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This is a sequel to a previous paper, designated as (I),which dealt primarily with the two-pion P wave in
the Xg' model. Here, as in (I), we make use of a recently developed series expansion, applying the procedure
to S and D waves. With an input of (e mass) =1, (o mass) =553, our results for the isospin2', spinJ scat-
tering lengths u J and the Chew-Mandelstam coupling constant) are: uo =—0.72, ao'= —0.40, uz'=+0. 032,
see =+0.0032, as' ——0.0026, and X =+0.22. The results for ooe ' and ), are improved here gas compared with
those in (I)g by a higher order correction, but with little change; o&' is as quoted in (I); the os' ' are new
results. We also calculate the 5-wave phase shifts BP' and 6nd that boo and bP go through ——,'m on the;,'way
down at energies of 760 and 630 MeV, respectively. We 6nally calculate the D-wave phase shifts: The fo re-
sonance is found at 1950 MeV, and a corresponding T=2, D-wave resonance is found at 1520 MeV. The
substantial discrepancy with experiment for the fe is attributed to the need for considering more terms in
our expansion as energy increases, as well as to a diminished reliability of the )@ model at high energy.

1. INTRODUCTION forward perturbation expansion, they should be of use
in most 6eld-theoretic investigations, no matter what
"improvement scheme" is being contemplated.

''N a previous paper r to be designated as (I), we
- - applied a recently developed series expansion' to the
calculation of the E-wave phase shift for the two-pion
system in the )&Pe model. In particular, we obtained the
p-meson width as a function of its position. Recent
experimental data' have brought the measured and
computed widths into good agreement. While a coin-
cidence is not to be ruled out, we consider this agreement
sufBciently encouraging to help justify a further ex-
ploration of the two-pion system by the same method.

An additional motivation for the present study is the
availability of results concerning the third order
Feynman diagrams for pion-pion scattering. These are
computed in (I), but no use is made there of the 5- and.
D-wave information they contain. This is done here.

I"inally, one should mention the interest of the present
calculations as a testing ground for the new series
expansion being used. As explained later, much more
insight into the general properties and limitations of the
approximation scheme can be gained through these
results than could be gained through (I). Several of
these properties undoubtedly carry over to models
other than )&Q'.

Our notation follows (I); equation or figure numbers
labeled (I) refer to that article; those labeled (A) to (D)
refer to the appropriate Appendix in the present paper.
The reader is referred to (I) for most bibliographic
references.

The rather detailed mathematical Appendices are
partly meant as reference material for any subsequent
work on the Xp' theory. Being the results of a straight-

2. THE THREE-TERM APPROXIMATION

A prescription for optimizing the information con-
tained in the first few terms of any Born series was

given in. Ref. 2. In (I), this prescription was applied to
the erst two Born terms only. In the present article it
is applied to the case where three Born terms are used

(S waves), as well as to the two-term case (D waves).
Let G(g,x) be an unknown function of a coupling

constant g and a dynamical variable x. If we assume the
formal series expansion

(2.1)G—gG&i)+gsG &&)+gsG &s)+. . . .

then the optimized three-term approximation for 6 is
obtained by solving the nonlinear ordinary differential,

equation

(G/G&'))'= 3 (G/G&")'+B(G/G"')', (2.2)

where 3 and 8 are the known functions

2 = (G& )/Gs&")',

g= LG&s)/G&r) —(G&s)/G&r))s]'

(2 &)

(2.4)

and where the prime denotes diGerentiation. with
respect to x. The following remarks are in order con-
cerning (2.2):

~ Research supported by the U. S. Atomic Energy Commission.
$ Research supported by the National Science Foundation.
r M. Alexanian and M. Wellner, Phys. Rev. 137, 8 155 (1965).

This paper contains further references to the literature.' M. Wellner, Phys. Rev. 132, 1848 (1963).
'" A. H. Rosenfeld et ut. , Rev. Mod. Phys. 36, 977 (1964).

