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The properties of angular-momentum tensors described in a previous paper are used to develop tests for
the spins and parities of resonances. Fermion resonances decaying into particles of spin zero and spin one-
half or spin zero and spin three-halves and boson resonances decaying into particles of spin zero and spin one
are considered in some detail. Attention is given to angular correlations between production and decay con-
Qgurations, both generally and in special cases such as forward production, low-energy production, and
peripheral collisions. A moment analysis of the decay distributions is developed.

II. INGREDIENTS OF THE ANALYSIS

1. Types of Reactions to be Studied

The resonance X appears in a production process
followed by a decay process:

2+8 —+ X+C+D+ .

X~ a+b+c+ ' ' ' .

(2.1a)

(2.1b)

The notation identi6es productiort particles A, 8, C, D,
and decay particles a, b, c, . The same symbols

can be used for the four-momenta: A = (E~,A),
A'=Eg' —A'= m~', etc.

In this paper, we study three-body productions

I. INTRODUCTION
' NVESTIGATION of the spins and parities of
~ ~ resonances has been simplihed in the past by means
of the principle "presumably, the spin is less than two. "
This principle no longer serves. In higher spin situations,
any given experimental test is less likely to speak
decisively, and the number of conceivable tests can be
quite large. It becomes worthwhile to study the
methodology of resonance analysis as a subject in itself.
Among recent studies along these lines we may cite the
formalisms of Syers and Fenster, ' and Ademollo,
Gatto, and Preparata. '

Our own approach has much in common with these,
but relies on a tensor formulation of angular momentum
(see preceding paper') which, we feel, has special
advantages of simplicity and versatility of application.
This paper makes speci6c application, in Secs. III,
IV, and V, to resonances with decay products of spin
zero and spin one-half, zero and one, and zero and
three-halves, respectively.

followed by two-body decays,

(2.2b)

which may be followed by subsequent decays, e.g.,

b —+ a'+b'. (2.2c)

The physical data consist of the measured energies and
momenta in the total process

3+8~ C+a+a'+b'. (2.2d)

Amplitudes for diGerent steps of the process will also
depend on spins. Ultimately, for a comparison with
experiment, the spin states of each particle are either
averaged over, or identiaed in terms of a momentum in
a subsequent reaction. If we make no use of dynamical
principles, but rely only on rotation and reflection
invariance, all useful data are expressible as angular
correlations, or, at least, correlations in angle-depend-
ent quantities.

Q= (Qy, N2) =N~, e= 1, 2,

e=(e~,e2,es)=e, m=1, 2, 3,

(2.3)

(2.4)

2. Tensors

Systems of integral spin j and half-integral spin
j+~ are described by tensors T&, T~'~' as discussed
in I. This notation manifests the rotation properties of
the tensors. Manifest convariance under pure I.orentz
transformations is not needed in our contemplated
applications.

%'e use special notations for the spin wave functions
of particles of low spin: (Pauli) spinors I, v for spin 2,
vectors e, f for spin 1, and spinor-vectors E, F for spin —,'.
These symbols have components as follows:

(2.2a)
cY.= 1) 2) m= 1) 2) 3 . (2.5)

*This work was supported in part by the U. S. Air Force
Ofnce of Scienti6c Research, Grant No. AF-AFOSR-232-65.' N. Syers and S. Fenster, Phys. Rev. Letters 11, 52 {1963}.
See also R. Gatto and H. Stapp, Phys. Rev. 121, 1553 {1961).

~ M. Ademollo, R. Gatto, and G. Preparata, Phys. Rev. Letters
12, 462 {1964};M. Ademollo and R. Gatto, Phys. Rev. 133, 3531
{1964).

a C. Zemach, preceding paper, Phys. Rev. 139, 397 {1965};
hereafter called I.

i+XE=E, (2.6a)

(2.6b)

The spinor-vector obeys the constraint e E=O, and
hence also E* e=0. If we apply e to these equations
and use o;0;=8;;+borh, e'&~, we get
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3. Amp1itudes

In order to make manifest the rotational invariance
of a reaction amplitude M, one can write it as a sum
over rotationally invariant terms built out of the
three-momenta and spin wave functions of the particles,
the difterent terms being multiplied by coupling con-
stants or energy-dependent form factors. As emphasized
in I, there is no need to refer all the variables to a
common frame of reference. Ke prefer, following
Stapp, to express M in terms of proper variables, by
which is meant the following:

(a) Each spin wave function is referred to the
particle's rest frame.

(b) Each three-momentum is referred to the center-
of-mass frame of the reaction in which it occurs. Thus,
A, B, C in (2.2) are referred to the 2+8 center of
mass; the spin wave function of b and the momentum
of a' are referred to the b rest frame (called bRF
for short).

(c) The relation between the center-of-mass frame
(CMF) of a reaction and the rest frame (RF) of one of
of the reacting particles whose spin state is being
described must be that of a pure velocity transformation
defined by the velocity of the particle in the CMF.

The motivation is this: Firstly, the sum or average
over spin states is accomplished more easily; there are
no relativistic projection operators to worry about.
Secondly, the phase-space factor for the momentum
distribution of a particle has the nonrelativistic form
(see below).

The reason for (c) is inherent in the procedure by
which an amplitude is expressed in terms of variables
referred to diBerent frames.

Now let E2 denote a spin wave function for X. The
production amplitude for (2.2a) will be of the form

In the three-body productions in Table I, P represents
any vector in the production plane, i.e., any linear
combination of A, B, C. Q is the production normal;
Q= A x C. The P's used in the same expression refer, in
general, to diferent linear combinations. In this way,
the complexity of the general form can be comprehended
in compact expressions from which theorems on angular
correlations (see below) can be derived.

The number of terms in an amplitude is fixed by
simple angular momentum counting. Thus the 0-+ bi+—+

~++X entries have one nonspin-flip term with orbital
angular momentum /= j and three spin-flip tensors,
with /= j+1, /= j, 1=j—1. Combinations not appear-
ing in the given enumeration can always be reduced to
a sum of terms of the types considered. For example,
tensors with two or more occurrences of Q can be
reduced to tensors with one occurrence of Q or none.

(da/E, ) (db/Eb) 5 &4& (a+ b R), — (2.10)

where R includes all the other four-momenta. Let a
be the three-momentum of a in the CMF of a+b and
(p, b)„=(E,b, p,b)—= (a+b)„be the momentum of the
diparticle with mass m b, m, be= p,b'= (a+b)' To re. -
express (2.10) in terms of dad p, b, 6rst set

8'(a+b R) = —dmobbh(m b' p, b')d'p—,b

Xb'(a+b p. b) 6'(p—.b R)—
(2m. bdm. b) (dp. b/2E. b)

4. Counting Rates and Phase Space

Let u, b be two particles among the products of a
reaction. The phase space will include the factor

E2*:MI (2.7) Xb'(a+b —Pub)5'(Pob —R) . (2.11)

Mg)g =My). Mp. (2.9)

It is often convenient to call MD, M~ themselves the
decay and production amplitudes and omit mention of
E' .

Table I contains general forms for the more common
amplitudes Mp, M& for a resonance. The two-body
processes are written as decays and the three-body
processes as productions because our application is of
this type. The notation already de6ned has been
adhered to.

and. the decay amplitude for (2.2b) or (2.2b) plus
(2.2c) will be

(2 g)

Then M~ and M~ will be tensor functions of the data.
The combined amplitude for production and decay,
summed over the spin states of X is proportional to the
tensor product:

Putting this in (2.10) and integrating over b and the
magnitude of a, we get the usual two-body phase-space
formula:

dadb adQ,
54(a+b p, b) —+—

map
(2.12)

where a and dQ have a restricted meaning; they refer
to the (a+b) CMF. The general rule for "diparticle"
phase space is

dadb
b&'&(a+b R) =a dQ, dm, b-

EaE 5

d pat
b "& (pob —R) (2.13)

jV

LX'—(m«,'iF «)'j'- (2.14)

which can be used recursively for a many-body final
state. Consider the whole process (2.2d). The resonances
X,b, give factors like



S PINS AND PARITIES OF RESONANCES

TABI E I. General forms for the amplitudes of toro-particle decays and three-particle productions of resonances
in the tensor formulation. For notation, see Sec. II.

