq. (3.3), the 2 contribution to
this equation being the same as the 2-contribution to
Eq. (3.7), that Pi (p) satisfies the inhomogeneous
equation

iver (p).p= S'F(p+sP)."—vp a+ dYG(N"P)"a v p

Xp (q')„. ~ S' (p ,'P), .„(3.14a)——

c= (2pr) 'iGp'imp(P) d'p TrLypxr (p)]
(P'= —p') (3.21a)

and is at present undetermined: This is because we have
required only that X& be a solution of the homogeneous
Bethe-Salpeter equation. Before proceeding to use the
appropriate norInalization condition for Bethe-Salpeter
wave functions to determine the value of c, we note that
ipi (p) defined by

and, comparison of Eqs. (3.14a) and (3.11a) leads to the
immediate identification

0 (p)= —S' (p+'P)-
X F(ps+-,

'
Pp—,'P)S'x (p—,'P) . (3.15a)——

This important result will allow now the determination
of the values of the bound-sta, te mass (—P') for which
Eq. (3.3) has solutions. Indeed, if, for any solution
Xi (P), we multiply Eq. (3.13) by yp, take the trace,

Xi (P) = —(2pr)
—'iGp'AF (P)

X d'p'TrLy X (p')] f (p) (3.13b)

obeys

pr (p) p, = —S's (p —-'P) p, . esp, ~,y d'q'g(pq'P). , a, , p,

X~.(~')p. S s(p+ ,P), , (3.14b)-

Pro. 4. I'erInion loop.

i4 F. J. Dyson, Phys. Rev. 75, 1736 (1949l.

so that comparison with Eq. (3.11b) yields

|t~(p) = —S', (p——,'P)
XFp(p ——',P, p+ ,'P)$'p(p+ ', P), (3 15b)--

~ Our notation here coincides with that used in D. I.uric and
A, . J. Macfarlane, Phys. Rev. 136, 3816 (1964).
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we use Eqs.g contrjbut»n~next to the
't (still wltll P3.20b) and write i(3 20a) and

a»d, hence,

1PIp)i'4(P —'- P+'
(3.20b)

2~) '-4 &'P

(p) —cS p(P 2

(p2 ——p) ) cc
X&'P(P+'P '

8
)pg(PqP)) Pgbfp(q) &

BI'o

where constant c g
' is iven by

p)+g(pqP)) s~( )
4. d4p d q pp(p a~

g4 Tr[r4x p(p)) '7l= (2~)-'4g' P(

~ (3.»b)(p2= —~') ~

&& (—Bigp(q) ~4~

FUNCTIO&ER. WAVEOF BF THERMMA& IZATIO

[ ( p)+g(pqP)) aav4 (3.22b)

not deterlii
3 21b) and conlp

5

ine c and c
arlson witf Eq (3 10) into q

'd s the relation,3 21 ) Iniinediateiy PFq

of Eq.the following alte rnatjve forme a]so need t e
(3.14):

(3.22a)d4q[I(pq )~g(pqp)) p~gl'p(q) &4

d
~

(Tr[~-.p (q)) .=CC'(2x 44

(Tr[y45 P(p +2P)—cc'(2~)
QI Q

2= —2(p2= —14) i+,p p 1P)S'p(p 2—
11*(P) ~

P
8

I p

2) (3.26)2p„all*'(-"» (P'= " '

( 1'7) aild (3'g* is d.earned by q
f the contribution

where
' . Final evaluationits derivative.

»he resultfollows use of th

8

3 22b) has beenf E s. (322a) a '

Inserting the
erein, use o '

'
respective ysecon thir ines~

'
intohis contribution in

in e
f p converts t is coforin (3 15'

c = c1 (3.23)

.'za ' '
n for the Bethe-zation condition ornow use a norma iza

x to determine ce u c
within a phase.
followed in Sec. 2, we o ain
f

[1(pqP)+g(pqp')) C 421r)-4i d4P d'qXp(P) p. q

2 gfZ4 '= 1—Go'lI*'( —p, (3.27)

s. 3.24) to (3.27) yieldsand, putting otogether of Eqs. ( .
'= —z36p'. (3.28)CC

ositive"that c be real and positive,nce if we demand t a c
qs. . d (3.28) giveEqs. (3.23) an

P'= —pP), (3.24)&&xp(q), 4
——2PO, (P'= 14, —

zpc'= —3 p,C= Z3 p) (3.29)

~ -' —'g ')c d4q Trb,yp(q)).X(2 )-'(—g. ~

Th

th the alternative
1o db1o .

reement vnto P
method of obtaining X an2 — 2—2I pcc p p

(P'= —~).