(a) It is invariant under a change of variable of the

type x ~ X(x).
(b) It is independent of g. This is undoubtedly

connected with the fact that coupling renormalization
is taken care of automatically. Anticipating slightly, we

may state that all coeKcients 3 and 8 in the two-pion
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Fzo. 1. The magnitude of the S-wave, T=O phase shift 80',
plotted against k'. 'The horizontal and vertical scales are logarith-
mic. The solid curves are the result of integrating the three-term
equation for scattering lengths u0 chosen as —0.72 and —1.01, the
first value corresponding to a present-day p-meson fit. The dashed
curve shows the two-term result for a0' ———0.72. The small-k
behavior is 80'=ao'k for each curve. Both solid curves tend to
55'/148 as k' —+ w. The dashed curve has a vertical asymptote
at k'=7.2,

case turn out to be cutoB-independent. 4 The role of a
physical coupling constant is assumed by the (ad-
justable) constant of integration.

(c) One category of cases where (2.2) is likely to
provide a good approximation is whenever x is not too
far from a region where 6 is real and analytic. In
detailed studies, reasonable estimates can usually be
given for the meaning of "not too far."

(d) Equation (2.2) cannot in general be solved
exactly. In the cases we are considering we must resort
to a numerical method of solution.

7= 2 yield upon comparison

1+0= 2/1 1+2 y (3 2)

X=0.22, (3.5)

to be compared with the value 0.24 found in (I). This
change is almost entirely due to the change in formula
rather than to the updating of the experimental p mass.

Little need be said about the new 5-wave scattering
lengths. The relevant differential equations are dis-
cussed in Appendix B, Sec. (i). Numerically, the cubic
term is so small that its inclusion modifies the result by
something like 1%.Therefore, almost the whole change
in the ao is due to the change in X, and we 6nd

ap' ———0.72, ass = —0.40. (3.6)

For any interaction strengths in this neighborhood, the
relation between the co~ and X may be taken over
unmodiffed from (I).

which bears out the fact that either crossing relation
may be used. For T=O one obtains

—(—,'o) el&)ps= 64X0.115K'+256X0.180&s/s. . (3.3)

In solving for X, we keep only the ease which reduces to
the perturbation limit as A~O. Inserting the first
formula (I.5.18) for the left side of (3.3), we obtain

(2X/s)L4+12. 5(2X/s) j'i'= (jr+0.575)—' (3.4)

(cf. the less accurate Eq. (1.5.24) $, where Ir is a param-
eter related to the p-meson mass (see Fig. I.4). Numer-
ically, the result is

3. CHEW-MANDELSTAM COUPLING CONSTANT)
8-WAVE SCATTERING LENGTHS

Using the mass of the p meson as an input, the
parameters X and as' were computed in (I) with the
third-order Born contributions to the S waves being
ignored. In this section we present the result of including
these terms. '

In order to determine X, we can use either one of the
(exact) crossing relations (I.5.16), (I.5.17). Which one
we chose made no difference in (I), and it will be seen
that this feature persists here. For the sake of illus-
tration, let us use (I.5.16):

4. S-WAVE PHASE SHIFTS

In (I), Sec. 6, it was argued that the two-term formula
was insu6icient for a reliable calculation of the S-wave
phase shifts above the immediate neighborhood of the
elastic threshold. Here the three-term formula will be
used to this end. The calculation consists of integrating
Eq. (2.2) (or (B1)$, specia1ized according to the pre-

~x'Y 1= ~ I 1'Yo. (3.1)

We still obtain clipt from the 6rst relation (I.5.18).
However, B,iyo must now be related to the definition
{I.5.23) via a third-degree differential equation of the
type (2.2). Details of this equation are given by (B1)
to (B7).

If expressed in terms of the symmetry-point quan-
tities a(-;), a'(s), b'(s4), the equations for 2'=0 and

;I /'
.5 1 5

k

10

4 For a general discussion, see M. Alexanian, Lawrence Radi-
o,tion Laboratory Progress Report, May 1965 (unpublished),
available as UCRL-14360.