Process

(1} X O-+0-

(2) X~O +1

(3) X~O +)+

X 0-+f+

(5) 0-+f,
+ 0-+X

0-+)+~ )++X

j~=0—1+ 2—
7 ) )

(g+k) =4

none

yT~{'.' *)+.(a'*)T ( )
(y=O for j=O)
«*T'(a)(p.

fyT&(a a aXE*)
+ (E' }{. )T'()j6'
(y=O for j=O)
(P.I T~(P "P0)+T'(P) ('P) j«
T (P)+(~ 0}T(P)
+T (P "EXP)
+T'{P" PQe}

j~=0+,1,2+, . ~ ~

4'+4)'= 4'—
T&(a)

T'(a ~ .a aXe*)
(0+ case absent)

u'(cF. a) T~(a)(P
(or «*T&'+'{a) 0)
Py T&'{a ~ aE*)
+z(E+ a) T'{a)$6'.
(y=0 for j=0)

Ts(p)+Ti{p)a.Qju
T&'{P- . .Po)+ (e.P}T&{P)
+T'{P" PeXQ)
+Tg (p 0 ~ 0 p(f)

in the amplitude for (2.2d). These produce b functions
like

b(X'—mx')

in the absolute square of the amplitude if the widths
are small. In this case the counting rate is proportioned
to

the direction of a and I' is in the plane of a and a'. The
Euler angles u,p,y which relate (n'n'n') to (¹¹,N')
are de6ned in terms of the scalar products I N

' as
in I, Sec. VI.

Let cos8=6 O'. The angular phase space of the pre-
vious section becomes

dC da da' db'
~M»~'5(X' —mx')b(b' —mP)

Eg Eg Eg~ E$~

dQ, dQ, .=da dcosP dy dcos8,

and counting rate for A+B —& C+a+u'+b' is

(2.18)

Xh': (energy —momentum). (2.15)

Applying (2.13) three times and dropping over-all
constants and momentum factors 6xed by kinematics,
we obtain the physical counting rate:

d&-~M»I'd cos8cdQ.dQ.. (2.16)

Some version of (2.16) is always valid in a cascadewhich
proceeds via two-particle 6nal states. In the case of a
three-particle decay, the above approach leads to a
"triparticle" phase-space formula

dadbdc dS1~y dSlgc
b 4 (8+b+c R) = —dydcos8

4m, g,2

d panic
Xd(p'dm. b, b&'&(P, g,—R), (2.17)

@abc

where q, |}I, q' are Euler angles for the con6guration
(a,b,c), viewed in the triparticle rest frame, and
dm, Pdm P is the phase space of the Dalitz p1ot.

S. Egler Angles and Internal Variables

Let (N''N2, N') and (n', n', n') be orthogonal bases of
unit vectors for the production particles and decay par-
ticles, respectively, of (2.2). For the moment analysis
(see next subsection) we de6ne ¹ as the beam direction
and N' as the normal to the production plane, also n' is

as the rate for A+B -+ C+a+b.
%'e emphasize again that 8~ is measured in the A+8

CMF; n,P,y connect a coordinate system in the A+B
CMF and a coordinate system defined by a as seen in
the XRF, and e' as seen in the bRF. Also, costI=4*a'
relates a direction in the X RF to a direction in the
bRF.

The internal variables of the production are Hg and
the incident center-of-mass energy Eo, the decay of
(2.2) has only one internal variable 8.

6. Density Matrices and Tensor Moments

Let X have spin J (integral of half-integral) snd let
S be the angular-momentum operator on the spin space
of X. We use the tensor operators T'(S), O~k~2J,
normalized to

»f&'-(s) ~'- (s)}=4a a" (2.21)

as discussed in I.
«t " =(M~) (M*z) be called the production

density matrix. The tensor moments A~ of & appear as

Z IMD ~ MP j dco~c Ax dcosp dp dcos8, (2.19)

where the suxnxnation is over spins, if any. If the decay
of b is not observed, then we have

do=giMn. M'i' cdos8 dcndcosP (2.20)
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coeKcients in the expansion of X in tensor operators: Then
dcooror =Roor goor(8)dcos8; (2.30)

whence

2J
X=MpM*p= P de 'T-" (S):/t' (2.22)

Rior = 87rodqo ' 4or (Eo,8c)dcos8c. (2.31)

2J
(p=M*nMn= Q dgo 'T"(S):4' (2.24)

with

/to=M"p. To(S)Mp (2.23)

Similarly, there is a decay density matrix p for X:
The poor(8) depend on the assumed spin J of X, on

the coupling constants for the decays, and are other-
wise completely defined. These dtTy~~~ contain all and
only that information about the reaction which depends
on the decay mechanism but not on the production
mechanism. The k=0 term is merely another expression
for the decay distribution itself:

4"= Mn T'( S) M* n

The full reaction amplitude squared is

(2.25)
da'ooo

I
M & I

'dcos8. (2.32)

(2.26)

At some point, the spins of the production and decay
particles must be summed over or represented by
further momenta. When this is done A.~ and C~ are
tensor functions of momenta only. If the production is
carried out on a polarized target, the A~ will also depend
on the target polarization vector.

A~ and 4~ can be further expanded in terms of the
basic vectors 5', N2, 5' and n', n', n' of Sec. II.S above.
The desired expansions define functions of the produc-
tion variables Eo, 8~ and of the decay variable 8:

+k
&'= P coM "'T™(N)4~-(&o,8c), (2 27a)

+k
4 = Q coor "'T' (n)*yojr(8). (2.27b)

a,g, y, lg
(2.29)

Section VI of I discusses the relation between rec-
tangular bases (¹,¹,¹)and spherical bases
(N+,¹,N ) and connects up the tensors T& ~ with the
familiar spherical harmonies and rotation functions
D jrM'(~&P& r)

Now substitute (2.27) into (2.26) and then into (2.16).
With the aid of (6.1/) and (6.42) of I, we get

dc=Eooror dna '&, oor, (&o,8c)so~(8)D"~~s (u,P,y)
Xdcos8c dn dcosPdy dcos8 (2.28).

In this equation, the dependences of do. on the three
different classes of variables are explicitly separated.
These dependences were, of course, well defined before
the introduction of the density matrix formalism. The
purpose of the formalism is to express do. in terms of the
D~~~ in such a way that the coeS.cients can be calcu-
lated straightforwardly from Mz, MD. The calculations
are based on (2.23), (2.25), (2.27) and Table III of I.

As a step in analyzing (2.28), we defined projected
cross sections d0.~~~ .

Ke recall the procedure for obtaining a quantity like
da-k~~~ from a set of data: Each event i defines a set of
values (8c),, 8;, co;, P;, etc. Separate the data into bins,
each bin defined by values of 8 in specified intervals.
Then for each bin,

(d~o~or /dcos8). „o, P' D——'or,v *(n',P*,y,), (2.33)

the sum being over all events in the given bin. The
Dk~~ 's are complex as they have factors e'~, e'~'&.
As a practical matter one will want to work with linear
combinations of them proportional to sines and cosines
of a,y, and with the corresponding combinations of the
op~~. 's which are real.

The projected cross sections with large k will have the
least statistical significance for a given amount of data
because of the oscillating character of the D's. In a
clean experiment without background, the cases k=o,
k=1, plus some other one-angle correlations as dis-
cussed below may provide fully adequate information
and corraboration for the spin, parity, decay parame-
ters, etc., of X. But these tests may fail if the data is
contaminated with background. Now, suppose that
much of the background consists of configurations of
lower spin than the spin J of X. Then contamination
will be absent, or greatly reduced, in the partial cross
sections with the largest k values, k=2J, k=2J—1.
This is a way of defeating the background problem, but
at the cost of requiring more data for statistical
significance.

III. FERMION RESONANCES WITH DECAY
PRODUCTS OF SPIN 0 AND SPIN—

I. Prelim~aries

We study angular correlations in the processes (2.2),
especially their dependence on the spin (J+-', ) and the
parity of the fermion resonance X. Suppose that A, a,
and u' are 0 particles (pions or kaons) and that 8, b,
and b' are ~o+ particles (hyperons). Processes (2.2a),
(2.2b) will be considered parity conserving and (2.2c)
parity violating I as in E+p ~ o.+V* (1385),

'

Y*~or+A, A~ p+vrj. The derived correlations which
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for both cases, with the understanding that

Z =1 for —'+ —'—-'+
a 7 2 y 2 0 y

Z,= (e a) for -',—,—,'+, —',—,

In both cases,
Z,2= 1.

(3.4a)

(3.4b)

(3.5)

%e also define a new unit vector e related to a and a' by

Then
Z.(1+pe a')Z. = 1+pe e.

e=a' if Z, =1

(3.6)

e= —a'+2(a' a)a if Z, =e a. (3.7b)

Equation (3.7b) de6nes the familiar "magic direction"
a obtained by rotating a' by 180' around an axis
along a.

In discussing counting rates, we shall not watch the
over-all multiplicative constants too carefully. In view
of the foregoing, the counting rate for 3+B—+ C
+0,+0,'+b', summed over the spins of B and b' is

de=+ tMni ~'dcos8o dQo dQ, , (3.8)
where

P~Miii ~'=Tr(Mi*. T'(a)(1+pe e)T'(a):M&) .
(3.9)

Integration of (3.9) over dQ, removes the e e term
and gives the counting rate for A+B~C+a+b,
summed over 3 and h spins. Equation (3.9) is our
starting point for the detailed discussion of angular
correlations.