X to F5 is fully speci6ed.
ceeding to the use of the tos to the left sideg) contributionider theA and I

the former case jnserse
d direct performance3.20b), an ir

t em. y a' th's function is o

pi ))(2PO)(P'+~o') '(2 )-i'ric' d'p Tr[y4it p p 0

nds to the one--boson exchange ia-is term correspon,3.15a) and (3.15b
3 ~

' '
ediately reduces t is3.17 twice immeusing Eq. (3.

'
e

(3.25)
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P(x), like lf (x) and lt(g), being an unrenormalized
Heisenberg 6eld operator.

By standard procedures, we can evaluate the vacuum
expectation value (0I Tlf (gi))P(gs)P(y) IO) obtaining

Fto. 5. Diagram giving pole
in fermion-antifermion Green's
function.

(ol alt (*i)P(gz)4 (y) I0&

=Go(2') 'i d /), d 7/'e's*'e '"' 'e '(" s'»

gram shown in Fig. 5. The residue at the pole I"o

= (P'+/i')'" is simply

(2or) 'Go'iZs( —2Pp) '

XLS'); (p+-', P)1'o(p+-,'P, p ,'P)S'p(p —,'P—)j——
XLS'F(q ——,', P)l's(q —-', P, q+ ', P)S');(q+ ',-P)j, -

evaluated at Ps= (P'+p, ')'/s. By virtue of Eqs. (3.20a),
(3.20b), and Eq. (3.28), this equals the quantity
(2or) i(2Po) )X~(P)X/ (q), evaluated at Po (P'+tu')'/', ——
in agreement with the analog in the present theory of
Eq. (2.14). We now conclude the section by employing
the reduction formula technique of Lehmann, Symanzik,
and Zimmermann" to evalua, te the Bethe-Salpeter
amplitudes (3.1a) and (3.1b). The availability of this
approach stems from the fact that the boson bound
state IP) is just the dressed quantum of the field g,
appearing in the Lagrangian.

Direct application of the reduction formula tech-
niques to X and X as def(ned by Eqs. (3.1a) and (3.1b)
yields the results'

X) (x,gs) = —(2or) s/'zZ, '—/' d'y—e'~o( „—/a')

x&0I Tlf (*)lt(*)4b)Io&, (3 3o )

Xi (xzgt) = —(2or) '/'iZs '/' d ye '~)/(CI —)ti')

=—(2or)-'i d4pe'&(* »A-'p(p)

We may combine Eqs. (3.30a) and (3.32) and derive the
result

X~(gtgs) (2or)
—s/2GeZ —1/2(2or) —4 d4peliP(st+or)ei&(zi ro)—

XS' (p+ ',P)I' (p+ ',P, p-,'P)-——
XS'.(p !P)A'.(P-)(P'+") (3.33)

which is to be evaluated a,t I"=—p', using the well-
known result

lim (P'+)z')6'/ (P)=Zs.
&2~—P2

(3.34)

Introducing the I'ourier transform of Xz(x,xs) by means
of Eqs. (2.10a) and (2.11a) now gives

Xg (p) =GpZs'"S') (p+-', P)
XI's(P+sP, P 2P)S'~(P zP—) (3 35)—

which agrees with the previous results, cf. Eqs. (3.20a)
and (3.29).

We may also handle Eq. (3.30b) in a like manner and
thereby conlrm the previous results, cf. (3.20b) and
(3.29), for X) (q).

xs', (u)r, (x,u')s', (v)A', (e—e'), (3.32)

where A'~(P) is defined by

(0I 2'~(*)~(y) I0)=- A'. (*-y)

X&0I Tk(x )lf (x )4 b) Io&, (3 30b)

»m„&(F14 (g) I f)& =Z '"&i)i @.„,(x) I
f'&,

iII

(3.31)

with I"=—p, ', p, being the physical meson mass. A
comment on the occurrence of the factor Z3 '~' in these
equations seems necessary. " It stems from our use of
the asymptotic condition

n—(2or)-s P
x=1

d I
(x)X (x~)eiP (K x')e i&a/'ixo xo—')— —

2co~

Xe(&—X'—zlgl —zlx'I), (Al)

APPENDIX: DERIVATION OF EQ. (2.14}

The contribution (2.7) of the bound states to the two-
fermion Green's function may be written as