5 See also M. Alexanian, doctoral dissertation, Indiana Uni-
versity, 1964 (unpublished).

FIG. 2. Log-log plot of the S-wave, T=2 phase shift 60' against
k'. The meaning of the curves is as in Fig. 1.The scattering lengths
ao' are —0.40 and —0.54, the first being a p-meson fit. Both solid
curves approach 117r/74 for ks —& ~; the vertical asymptote for
the dashed curve is at k'=7.0.
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scriptions of Appendix B, Sec. (iv). The constant of
integration is determined by the "initial condition" at
k'=0, namely the scattering length ao . The results of
the integration for two different scattering lengths and
for T=O, 2, are shown in Figs. 1 and 2. A result of the
two-term approximation is also shown for comparison.

Within the context of the three-term formula, some
exact statements can be made concerning the high-k
behavior of the phase shifts. An examination of (B1)
shows that, if the function y= (2') 'bs/be&" Lsee
(B14)jmonotonically approaches a finite nonzero value
for k' ~ ~, as the numerical evaluation suggests, then,
asymptotically,

y= A/8 (k'——+ ~). (4 1)
20 60

In particular, using the explicit formulas (B18)—(B21),
we obtain in this way for 80

b o ~ —55m/148, b s —& —11s./74 (4.2)

as k' ~ ~.These values do not depend on the strength
of the interaction. The ratio y itself becomes curiously
independent of isospin.

S. D-WAVE PHASE SHIFTS FOR GENERAL
SCATTERING LENGTHS

Fzo. 3. The functions Fo/D and Ir~/D, plotted
against O'. LSee Eqs. (5.3)-(5.5).j

is more convenient to de6ne related functions with a
higher order threshold behavior, i.e., k' instead of k4.

This is done by adding a suitable multiple of e2.
Expansions (C8) are used as a guide. We thus define

Yo(k') =bs+ ~ (a ) s—(1/12) (4''+ 7)as y

Ys(k') = b + (43/56) (a') s—(1/48) (16''+43)a (5 3)

The Grst-order Feynman diagram for x-m scattering
contributes 5 waves only. Therefore, if our information
consists of the diagrams illustrated in Fig. (I.1), then
the formula for the D-wave phase shift is obtained via
the two-term approximation in a fashion entirely
similar to that for the I' wave. The reader is referred to
(I), Secs. 4 and 5, for a discussion of the method, the
basic formula being (I.4.4). In the present case, we use
the following perturbative results for the D-wave phase
shifts 52.

Second order:

)15 kas(k') 0~
(5 1)

5 9 16(2s.)'(k'+1)'" 2)

Third order:

with threshold behavior

Ys(k') =—(23—2s-') k'/1575

Ys (k') = —(1011—847r') k'/66150.

g 0

$ 2—

242 (k'+ 1)'~' (f's —Ys/D)'

—729m k

1568 (k'+1)'~ (f's —Ys/D)'

for T=O, 2, respectively. The notation

D(ks) —as(ks)

The resulting phase shifts can now be written as

(5.4)

(5.5)

(5.6)

g, (3)— Lbs(k')+ s (a') s(k') j
16(2~)' (k'+1)'"

+constxas(k'), (T=0),

g, (3)—
I bs(k )+ (43/56) (a )s(ks))

4(2s.)' (k'+1)'"

+constXas(k'). (T=2). (5.2)

The constants multiplying a2 in the last two equations
are cutoff-dependent but turn out to be irrelevant in our
method. The functions as, (a' )s, and bs are defined by
(A1) and are given explicitly by (A7). Rather than
work with the functions in square brackets in (5.2), it

is introduced so as to give only isospin indices in (5.5),
and to bring out the analogy with the P-wave result
(I.5.1). The real parameters f's and fs are independent
of k and are still to be determined. If the two-term Born
limit is to be continuously reachable from (5.5) by
making ~f ~

very large, then we must always take the
same sign for t s, t s, and X. Hence fs and fs are positive.
The functions Ys s/D are shown in Fig. 3.