2. Maximum Complexity Theorems

Before entering upon the details, we comment on
some general features of correlations in a reaction like
(2.1) with any number of particles and arbitrary spins.

do not mention a' or b' are, of course, independent of
any assumptions about b-decay.

A number of the topics considered in this section have
a wider applicability and the results can be taken over
in Secs. IV and V.

From now on, A, a, a', etc. denote unit vectors. The
unit normal to the production plane is Q. The ampli-
tude for b —+ b'+a' is taken as

Mb ——(u*b. ~y+ze a'~ub) (3.1)
whence

2 IMbl'=&u*bll+pe a'iub&(lyl'+ IZI')
b' spin

with p=2 Re(y z)/((y['+ Jz('). Hereafter, we shall

usually omit explicit mention of the spinors for B, b, b'.

The form of the X—b cb+b amplitude depends (see
Table I) on which parity sequence is being considered.
%e write this amplitude as

(33)

Let V, v be directions de6ned in the production and

decay configurations, respectively. Let coordinate
frames be set up in these two configurations such that
V and v are the polar axes and introduce Euler angles
as in Sec. VI of I. The polar Euler angle mill be defined

by cosp=V. v. If the counting rate is integrated over

e,y and all other variables except p and summed over
spins, one obtains the counting rate Z(p)d cosp as a
function of the correlation between V, v alone. 4

Mp will be made up of the spin wave functions of
A,Il, , and of polar vectors P (like A,S,C) and
pseudovectors Q (like A & C). In the same way Mn
contains polar vectors y and pseudovectors q. Thus,
with regard to parity properties, there are four types of
correlations and the corresponding types of angles can
be labeled pr„, pq, pi „pq,.

The correlations have the following properties (the
first two properties are unrelated to parity conservation):

(1) Each Z(P) is o Polynomial irb cosP For.we see by
(6.15) of I that each factor of sinP is accompanied by
one factor of cosine (or sine) of e or y, while each cosp
has either zero or two factors. Then the integral over
dndp leaves only even powers of sinP which can be con-
verted into powers of cosp.

(2) The highest pmver of cosp (the maximum com-

Plexity) in Z(P) is Zj if Xhas sPirbj (and 2j +1 if X has
spin j+z). For the density matrix M&M&* when
summed over the spins of the production particles
cannot have more than 2j (or 2j+1) factors of mo-
menta in it.

(3) If Purity is conserved iu Productiort, thee Z(Ps)
ctrbd Z(Pi, ) are evert functions of cosPJ*„, cosPs, For.
under all P —+—P, cosP~ —cosP for these cases and
M p —++M i or Ms. Thus —Z(P), obtained from
~Ms .Mii ~', is unchanged when cosP b—cosP for these
cases.

(4) IfPurity is conserved iu decay, Z(Ps v) and Z(Pqv)
are caen furtCtierbS Of COSPPv, COSPqv. Same reaSOning aS
in (3).

These theorems are not quite the same as the
Johnson-Teller type of maximum complexity theorem
derived for nuclear physics. ' The latter states that the
complexity of a distribution does not exceed 2J, whereI is the maximum orbital angular momentum of the
incident state. This principle does not require a special
proof in our tensor formalism as it is already imbedded
in the notation.

3. Forward and Backward Production
(Adair Analysis)

We return to (3.8) and (3.9). Suppose that only
events with ~cos8o j

=1 are counted, that is, events in

4 Examples of this procedure are given in C. Zemach, Phys.
Rev. 133, 32202 (2964). There are minor differences between the
definitions of a, y in this reference and in the present paper.' See, for example, E. Eisner and R. G. Sachs, Phys. Rev. 72,
680 (2947} and C. N. Yang, Phys. Rev. 74, 764 (1948).
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which A, 8, and C are aligned. We refer to this as
forward and backward production or, simply, "forward"
production even though events in which C goes directly
backward (cos8a= —1) are also included.

Then 3fp is characterized by a single vector A:

calculating the j—I interference, one encounters

(e a)[(j+1)P; ie—a xAP 1
= (e a)P(j+1)P+xP j (e—A)P

= (e a)P,+g' (e—A)P/ (3.17)

Mp = (P,T'(A)Zg (3.10)
(e.A)P(l+1)PI+je a «AP)]= (e.A)P~~' (e —a)P)'

(3.18)with Z~ defined like Z, in (3.4), and obeying Z~'=1.
Recalling from I that

t where x= a A, P;(x) is the Legendre polynomialj, we

have, by (3.9)

(3.13a)

xP;„,'=P, '+(q+1)P „
xP, g'=P,' jP) g, (3.13—b)

and 6nally the trace

-',Tr[(e A)P~g' —(e a)P(]L(e a)P;+,'—(e A)P/'j
=P~i'(x»+i' —P7') —P~'(P~i' —xPP )

= (j+1)LP~~'»+i P~'»—3 (3 19)

The result following from (3.16), including the j term
and interferences with it is

Q~Mg&p~ = (2j+1) '{(j+1)~P,(x)~

+(1 x )Lp, ( )j ) (3 12) 2 IM I'= (j+1)t I &I'(P P +
'—P+ P ')/(2j+1)

+2 Re(8$*)(P,P~g' —P;+gPp')/(21+1)
The result is independent of 0; and of the parity of X. +2 Re(88*)(P,+gP~g' —P,P/)/(2l+1)]

+2~(e.a x A) I m(em*) L( j+1)P, P.'
The I.egendre formulas

»/ =» i'+j»=»+i' (j+1)»—, +(k+1)P~,'g/(2k+1)+Im(88~)
&( (P'Pi' P~g'P;+g—')/(2l+1)) . (3.20)

(1—H)P,'= (j+1)(xP; P,+g)— (3.13c)
4. Peripheral Production

Figures 1(a) and 1(b) illustrate peripheral mecha-
nisms for producing X. Suppose that G has spin zero in
1(a) and spin ~~ in 1(b) and that one of these processes
dominates the reaction.

In the erst case, one may pretend that I is produced
in the simplihed reaction

often help to simplify expressions like (3.12). We have

(1—x )P,'P)'= (j+1)xP,P,' (j+1)P,~gP-

= (j+1)»EP~+i' V+—1)P j
(i+1)P~»—~' (3 14)

whence, dropping over-all factors,

Z
~
Mop~'=P;P~, ' P~,P,'. —(3.15)

Equation (3.15) is the Adair distribution, proportional
to 1, 1+3x, 1—2x +Sx, for spin L 2, s~, etc., but ex-
pressed in compact form.

Now consider the more general amplitude

Mop ——(y+ze. a')Z.{eT&(a):O'.T~(A)

+aT"(a):6.T'(A)
+e(e a)T'(a):(P T'(A)(e A))Z . (3.16)

We write (3.16) in order to consider the effect of inter-
ference between a dominant resonant amplitude (the j
term) and other, possibly weaker, nonresonant ampli-
tudes. The k term is in the same parity sequence as the
j term, while the 3 term is in the opposite parity
sequence. As is known, useful information can be ob-
tained by looking at interference contributions as a
function of resonant-invariant mass, taking account of
the special behavior expected of the coefBcient functions
0'„$, 6.

The calculation of ~Mop~' proceeds as before. In
' R. K. Adair, Phys. Rev. 100, i540 {1955}.

8+6-+ X—+ a+b. (3.21)

The production is characterized by a single vector 8
in the XRF. Hence formulas (3.15) and (3.20) above
are applicable to this case, except that the de6nition of
g is x=8.a with 8 viewed in the XRF.

In the second case, one may use the model

A 1G -+ X~ a+b, (3.22)

assume that the G beam is unpolarized and again
arrive at the Adair analysis formulas. ~

To verify this, let m, 0.=1,2,3,4 and I, o.= j.,2 be
the Dirac spinor and rest-frame spinor, respectively,

o b C C o

FIG. i. Peripheral mecha-
nisms for the production of a
resonance X.

{a)

' This result has already been obtained by P. Schlein (private
communication).
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for B.Then

Mp=(P T'(A)F, n= 1,2,3,4, (3.23)

where A is in the XRF and P, expressed covariantly,
is (we write only the spin-dependent factors)

directions by
Q.a= cosp,

Q a x a'= sinp sinu sin8,

Q a x (a x a') = —sinp cosa sin8.

(3.28a)

(3.28b)

(3.28c)

F P(yG+mg)yp) pws or F. (yG+mg) fJpcs,

(3.24)

Let Z(p, a')dcospdu dcos8 denote the counting rate
as a function of the indicated variables. The distribution
in cosp is Z(p);

depending on the parity of G. Since M~ multiplies M~
which, in the XRF, has only upper spinor components,
we need only the upper components of Ii . One 6nds,

Z(P) = Z(P, a')dn dcos8. (3.29)

F =ffp+frppr 8 x6) sxs, cp,p=1,2, (3.25)

where fp, f& are real functions of the energies. Hence
the density matrix of G, given by

Z F-F- *=Ef"+f~'(B G)')&-, (3.26)
Bspin

is isotropic, justifying the model of G as unpolarized.
When G has spin greater than ~~, the model is still

valid provided the polarization of G, determined by the
(GAC) or (GBC) interaction and not necessarily iso-
tropic is taken into account. The role of peripheral
collisions in angular correlations is a subject in itself,
which has received attention from a number of authors,
and we shall not pursue it further here.