'r Our normalization of single-particle states is (P' (P}
=2E05(P—P'). This is consistent with the conventions followed
in Sec. 2.' Cf. Y. Takahashi and H. Umezawa, Ref. 11, and H. Ezawa,
Ann. Phys. (N. Y.}24, 46 (1963}.

where o)),= (ps+/lIlz)'/z. The above expression represents
the contribution of the bound states for cry time
ordering, since, as is ea,sily verified, the factor
f)(&—&'——,'l*l ——,'lx'I) equ»» when fl "2+"3 f4 and
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zero otherwise. We now insert the formula

e(y)= —(21ri) ' dZo(Zo+ie) 'e ' oo

into (A1) and make the change of variabl es Ep-o Po Mo-
to obtain

and their Fourier transforms as in (2.11),we hand, using
(2.2), that the contribution of the bound state to
EC(pqP) has the form

1 n

2 x'~. (P)x'p. (q) (AS)
(2or)o2(os Po ~a+—oe .=~

&&0—(2or)-'i Q d'P X~„(x)
r=1 2(0p

XX (&~)cop (x—x')e—ipo(xo-xo')

y (Po &z—+is) rek
—r(&o—~r ) (I *oI+I oo'I)

If we now define new amplitudes X' and x' by

X' (x) = e&'&~o—~» I "IX (x)

x' „(*')= l" '—" *"x,( '),

As is evident from (A4), the amplitudes x'~„(x) and
X'~„(x') go over into Xp„(a) and X~„(x') on the mass
shell I'0——cvP. The same is true of the Fourier transforms
x'~„(p) and x'~„(q) as can be verified through use of the
formula

(A3) eo&l *ol = (2~i)—&

d(o e '" o[(A+a+os) '+(A —os+so) '$

(A4) This completes the proof of Eq. (2.14).
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Coupled-Equations Method for the Scattering of Identical Particles*
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The completely antisymmetric solution + to the problem of the scattering of a fermion by a 6nite
system of identical fermions is studied by means of the expansion + =Zoo g, where (o,) is a complete
set of antisymmetric states for the target and f„are one-particle functions. Coupled equations for the le

are found that obey the proper boundary conditions. This is done by means of the integral equation for +"
and the use of projection operators. The elastic-scattering (optical-model) wave function Po is shown to
obey an inhomogeneous differential equation, rather than a Schrodinger equation. The homogeneous
solution is identical to the elastic wave function obtained when the projectile is distinguishable, while the
inhomogeneous solution is due entirely to exchange effects. The function &0 is identical to the optical-model
wave function found by Bell and Squires, who showed that $0 obeys a Schrodinger equation with an optical
potential containing direct and exchange contributions. It is shown that $0 yields the exact elastic amplitude
including direct and exchange contributions, and a phase-shift analysis of the exchange term is given. The
more standard form of solution + =Ztt{oo f ), where 8 is an antisymmetrizer, is brieiiy discussed. The
extension to the cases of inelastic scattering and deuteron elastic scattering is made.

I. INTRODUCTION

'ANY of the collision phenomena encountered in
i ~ physics involve projectiles containing particles

identical with those in the scattering system. In such
cases, proper account must be taken of the relevant
statistics. The purpose of this paper is to study the
exact, symlnetrized scattering wave function using the
eigenstate-expansion method. This leads to a simple set
of coupled-channel equations which take account of the
relevant symmetry. Only the case of Fermi statistics is

+ Work performed under the auspices of the U. S. Atomic
Energy Commission.

t Present address: Theoretical Physics Division, Atomic Energy
Research Establishment, Harwell, England.

treated, although the extension to Bose particles is
indicated.

The eigenfunction-expansion method is well known
when the projectile is a single distinguishable particle. '
If f y (P)) is a complete set of states for the target
(whose coordinates are ($)) and 4 is the exact scat-
tering solution satisfying the Schrodinger equation
(P. H)4=0, then the exp—ansion O'=P q ($)N (r)
leads to a set of coupled equations for the so (r). Here, r
is the coordinate of the incident particle. The I obey

~ A comprehensive discussion is given by H. Feshbach, Ann.
Phys. (N. Y.) 5, 357 (1958). An alternative approach is given by
G. E. Brown, Rev. Mod. Phys. 31, 893 (1959). See also, P. G.
Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962), and refer-
ences cited therein, for a discussion of the electron-hydrogen
scattering problem, including exchange effects.