Even without the knowledge of t s &, we can already
conclude from their positive sign and from the quali-
tative behavior of Y/D that the phase shifts ass'
exhibit a monotonic increase with energy, reaching
ininity at a 6nite value of k'. For the interpretation of
this behavior, we refer the reader to (I), Sec. 5b: we
consider the passage through s./2 to indicate a true
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resonance, and discard all results above that energy as
being outside the range of validity of our approximation.

«"=—lim (sinbpP ')/k'.
It:~0

(6,1)

0. D-WAVE SCATTERING LENGTHS AND
RESONANCEJPARAMETERS

We next turn to the problem of determining the
parameters 1p p. This amounts to finding the D-wave
scattering lengths

constitute a powerful check on the consistency of our
procedure. (c) All threshold results, including the
solutions of the nonlinear differential equations, will
turn out to have the usual analyticity properties, and
therefore it does not matter whether we perform the
matching just below or just above threshold. We shall
choose the latter alternative for clarity: the presence of
real and imaginary parts provides an easy classification
of terms Lsee (C9) and (C10)$.

We now proceed to a calculation of the quantities
occurring in (6.5)—(6.7). We note that P may be written

0 = —(5/16~) (vp/7p"'), (T=o)
P= —(1/8~) (rp/pp&'&), (T= 2)

1 p
——(1/11) (3ir/5ap')'",

f.=(9/140)(-/ ") / (6 2)
Lsee (I.3.13)$, and that, similarly,

The relation between gp, p and «P' is obtained from
(5.5):

(6.8)

where the threshold behavior of D(= up) is taken from
(C8).

We start out by specializing the partial-wave ex-
pansion (I.2.1) to the single variable s (or k): setting
t=N, i.e. , 8=~/2, we obtain

(k2+ 1)1/2f (1~)—(k2+ 1)1/2k—1

XLe pp sin8p —(5/2) e'" sin8p+ $ (6.3)

valid for isospins 0 and 2. LThe over-all factor (k'+1)'/P
has been inserted for later convenience. $ We then
expand both sides of (6.3) in powers of k. To order k4,

only the l=0 and l=2 terms contribute to the right
side. Setting

(k'+1)'/P f (-,'ir) —=P(k),
(k'+1)'/'k 'e*" sinbp—=x(k)

we obtain, for successive derivatives at &=0,

0=x(=«'),
s // // t /// ///F =X ) V' =X

piv &rv 60+ r

(6.4)

(6.5)

(6.6)

(6.7)

Equations (6.5)—(6.7) are still exact. Equation (6.7)
shows how, if we possess trustworthy approximations
for g and x near threshold, the required apr can be
determined. We note that, according to Sec. 2, the
threshold constitutes the approximate upper end of the
favorable region in which to apply the improved-
convergence scheme to P and X. These have no adjust-
able parameters left if we use (6.5), and hence can be
fully determined. Summarizing the procedure in one
sentence, we say that a~ is determined in terms of ao

by matching the derivatives of full and partial ampli-
tudes at threshold.

Three further remarks should be made at this point:
(a) The specialization to 8=-',~ (rather than to some
other angle) is not compulsory, but turns out to be
calculationally most convenient in the present case. (b)
Equations (6.6), if not satisfied automatically, cannot
be enforced by any adjustment whatsoever, and thus

~

~

5/16m ) e'" sinbp 0)x=—
1/8m ) (e'P' sin8p) /" 2/

(6.9)

Lsee (D1)j.Hence f and x, up to constant factors, may
be identified with y of (B1),under the interpretation of
Secs. B, (ii) and B, (iii), respectively. Taking successive
derivatives of (B1), and noting that some powers of k

are missing in (C9) and (C10), we obtain, at k=0,
from (B1),

y'= Ay',
y"=A'y'+ (2A'+8')y',

y'"= A "y'+6AA'y'+ (6A'+8AB')y4,
yiv —A yp+ (8AA +6A &++~ ~)yP

+ (36A'A'+15A'8')y4

+ (24A4+ 58A'8'+ 98")y'.