S. Correlations at Low Production Energies
(Table II)

When X has spin j+~& with j~ j., the production
amplitude has two terms, corresponding to orbital
angular momentum j and j+1.Suppose the incident
energy so low that the De Broglie wavelength of the
relative momentum (in the CMF) is large compared to
the range of the interaction producing the X. Then the
centrifugal barrier is important and the lower orbital
term may dominate, simplifying the prediction of angu-
lar correlations.

To make this quantitative, we examine correlations
between the production normal Q, and the directions
a, a' of the decay system. We set up orthonormal vectors¹,¹,N' with Q=¹.

Any P in the plane of production can be written
P=cq¹+cp¹.Orthonormal vectors for the decay are
de6ned by

Both Z(P, a') and Z(P) depend on 8c also. We can now
do two things: Firstly, we can de6ne correlations Z, by
taking only sideward production, that is, only data with
8~ not too far from 2x. Secondly, we can dehne cor-
relations Zf by taking only values of 8& not too far from
0 or m, as has already been done above. From Table l,
line 5, we see that for the sequence —,

'—,-,'+, , both the
forward-dominant and the low-energy-dominant term
are the same, namely

M'~=(P T'(P) . (3.30)

Thus, for low-energy production, Zq(P) and Z, (P) may
be very similar (or identical). But for pP+, Pp, . the
forward-dominant term is like (3.30), while the low-
energy-dominant term is

M~= (P.T'(P PQ) . (3.31)

Thus Z, and Z~ come from diferent terms and may be
quite diBerent. The situation provides a parity test as
we shall show.

To obtain the forward correlations in cosP, we sub-
stitute x= —cosy sinP in the Adair distributions 1,
1+3x', 1—2x +Sx', etc., average over y to get

Zr(P) = 1, 5—3 cos'P, 1—22 cos'P/15+cos'P ~ (3.32)

for spins -', +, —,'+, ~~, etc. The second two functions of
(3.32) are "hill" distributions rather than "valleys, "
i.e., larger for cosP=O than for cosP= &1.

We shall not worry about contamination by non-
resonant processes in this section. Then the forward
correlations are independent of a' as we have seen.

The averaging over y involves, in general, calculations
of the following type:

a=n

nI sln8+n3 cosH

I=~n' sin8+n' cosH,

a xe=aa xa'=an'sin8.

(3.27a)

(3.27b)

(3.27c)

(3.27d)

The procedure is to calculate the reaction rate as a
function of the Euler angles and average over y. This
leaves a function of angles P,a,8, related to the physical

&( P)( P*)).
= (l c~ l'(a ¹)'+2Rec~cp*

X(a.¹)(aN')+lcplP(a NP)')

=(lc~l'cos'y sin'P —2 Rec~cp*

Xcosy sing smpp+
l cp l' sm'y str4),

= (l col'+ lcpl')k sm'p,

((a xP) ~ (a xp*))„
=(l"l+ l"l )"-:«+-"p)

(3.33a)

(3.33b)
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The work is again straightforward with the result

Z, (p,a') = 1+6 cos'p —4 cos'p+ pc[6 cos'p(Q a')
—2 (cos'P —cosP) a a'], (3.42)

where Case +~+: The raw Mp is now PP' with P=c~N'+c2X'
and P'= c~'N'+c2'IP and2 Imc2cy

(3.34)
lail'+ I&~I' Mn". Mp=—(o a)((a.P)(a P')

g'—(P P') ,'i—[—(a P)(o axP')
+(a.P')(o a xp)]j . (3.43)

Ke are now ready to consider the correlations

Z(P, a') for the lower spin cases. Write M~' for the
amplitude of X~ a+b so that Mn= (y+so a')MD'.
Over-all factors like (~c&~'+ ~c2~') will often be dropped
without special comment.

Case -', +: We have Mp=1, MD'=o a, and Z(P, a') is
isotropic. If we do not restrict the production to S wave
we would have, more generally, Mp= c~+c~o Q, leading
to

The a' term of Z, (p, a') is not uniquely determined, but
is found to be a mixture of sin'pQ a' and sin'p cospa a'.
To obtain the character of Z(p) we can write (3.43) as

Mn'. M p ——cici'[(a ¹)'——',]+c2c2'[(a N')' —-,']
+ (cic2'+c2c~') (a ¹)(a N')

+o (a vector) . (3.44)

((a.P)(a xa' P*)),
——2([ci ('+ (c2(') cosp smp smu sine

+i Imcgc~* sioP cosu sin8
= —-', (~ci~'+ ~c2~')[cosp(Q a xa')

+ Q ( I)] (3 33 )
again a valley for Z, (P).

Z(P,a')=1+pcQ a=1+pc[—Q a'+(a. a')Q a].

Case 2:Mp=cr P,

ZIM»l'=l Tr(o P*)(1+po a')(o P) .

Then
Z(p, a') =1+peQ a'.

(3.35)

(3.36)

When computing Z, (P), one finds that the three lines of
(3.44) do not interfere and the square of each averages
to a hill distribution, hence Z, (P) is a hill.

The conclusions on shape are listed in Table II. As a
practical application consider the reaction

E +P —+ Y*(1385)+~; Y*~A+o (3.45)

Again, Z(p) is flat, but the Q a term distinguishes this
case from spin 2+.

Case —,': Take Mp= P+-',—io xP and Mo' =Mp'(raw—)
= (o a)a so that

Mn'. Mp= (o.a)(a P——', io a x P) . (3.37)

The rate depends on

g ~M»~2=-; T.(a P*+-,"axP*)
X (1+po.e) (a.P—bio. a x P)

=[(a P*)(a P)+l(a P)(a P*)]
+p Im[-,' (a P*)(a x a' P)

+-,' (a x P ) x (a x P) o] . (3.38)

Then, using (3.33), we have

Z(P, a') = (5—3 cos'P)+pe[4Q a' —2 cosPa a'] . (3.39)

In this case and the two previous ones, there is no dis-
tinction between Z, and Zf.

as described by Ely et al. ' and chafer et u/. ' The
simplest mechanisms for the I'* production are per-
ipheral interactions with E* or A exchange. Thus the
range of the interaction is probably not greater than a
E* Compton wavelength. A production with mo-
mentum of the order of a E* mass corresponds to a
center-of-mass energy of about 2.3 BeV and an incident
lab momentum of about 2.1 BeV/c. Thus the Ely and
Shafer reactions, at 1.15 and 1.22 BeV/c are low-

energy productions in our sense. In both cases, the
Z, (P) distribution, with P the angle between the pro-
duction normal and the A direction, is a valley. This is
consistent with the ~+ assignment, inferred by Shafer
by other means, but inconsistent with a ~3 assiyunent,
among others. The valley washes out" if data with

ALE II. Shapes of correlations in cosp=Q a in low-energy
production of fermion resonances with decay products of spin 0
and $+. P is the angle between the production normal and the
decay direction in the rest frame of the resonance. See Sec. III.5.

Case ~3+: To calculate the sideward correlation at low
energy, we use M p =Q+ 2io x Q and proceed as before.
No averaging over y is needed and the result, Spin and parity

Sideward
Z, (P)

Forward and back
Zg(P)

Z. (P,a') =—Z, (P) = 1+3 cos'P,

is a valley with no dependence on a'.
(3.40) Bat

valley
hill

Oat

hill
hill

Case —', :We can use the raw form of Mp, Mp=PQ if
we also use the constrained form of M~',.

Mn'= T'(a)(P,
= aa——,

' t ——,'i(o x a)a ,'ia(o x a)—.—(3.41)

8 R. P. Ely, S. Y. Fung, G. Gidal, Y. L. Pan, W. M. Powell, and
H. S. White, Phys. Rev. Letters 7, 461 {1961).

I J. 3. Shafer, J. J. Murray, D. O. Huwe, Phys. Rev. Letters
10, 179 (1963).
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forward angles tItg are mixed in' as it should, since the
forward distribution is a hill. Ely's valley is deeper than
Schafer s, which is reasonable since his production, at
the lower energy, should have a purer sample of the
lower orbital angular momentum. Moreover, the com-

pletely pure distribution (3.40) is a still deeper valley.