(6.10)

(«')' 1007)a' '

apP= 1—56m-—
25x 2~ i27

(6.11)

Taking our estimates of apP P 'from (3.6), we find

ag'= 0.0032, ap'= 0.0026. (6.12)

Together with (6.2) and (5.5), this implies a T=O,
D-wave resonance at k'=49 (energy width=2. 5), and
a T=2, D-wave resonance at k'"=29 (energy width
=1.4).

We note that only the 6rst three leading terms of A, ancf.

the leading term of 8, contribute to y', y", and y"' in
(6.10). Comparison of these terms in (C9) and (C10)
immediately shows that all three Eqs. (6.6) are auto-
matically and exactly satisfied if (6.5) is.

Turning next to the evaluation of yiv from (6.10), we
find in a similar way that the coeKcients of y4 and y'
match automa. tically between g ancl X. The remaining
terms, inserted in (6.7), yield for T=O, 2

4(/i p)2— 2y1 aoo
a~'= 1—44x-

375ir ~ vr 45
'
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7'. SUMMARY AND DISCUSSION

A systematic third-order investigation of the two-pion
system in the )~p' theory, using the new improved-
convergence scheme, has been conducted in the case of
S- and D-wave scattering. The first important result
that has been obtained consists of an excellent con-
firmation of second-order calculations where these had.
a priori been considered reliable: The coupling consta, nt
and S-wave scattering lengths are—by strong inter-
action standards —almost unmodified in going to higher
order. In particular, the repulsive nature of these low-
energy S-wave interactions in the Xp' model would now
seem hard to get rid of.

The S-wave phase shifts themselves, as shown by the
lower curves in Figs. 1 and 2, give no sign of becoming
attractive at any moderate energy. They do, however,
produce very broad peaks in the cross section, namely
upon crossing ——',s. on the way down, at (760&15) MeV
for T=O and at (630&15) MeV for T=2. (The errors
reQect the over-all inaccuracy of the numerical manipu-
lations which connect these results to the input, i.e. , to
the rho mass. ) Insofar as one can speak of widths, they
are of the order of 500 MeV for both T=O and T=2.
These "peaks" would therefore hardly be seen as such
in any cross-section measurement. Also, being due to a
repulsion, they surely cannot be called resonances, let
alone particles. For some recent experimental data
connected with those phase shifts, see Refs. 6—9, as well
as the bibliography quoted therein. Most authors seem
to consider seriously only the possibility of attractive
S waves.

One may now ask how well signer's inequality

db/dk & —r—1/2k, (7.1)

for an interaction of range r, is satisfied. It turns out
that, for T=O, the minimum range r compatible with
(7.1) is largest near k'=4 and is r=0 35 On .the. other
hand, for T=2, the corresponding figures are k'=6.5
and r=3.5. This freakishly large value seems possible
only because signer's theorem is not strictly applicable
except in potential scattering and with a to/al cutoQ at
r. This rapid decrease of the phase shift has its origin in
the coefficient B(T=2) of the differential equation
which governs its behavior. The role of 8 is to damp the
decrease of 5. However (see I'ig. 5), owing to a remark-
able cancellation, especially near k'=1.3, 8 is almost
inoperative up to k'=4. As a result, the second-order
curve (dashed line) is very good up to that point.

The range in which our results for the S-wave phase
shifts are believed reliable d.oes not go beyond k'=30

V. Hagopian, W. Selove, J. Alitti, J. P. Baton, M. Neveu-
Rene, R. Gessaroli, and A. Romano, Phys. Rev. Letters 14, 1077
(1965).