I'q= (a' Q)g fMng f'dO. . (3.46)

We ask how I'q depends on cosP= a Q. If we refer to
(3.9) and also (3.7), (3.4), we see that I'q is a poly-
nomial in cos'P with maximum term (cosP)" for X in
the x2+ sequence. But the maximum term is (cosP)'~'
for the —',—sequence as a has two factors of a which can
combine with Q's in M~,M~*. On the other hand, if we
look at Eq with Q = —Q+2(Q a)s, this counteracts
the effect. Eq has maximum comPlexity (cosP)'~z for
the -',+ sequence and (cosP)'~ for the —', sequence. As may
be noted from the results of the previous section, the
complexity may not reach its maximum value if only
the lower orbital term of the production amplitude is
observable.

We now calculate the projected cross sections do.j,~,&
using (2.25), (2.27b), (2.30). We want C» for the whole
decay X~ a+a'+b', summed over b' spin:

I'»= —', Trf(1+pe a)T'+'~'(a)*: T'(S)T~"(a)j . (3.47)

6. Moment Analysis

The analysis of the tensor moments of the decay dis-
tribution given here is similar in spirit, though not in
detail, to the work of Refs. 1 and 2.

We first give a simple proof of the maximum com-

plexity theorem for the polarization of the decay
fermion, which was used in Ref. 9. The polarization in
the direction Q is given by

IV. BOSON RESONANCES %ITH DECAY
PRODUCTS OF SPIN 0 AND SPIN I

We now discuss

1. Preliminaries

The upper sign in (3.52) is for the -', sequence, and the
lower sign for the ~~+ sequence. The spin and parity can
be determined by seeing which do.I,~~. are nonvanishing
and by considering the ratio of (3.51) to (3.52).

The situation may be summarized by saying that we
have a series of test functions characterized by three
quantum numbers and one continuous variable. The
do.&~~ are nonzero for k equal to or less than twice the
spin of the resonance and for M =0, k even, and M=O,
&I, k odd. They also vanish for odd M', by parity con-
siderations, if the production normal is taken as the
polar axis of the production configuration. The experi-
mental evaluation of those dol, ~~. predicted to vanish
is useful as a check on the background.

In the Byers-Fenster approach, the total counting
rate da =Q» dq» 'A»: C»d cos8cdQ, dQ; is multiplied

by Y»,»r(Q, ) and by (a' n) I'», »r(Q,) and integrated over
dO, dO, . to obtain the moment (F»,»r) of the intensity
and the moments (P nF». »r) of the components of the
polarization P of the b particle. Here, 9 is referred to
axes defined by the production process. With C~ given
by (3.48), (3.49), the integration over (a' n)dO, ,
reduces Ck to zero for k even, while for k odd, reduces
4» to —',(0+1)T»(a) if n=a (longitudinal polarization)
and to & (j+1)T»(a an) if n a= 0 (transverse
polarization), with the sign depending on the parity of
the resonance. It is seen that the Byers-Fenster in-
tensity moment corresponds to our projected cross
section for the M=O, k even case, their moment of
longitudinal polarization to the M=0, k odd case, and
their transverse polarization moments to our M= &I,
k odd case.

We refer to lines 7,8, Table III of I.This gives, dropping
norm alizations, 2+8~X+C, X—+ a+5, (4.1)

dalco~~ =Rp~~ dcost3
~

d&Iou =Au cos8dcos8,

do Ic-1AP ~&la12tP

(k even) (3.50)

(k odd) (3.51)

=aZ»~. P (k+1)j-'I'(j+ 1) sine dcosa,

(k odd) (3.52)

C»= T»(a), (k even)

C»= (j+1)T»(a ~ ae)+z (0—2j—1)a eT»(a),
(k odd) . (3.49)

These are to be converted to the form (2.27b) using
(3.27) and n'= (n- —n+)/W2. Then

where A and a are 0—,8 and Care ~+, and b is 1,e.g.,
a p or co meson. Let e be the spin wave function of b. The
decay amplitude can be written

Mg) T'(a . af), —— (4.2)
where

)=a xe for 1—,2+ 3—, (4.3a)

f=ye+za(a. e) for 0-, 1+, 2+, , (4.3b)

and y, 2' are possibly complex coupling constants; y=0
for 0—.If the X decay is a low-energy decay, i.e.,
~a~ Xrange of decay interaction (1, then the y term,
carrying orbital angular momentum /= j—1 may
dominate over the z term which includes l=j +1.

We consider two possible decay modes for b:
' J. Shafer (private conuuunication). b ~ a'+b' or b ~ a'+b'+c', (4 4)
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where all primed particles are 0 . In the 6rst case b is,
or is like, the p meson and has a decay amplitude

My=a e./

If a "low-energy production" approximation is ap-
plicable, and X is in the 1 sequence, then (see line 4
of Table I of I)4.5a

The second case corresponds to the co meson with decay
amplitude

M&=q C, (4.5b)

where q is the normal to the decay plane; q= a')&b'.
The amplitude for the over-all decay is then propor-

tional to

Since
5 spin states

M~D (4.6)

e;e;=5,;,
b spin states

(4.7)

Kq. (4.6) is just the instruction to substitute a' or q for
e in (4.3) to get the amplitude expressed in terms of
observable vectors. We shall continue to use the
symbole e, and write cos8=a e. Experimentally, this
8 is the angle between a, in the XRF and a', or q in the
bRF." The Euler angles P, n will relate e to the pro-
duction conhguration.

In these examples of b decay, e is eBectively a real
vector. If, on the other hand, b were, say, a 1+ particle
decaying into three 0 particles, the decay amplitude
might be

Mg ——(xga'+xmb') e (4.8)

with the ratio x&/x2 complex. Then additional variables
are needed to describe the b decay. We comment

briefly on this more general situation at the end of the
section.

2. Correlations in Special Circumstances

Complexity of correlations. The maximum complexity
theorems derived in Sec. III are applicable here.

Foneard and backward production The A. dair-type
distributions are less interesting here than in Sec. III
because even if A, 8, and C are aligned, there are still
two independent production amplitudes, namely

x,T&(A)+x2T'(A . AoxA) for 0-, 1+, 2—

(x2 ——0 for 0-) (4.9a)
and

x)T'(A Ao)+x2(o. A) T.'(A) for 1-, 2+, 3—

(4.9b)

These are not likely to be helpful in determining the
spin and parity of X unless something is known about
the fermion polarizations. But if the X quantum
numbers are known, Qtting the data to these ampli-
tudes may clarify the production mechanisms.
"C. Zemach, Nuovo Cimento 32, 1605 (1964).In this reference,

e is taken in the XRF. This has the advantage that the correlation
angle is given as the difference between two directions in the same
frame. It has the disadvantage that the density-of-states factor is
not simple dcos8, but rather t 1—as cos'8/EP j~&dcos8. This
reference also gives correlations appropriate to coherent produc-
tion as may occur in a heavy-liquid bubble chamber.

Mop= T'(a a a xe):T&(A
'~ A o)

= (A a xe)[(o a)P;"(x)—(o A)P, g" (x)j
+o a~eP (x), x=a.A. (4.10)

Summing over fermion spins,

Z IM»l'=(A a xe)'
X{(P")'+(P i")'

+ (a x e)'(P,')'. (4.11)

For the lower spin values, we then have

do/dn. dt's, = (a x e)', (1—), (4.12a)
=x (a xe) +(A a xe) (2+) (4.12b)
= (5x'—1)'(a x e)'+8(5x' —1)

)& (A a x e)' (3—
) (4.12c)

and so on. Integrating over dQ,—this is equivalent to
applying (4.7)—gives the rate as a function of one
variable:

do/dx = 1,1,9+22x —15x4 for 1,2+,3, (4.13)

respectively.
Periphera production Refer. ring to Fig. 1(b), if G is

0 then x must be in the 1 sequence, and the amplitude
for (3.22) is

Mop= T&(a a a xe):T&(A) =A a xe'P, '(x) (4.14)

so that
do/dn. dn, = (A.a & e)'lP (x) l'; (4.15)

dg/dx= (1—x') (P,'(x))'. (4.16)

Notice that (4.15) results from the second, rather than
the first term of (4.9b). This serves as a warning that
when the reaction goes by a specific mechanism, pref-
erence may be given to the higher rather than the lower
orbital term, even in a low-energy production.

If the exchanged particle has spin ~~, the possible
amplitudes for the simpli6ed process has the same gen-
erality as (4.9). But there is a special case which may
be interesting. Suppose 8 and G in (3.21) are nucleon
and antinucleon. For a nucleon-a, ntinucleon system,

G parity (triplet spin state) = (—],)'+~, (4.17a)

G parity (singlet spin state) = (—1)H r+'. (4.17b)

Thus if X has de6nite I and G and the production con-
serves these quantum numbers, only one tenn in (4.9a)
is present. The amplitude for the 0, 1+, 2, cases is
then either

Mop ——T&(a af):T&(A AoxA)
= (o A xa)[(A f)P;"(x)—(a.f)P;,"(x)]

+(o A xf)P (x) (4.18a'I
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or and
Mop=TJ(a'' af):TJ(A)

=f.AP (x)-(f a)Z, ,'(2;)
(4.22b)M * T'(S)M =0 (k odd)

(4.18b)
For the 0 sequence, they are

MD*..Tk(S)Mr)

=
~
y+2

~

' cos'8T" (n')+Rey(y+z)" cos8

Xsin8(k/ j)T"(n' n'n')+
~ y~

' sin'8

(j 2—k) (j+1+2k)(k+ 1)
Tk (n3)

j'(k+2)3. Moment Analysis

In order to obtain projected cross sections dr»IM. ,
6rst dehne the n', n', n' basis vectors for the decay
con6guration:

k (j+1)+ T'(n' n'n'n') (k even) (4.23a)
j(k+2)

depending on the G and I of X. These expressions are
easily converted into cross sections and summed over
b spin if that is desired. They serve as further examples
of how the tensor notation, with a few key formulas,
allows us to go from a well-dehned spin situation to a
calculated angular correlation with a minimum of
di6iculty.

a= n' (4.19a)

e =n' sin8+ n' cos8 (4.19b)

a xe=n'sin8.

Second, write the decay amplitude in this basis:

(4.19c)

Mzl ——(sin8) T'(n' n'n'), (1-, 2+, 3—, ) (4.20a)

Mn ——(y+z) cos8T&(nz)+y sin8T&(n'. n'n') .
(0, 1+, 2, . ). (4.20b)

Third, specialize the relevant equations of Table III of
I to the case where p q=0, and drop the over-all
normalization factor c;:

T'(P):T'"(S)T'(P) = T'"(P) (4 2»)
T'(P):T'"(S)T'(P "P31)=T'(P" P31):T'"(S)T'(P)

=(nlj)T'"(p. p31) (421b)

T'(P" w):T'"(S)T'(P "Pe)

=(n(j+1)/j(n+1))T'"(p" PW)

(j—n) (2n+1) (j+n+1)+ 31'T'"(y) (4.21c)
2j'(n+1)

T'(P) T'" '(S)T'(P)

Tk(nz. . .n3nl)

2—1/2LTk, —1(n) Tk, +1(n)] (4.24a)

Tk(n3. . .n3nlnl)

=-2'fTk '(n)+Tk'(n) —2Tk(n'. n'n+n )]
Lr Tk, —2(n)+Tk, 2(n) Tk,o(n)] (4.24b)

Tk(n3. . .n3nznz)

Tk, -2(n) Tk,z(n) Tk,o(n)] (4.24c)

Sixth and last, use (2.25), (2.27b), (2.30) to obtain the
projected cross sections. The results for (1—,2+, 3—.. )
are

for k even:

dlrkozz =&kkz g(j+1)(k+2)
+k (k+1)(j—k —1)]sin'8 dcos8, (4.25a)

d&kzkr = d&a m'= —&kkz J(&2+1)—
Xfk(k+1)(k+2)(k —1) ']'"

Xsin'8 dcos8, (4.25b)

Mo* T"(S)M. o——Inl(y*z) cos8 sin8T" (n' n'n')

(k odd) . (4.23b)

Fifth, convert the T~ to the spherical basis by putting
n'= (n——n+)/V2, nz=z(n++n —

)/V2. Thus,

=T'(P" w)T'" '(S)T'(P "w)=o (421d)

T'(p) T'" '(S)T'(p" P31)
and for k odd:

other dcrI, MM =0,

&0 I MM' =0.

(4.25c)

(4.25d)
= —T'(p" .P31):T'" '(S)T'(p)
=zT'"—'(y y yxq).

The results for (0, 1+, 2, ) are
4.21e

for k even:
Fourth, calculate the tensor moments of M~.
1—sequence, they are

Mzl*..T"(S)Mo
= ((j——,'k) (j+1+-',k) (k+1)T"(n')

+kj(j+1'ITk(n' .n'n'n') }sin'8,

(k even)

For the

(4.22a)

d&kozr =~333 j(y+ ~2'(k+2) cos 8

+
~ y ~

'Q'(j+1) (k+2)+k(k+1) (j—k —1)]
Xsin28} dcos8, (4.26a)

do k—1M' d&k1M'

=&kkz Rey(y+z)*j(k+2) Pk(k+1)]1~2
Xcos8 sin8 dcos8, (4,26b)



8120 CHARLES ZEMACH

do'000= M~ Mg)dCOSH

= sin'8 dcos8, (1,2+, ), (4.27a)

={[ y+s ('2jcos'8+ [ y ['(j+1)sin'8) dcos8,
(0-, 1+, ~ ~ ) (4.27b)

already given earlier. "
The tests of Ademollo, Gatto, and Preparata' carry

the same information as (4.25), (4.26) but catalogued by
a slightly different set of quantum numbers. Consider,
for example, the two simplest cases:

(d~ooo/dcos8) (1 )= sin'8= —3[1—Pg(cos8) j, (4.28a)

(do ooo/dcos8) (0 )= cos'8= sL1+2P2(cos8)j . (4.28b)

The corresponding information in Tables 1, 2 of
Ademollo, Gatto, and Preparata is expressed this way:

A (20; 00)/A (00; 00) = —1/v2 (for 1 ), (4.29a)

A (20; 00)/2 (00; 00) =+2/V2 (for 0 ) . (4.29b)

We see that the coeflicients of P2(cos8) in (4.28) cor-
respond, apart from a V2 normalization factor, with the
ratios in (4.29).

Finally, we note the appropriate procedure if b follows
a decay mode like (4.8). It is necessary to add to the
list (4.19)

h'=sin8' cosy' n'+sin8' sing' n'+cos8' n', (4.30)

where t3', y' are the coordinates of b' in the coordinate
frame de6ned by a,a'. One proceeds as before, obtaining
cross sections dak~~ proportional to dcos8 dcose'dq'.
It is no longer true that e can be treated as real; this
means there is a possibility of calculating Im(y*z)
X (~y('+ (

s(')-' which could not be done by means of
(4.26).

d&k—2M' d&k2M'

=&~n lyl'2j(j+1)
X Lk (k+1)(k+2) (k—1)—'J"

Xsin'8 dcos8, (4.26c)
and for k odd:

d&k—1M' d0 k1M'

=Rq~ Im(y~s) cos8 sin8 dcos8. (4.26d)

All other do'k~~ =0.
It is easy to see how the different equations of (4.26)

can be compared and combined to yield, in a number of
different ways, not only the spin of X but also the decay
constants. But Im(y~s)(~y~m+ ~s(') ' cannot be deter-
mined. The experimental calculation of those do.k~~
predicted to be zero is also useful as it gives a check on
the amount of background. The 1 and 0 sequences are
distinguished, among other things, by the sign of
d0 ~2M'-

The k=0 terms refer to the unprojected decay
correlations:

V. FERMION RESONANCES WITH DECAY
PRODUCTS OF SPIN 0 AND SPIÃ ~

1. Preliminaries

Our model reaction will be

Mg= (up*~a'. E),
M&. (y.u*~ y'+ esa——"~lut, ) .

The sum over b spin states )see (3.17) of I) is

b spin

(5.2)

(5.3)

(5 4)

which is consistent with the constraints e E=0,
E* e=0. But it is more convenient to insert the pro-
jection operator directly into M& (we again ignore a
proportionality factor):

M~=(us*(a' 6'. (E)=—(us*((a'+mfa'&~) IE) (55)
~ G. A. Smith, J. S. Lindsay, J. B. Shafer, and J. J. Murray,

Phys. Rev. Letters 14, 25 (1965).
'g G. Goldhaber, invited address, American Physical Society,

Washington, May, 1964; G. Goldhaber, S. Goldhaber, T. A.
O'Halloran, B. C. Shen, Lawrence Radiation Laboratory Report
No. 11445, 1964 (unpublished).

A+B~C+X, X~a+b, b~c'+b',
b' -+ a"+b", (5.1)

where A, a, u', a", and C are 0, b is 2+ and B, b', b"
are ~+. The b' decay will be taken as parity nonconserv-
ing. We have in mind a sequence such as E+p —+ K
+ *(1820), *(1820)~ *(1530)+7r, *(1530)
—+ A.+x, A —+ E+x, which has recently been ob-
served. "As other examples, we mention reactions which
involve Ã*(1520)~ $*(1238)+m. and the decay into
Ã"(1238)+n of a possible E=~ resonance" at 1560
MeV. The b' decay is not relevant to the latter two
possibilities.

The study of correlations for (5.1) is more complicated
than in the previous cases because there are three decay
directions, a, a', a" about which something can be said.
Moreover, there are two orbital terms for either parity
sequence for X and the spinor-vector E combines what-
ever complexity there is in spinors and vectors. The
current experimental situation would seem to call for
an investigation of correlations involving a spin-~ decay
product, but not an exhaustive one.

Ke shall follow, in part, the scheme of the previous
sections, looking at Adair distributions and forward
versus sideward distributions, but assuming that only
the lower orbital term in the X decay is retained. This
may well be a good approximation for the *(1820)and
ill'*(1520) decays, both of which have a Q value of about
one pion mass. Then we shall do the moment analysis
for the lowest order term —which gives the angular cor-
relation of a and a'—and the dipole term which also
depends on a".

In the by now customary notation, the decay ampli-
tudes for b ~ e'+b', b' —+ a"+b" take the forms
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Then, we can use

Z P-'-E'a= (1) -;a =46-s.
b spin

(5 6)

+~M»('=E" M E, (5.8)

where M is some function of a, and the production
angles. Correlations are computed by multiplying (5.7)
by (5.8), using (5.6) and then integrating over appro-
priate variables.

The symbol E expresses the b spin as the sum of a
spin-1 part and a spin-~ part. Experimentally, the mo-
mentum a' gives the direction of the spin-1 part and a"
gives the direction of the spinor polarization associated
with the spin--', part.

We shall not attempt to 6nd correlations in a, a', a"
simultaneously. To obtain correlations of a', a and pro-
duction vectors, one should integrate (5.7) over 0, ,
getting

iMpg i
dn.

b" spin

AM)['=-,'(E*.a')(a' E)
b' spin

+-', E* E——,'iE*xa' (e a')E

+-,'iL(E* e xa')a' E—(E* a')(o xa' E). (5.9)

To obtain correlations of a alone with production
vectors, integrate (5.9) over 0, to get

P ~m, (mdfI. .=E'6.K
b' spin —=E* E+2iE* o x E, (5.10)

which amounts to using (5.4) directly.
To obtain correlations of a, a", but not a', one inte-

grates (5.7) over a', with the result:

g ~
M g, y ~

'dQ, = (a2) (E*.E+-,'iE*.e x E)
+pE(»/4)(K* xa" E)
+E*(e a")E—$(E'o)(a" E)

—k(E*.a")(o.K)] (5 11)

In these equations, one must not apply e.E=0 since
the 6', which enforces this constraint has been put
explicitly into the matrix element. One can still applye.E=O, and hence Ze xE=E in M~,

The amplitude Mbb for b —+ a'+0,"+b" must now
be computed, squared, and summed over b" spin:

Q~Mgy~'=E* ( a+ ',ie-xa')(1+pe a")
X(a'+-', ia' xo) K. (5.7)

Equation (5.7) is somewhat similar to (3.9). If h were
rather than 2+, a" in (5.7) would be replaced by the

magic direction, (a") = —2a"+(a' a")a'. Now the
squared amplitude for 2+13~ C+u+b, averaged over
8 spin will look like

The maximum complexity theorems are as valid here
as in Sec. III, but less interesting since, with higher
particle spins, reactions can be dominated by lower
orbital terms, giving complexities less than the theo-
retical maximum.

with the help of Table 1 of Ref. 1.The last term reduces
to (E* A)P, '(x) by (2.6b). This amplitude is of the
general type

Mn p= E+' (5+iSe'5) . (5.13)

Then the counting rate, averaged over spins of 8 and b,
1s

+~Mop('= ,'Tr(5 —i-Se lI) (P.($+iSe iI)
='g 'I+'I Sxg+S Sa.fl. (5.14)

This gives the rate in terms of Legendre polynomials
and their derivatives.

For the opposite parity sequence ~+, ~, ~ ~, one
replaces E* by (a xE~) and T'(A) by T'(A)e A in
(5.12) and proceeds the same way. The extra e A
factor does not aGect the calculation, as already noted
in Sec. III.

The calculated distributions for the lower spins are
given in Table III. We mention again that these dis-
tributions are also applicable to peripheral productions
if the exchanged particle has spin zero or one-half. They
also apply to two particle production processes such as
x+X —+ X~ vr+E*(1238).

ALE III. Adair distributions for fermion resonances with
decay products of spin 0 and &s+. Only the lower orbital term of
the decay is taken into account. See Sec. V.2.

Spin and parity Distribution in x= A. a

1
S—6Z/7
1+2@'

i+10m —j.0x'
j.—40m /7+65@ /3 —50&'/3

i+a/S+~9e/~0

2. Forward and Backward Production (Table III)

We calculate the correlation in @=A a for the case
where the production vectors are aligned and the lower
orbital term of the decay dominates. For spin ~, Mp= 1
or e A and the distribution in x is flat. For (2, —,'+, .)
the reaction amplitude is

Mn p ——T&(a aE*):O'.T'(A)
= (1+1)P(E*A)P,'(x)—(E* a)P, ,'(x)]

+(E* A)(ie A xa)P,"(x)
—(E* a)(ie Axa)P; )"

+i(K* e xA)P (x) (5.12)
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3. Correlations at Low-Production Energies
(Table IV)

We shall calculate Z(8), the angular correlation
between the production normal Q and the X decay
direction s,. Taking only the l=j term of the decay
amplitude, and following the general scheme of
Sec. III.5, we expect again that the sideward rate Z, (P)
and the forward-backward rate Zr(P) will be similar for

2, ~+ and diGerent for 2+, —', for the same reasons.
Setting x= —cosy sinP in Table III and averaging

over p, we get Zr(8)=1 for 2+, —', , +~, and Zf(P)
=4+3 cos'P 9+10cos'P —15 cos'P, 2—cos'P for s3+,

—,', -',+. The last three are hill, valley, and hill distribu-
tions, respectively.

To obtain Z, (P), we use the Mp's of Sec. III.S, and
the MD's of Sec. V.2. The latter must be written out in
the traceless, syDUnetric, transverse to e form, e.g.,

Mo(-', +)=—aE*+E*a—(-,') (E* a) I

+(i/3)La(E' xe)+(E*x o)a
+(a x ir)E*+E~(a x ir)]

—=4aE*+4R'a —2(E*.a)1
+i(axe)E*+iE*(axe) . (5.15)

The calculations follow the rules already developed.
For —,'+, Z, (8) is easily found to be 3—2 cos'P, a hill.
The —', calculation of Z, (P) is somewhat longer, but has
a definite answer, 19—16 cos'P+27 cos'P, a valley. The
~+ distribution, as in III.5, is not completely deter-
mined. It is a hill in several special cases: 2 —cos'P if
P parallel to P', 21—18 cos'P if P, P' real and perpen-
dicular. It is probably a hill in general, but we do not
have a general proof. These shapes are summarized in
Table IV.

4. Further Correlations with the Production
Normal for —'

When X has quantum numbers 2+, ~, ~-, all the
distributions considered above are Qat. To distinguish
these cases, we look more closely at correlations among
Q, a, a', a".

Case -',+. Here Mz ——1, Mn ——R*.a so I M»l'
=(E"' a)(a E). Invoking (5.7) and (5.6), the total

counting rate is

d0 = (1+3 cos'8) dcos8; cos8= a a'. (5.16)

There is no dependence on Q or a".

Case x~ . In this case Mp=e P, Mn=(E*.a)(e a)
Then

MopMDi'*= (E* a) (e a) (s P) (e.P*)(e a) (a E)

=(E* a)(1+ce Q )(a R), (5.17)

where we follow the notation of (3.34), (3.7b). Then,
by (5.9), the part of the correlation independent of a" is

do = (1+3cos'8) dcos8 (5.18)

da=
I (1+-58pQ a")]dQ.-. (5.21)

These correlations are, moreover, independent of a,
distinguishing them from (5.19).

5. Decay Correlations

Consider now correlations in the three decay mo-
menta a, a', a", summed over all production informa-
tion. For parity reasons, these correlations, are, in fact,
independent of a", leaving us with a counting rate
do (8) which is a function of a single variable cos8= a a'
and the coupling constants y, s. This d~(8) is identical
with the projected cross section for the zeroth-tensor
moment, previously called doppp and is given by

as in (5.16). But there are also correlations among Q,
a, a" given by (5.11):

d0 = (1+-',cpLQ a"—~i(a Q„)(a a")]}dQ,dO, -
={1+epI (a Q)(a a")—3(Q.a")]}dQodQo". (5.19)

Case +—.Ke restrict the discussion to the approximate
production amplitudes used in the previous subsection,
so that Mop ——E~.P. Then (5.9) gives a rate propor-
tional to 3Ia' PI'+P* P. Averaging this over angles
in the production plane as in (3.33), we obtain the cor-
relation in Q, a':

d~=
I 1——;(Q a')2]dn. . (5.20)

Using (5.11), we derive the u'-independent correlation

TxaLz IV. Shapes of correlations in cosP =Q a in low-energy
production of fermion resonances with decay products of spin 0
and spin ~~+. Only the lower orbital term in the decay is taken into
account. See Sec. V.3.

d0 (8)=Mn. M*nd cos8.

For the ~+ sequence,

(5.22)

Spin and parity
Sideward

Z. (p)

Qat

valley
hill

hill

Forward and back
Zy(P)

Bat
hill

valley
hill

*n= fy7.
'

(a "aE*)+s(E*a)r (a)]xp.
X[y*T&'(a aE)+s~T'(a) (a E)] . (5.23)

%hen the right side is multiplied out, there are eight
separate matrix elements, if (P, (j+1)+e.S is counted
as two terms, some of which are equal to one another.
All of them are evaluated in Tables I and II of Paper I.
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Z (a E)L3(E* a')(a' E)+(R* R)7(R* a)
b spin =1+3 cos'8 (5.25)

2 E I3(R* a')(a' ~ R)+(E* R)$R*=6. (5.26)
5 spin

Hence

do (8)={(1+3 cos'8) L(3j—3) I y I

'
+3j(ys*+sy*)+2~ lsl'j

+6(j+2) lyl'} dcos8. (5.27)

To compute correlations for the —,
'—sequence, it is con-

venient to use, inst'cad of the form in Table I, the
following:

Mn ——{yT&+'(a aE*)'+z(E* a) T&'+'(a) }g, (5.28)

where, acting upon tensors of rank j+1, g, is the
"lowering" operator

$,=1—(P,=(j+1—o S)(2j+3) '. (5.29)

The advantage of representing spin j+-', with tensors
of rank j+1 is that the eight matrix elements of
ML} ..M&~ are the same as those for the previous parity
case (with j~ j+1) and have already been evaluated.
The distribution for the ~~

—sequence, with y, z de6ned
by (5.28), is

d~(e) ={(1+3cos'8)L—j(j+3) I
yl'

+j(j+1)(ys*+y's)+2(j+1)'I s I'j
+6j(j+2) Iyl'} dcos8. (5.30)

For the cases 2+, ~, y=O and the correlation is
1+3 cos'8 in agreement with (5.16), (5.18).

If, for spins ~ ~~, we drop the z terms, as has been
done in the previous subsections, we get

j—1
(8) = (1+ ccc'e) dccctt;

j+1
and

3j+9
(e) = (1 ccc 8) dEcctt;

sj+9

(-', , —',+, ), (5.31)

(2+ 5 " ). (532)

6. The First Moment of the Decay Distribution

We shall not attempt a general moment analysis of
the decay distribution as was done in Secs. III and IV.

They are easily gathered together to yield

3fn.Mn~ —(E—* a)(a E)
XL(3j—3) I y I'+3j(ys*+sy*)+2jls I'j

+(R* R)(j+2) lyl' (5 24)

To express the counting rate in terms of observable
moments, we multiply (5.23) by (5.7) and average over
spina. One sees that because (5.23) is independent of e
and symmetric under E+-+ E* the result is independent
of a".

Hence, (5.9) can be used directly instead of (5.7). We
see that

with

(1+ 3— . . .)

Mn ——Oiv+'Q„(2 —,s+, ~ )

(6.2a)

(6.2b)

Orv'= (y+s)(R* a)TJ(a)+yT&(a aF*) . (6.3)

Let S be the angular-momentum operator on tensors of
rank j or j+1, depending on which parity sequence is
being treated, so that the total angular-momentum
operator is represented by S+-',e for either sequence.
The component of the 6rst moment of the decay density
matrix along Q is then

Q e=OlV:(P.Q (S+-,'~)OiV*, (-', +, -',—," ) (6.4a)
or

Q e=OrV+'g Q (S+-,'(r)Orv'+' (-' -'+, ~ ~ ~ ) . (6.4b)

(Note that S+-',e must commute with 6', and Q .)
Using the commutation properties of S, we Gnd that

(2j+1)(P.Q (S+2(r)
=-;Pj+3)(j+1)Q +-;Pj+3)(Q S)

+T'(Q(r):T'(S), (6.5a)
(2j+3)g.Q (S+-;.)

=—s(2j+1)(j+1)Q e+2(2j+1)Q S
—T'(Q(r):T'(S), (6.5b)

where (6.5a) operates on the jth-rank tensors and
(6.5b) operates on (j+1)th-rank tensors.

The evaluation of Q 4' is then reduced to the evalua-
tion of matrix elements of tensors in S. These are given
in Table III of I, lines one through six. We Gnd, apart
from a common normalization,

OlV:OlV*= (E* a)(a E) ly+sl'
+ lyl'(j+1)(2j) 'F* F, (66)

os(:Soiv = —~j(j+1)
X{2Img(y+s)*(R*x a)(a E)j

zg-~
I y I2F* x F}, (6.7)

orv':Z'(S)orv =——,
'j(j+1)

X{ly+. I'(E* a)(a E)T'(o)
+2 Re+*(y+s)(E* a)j 'T'(aF) j
+ Iyl2L(j+1)(2j)-~z (F*F)
+3(j—1)(j+2)(4g) '

X(F* F)T'()j}. (6.8)

The zeroth-order moment was calculated in the pre-
vious subsection. We now calculate the 6rst moment
and the projected cross sections tT&~~.. For parity
reasons, these will be zero for M'= &1, and nonzero for
M'=0, corresponding to a 6rst moment of the produc-
tion density matrix in the direction of the production
normal.

We first separate K into two parts:

E=a(a E)+F; F=—a(a E)+E, (6.1)

so that a F=O, a x I'= a x E. Then, the decay ampli-
tudes are taken as
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Of course the e's in (6.5) Gt in between E~ and E in

(6.6)-(6.8).
If these three equations are multiplied by (5.7) and

avera, ged over b spin, it is found that only terms linear

in a" survive. Hence, it is reasonable to look at the de-

pendence of Q 4 and cr&&&0 on a, a", but not on a' by
using (5.11) rather than (5.7). We obtain

Let a basis be defined in the decay configuration by

a=I',
a"=I' sin8" +n' cos8", cos8"=a" a.

Then the projected cross sections for the ~ sequence are

do&o0=E cos8"l 4ly+zl'+ (8/3) Rey(y+z)*
+j '(17j'+38g+6)

l y l'] dcos8", (6.12a)

where, for the —,'+ sequence,

X&'&=8(j+1)(Q a")—4(2j+1)(Q a)a" a,

X&'& = (20/+30 j+2) (Q a")
—(20/+30j——',) (Q a) (a" a), (6.10b)

X&'&=j '(—3j'+22j+15)(Q a)(a" a)

+j '(20j'+16j—9) (Q a"), (6.10c) do 1—10 d0 110

Q +=X"'ly+zl'+X"'Rey(y+z)*+X"'lyl' «9) d., „= d.„,
= (8/V2) sin8" t 8 (j+1) l y+z l'

+ (20/+30 j+z3) Rey(y+z)*

(6.10a) Xj '(20g+16j—9) lyl'j dcos8". (6.12b)

The formula, s for the 2 sequence are

«»o=«os8 C
—2j(j+1) ly+zl

+-'(j+1)(j+2) Rey(y+z)*
+(j+2)(/+3) lyl'j dcos8", (6.13s)

and, for the —,
' sequence,

X&'&= —4(j+1)'(Q a")
+2(j+1)'(j+2)(Q a)(a" a), (6.11a)

X"'=(j+1)(j+2)[(10/+15j+6) (Q a")
—(10/+15j+14/3) (Q a) (a" a)j, (6.11b)

X"'=(j+2)L(2&'+3j—l) (Q a")
—(g+3j—2)(Q'a)(a" a)j (611c)

= (R/v2) sin8" L
—4(j+1)'ly+z l'

+ (j+1) (j+2) (10@+15j+9) Rey (y+z) *

+2 (j+2)(4j'+6j—1) ly l'] dcos8". (6.13b)

The ratios of the M=O to the M= & j. terms are inde-
pendent of the production and give information on the
decay constants. One may hope that the spin and parity
determination need not rely on formulas of this com-
plexity. Once the spin and parity are known, however,
such formulas may be needed if one wishes to determine
the decay constants. The reader will appreciate why we
do not wish to present the complete moment analysis.
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The nonleptonic K' decays are examined on the basis of the CPT theorem and unitary symmetry without
the requirement of CP invariance. It is shown that the present model (based on the CPT theorem and uni-
tary symmetry) is consistent with the various experimental branching ratios of K ~ 2~ modes, if CP in-
variance is almost maximally violated. Further, the decays KI0 —+ 3H and K20 —+ 3~0 are forbidden by uni-
tary symmetry in the framework of the boson pole model, even if CP invariance is violated.

PPARKNT violation of CP invariance which ap-

~

~

pears in the decay mode E&~—+ x+x has been re-
ported. ' This led to a number of attempts to explain the
experimental result without CI' violation. %'e examine
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the interrelation between CI' invariance and unitary
symmetry (SU3 invarisnce) in which the nonleptonic
Lagrangian behaves as a member of the 8 and 27
representations and the strong interactions are invariant
under the transformations of the group 5U3. It is con-
venient to introduce spurions of I=—,

' and I=-,' so as to
express the E decay modes in terms of SU3 channel
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