~ J. P. Baton and J. Regnier, Nuovo Cimento 36, 1149 (1965).
Saclay-Orsay-Bari-Bologna Collaboration, 5uovo Cimento

37, 361 (1965).' P. G. Thurnauer, Phys. Rev. Letters 14, 985 (1965).

for T=O and k'=11 for T=2. This is based on the
observation that no two solutions of the exact (or, for
that matter, approximate) improved-convergence series
of Ref. 2, can possibly cross": the slope is uniquely
defined if the series exists. Therefore, if the physically
correct curves do cross (and hence, in general, if their
family possesses an envelope), then the exact differential
equation can be satisfied only by a function consisting
of two pieces: the correct physical result up to the
envelope, and from then on the envelope itself. The
numerical results shown in Figs. 1 and 2, as well as the
nonperturbative nature of the asymptote, are extremely
suggestive of such a behavior, the suspected. envelope
being reached near the stated values of k'.

As to the D-wave calculations, apart from illustrating
the new technique of threshold matching, their main
interest is qualitative. The presence of a T= 0 resonance
that can be identified with the fs is encouraging, as well
as the fact that it lies much higher than the p. The
parameters found are, for T=O, E=1950 MeV and
7=350 MeV; for T=2, 8=1520 MeV and 2=200
MeV. Although the latter T=2 resonance (the fsP)
would have to be taken seriously if one could trust the
X&4 model at this energy, it is conceivable that baryonic
or strange processes would suppress it. The neglect of
such processes is also undoubtedly responsible in part
for the substantially wrong position of the fs. Also, at
such high energies it is likely that higher order diagrams
must be included even within the ) g' context.

In conclusion, we wish to remark on two qualitative
features apparent in this paper and in (I): the increase
in any resonating mass as the coupling decreases, and
the simultaneous broadening of the resonance width.
The latter phenomenon is perhaps to be expected from
the increase in available phase space.
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Fi(k') = Fi(s)F(2k'(s —1))ds (A1)

where PI is the Legendre polynomial of order l. In this
paper the function F can be a linear combination of a,
a', and b, given by (I.3.11) and (I.3.12). After changing
variables according to (I.3.10) and writing the I'i

' M. Alexanian and D. E. Wortman, U'niversity of California
Report No. UCRL —14325 (unpublished).

APPENDIX A: PARTIAL-WAVE PROJECTIONS

Given a function F(s) of a single variable s, we require
its partial-wave projections Fi(k') (t=0, 1, 2, ),
defined by
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explicitly, we obtain the recursion relations

1

Fp
———',k-' (1—v') v-'F (s)d v,

F1 Fp ——(1/4)—k
— (1+v) (1—v)'v

—'F (s)d v,
a

F2= 2Fp+—3F,+ (3/16)k—'

(1+v) (1—v) v 4F (s)d v,

etc., where

and
s= —(1—v)'/v

n= 2k'+1 —2 (k4+k')'".

a =-'k 'In'n —(1+0 ')'" inn —1

I

In this way the following results are obtained.
S muses:

(A2)

(A3)

b2 ———(25/12+ —2,2r2) a2

—[(1/48)k '+—'k '+ (3/64)k ']ln4n (A7)

APPENDIX 8' COEFFICIENTS OF THE
DIFFERENTIAL EQUATIONS

Let y=y(x) be an unknown physical quantity, x
standing for some given dynamical variable related to
the center-of-mass energy of the two pions. In this
paper, any such y which pertains to an S wave is com-
puted by means of a differential equation of the form

—[-'k '+-'k —'](1+k ')'" ln'n

+[(—,227r' —12/48)k '+ (—,'p7r' —17/32)k ')ln'n

+[1+(2+1~2)k—2) (1+k
—2)1/2 inn

+[—(2r'/l2 ——',)+ (13/8+-'2r') k
—']

The behavior of all these functions for small k is given
in Appendix C.

(a') p= —ap+k ' (1—v) ' ln'vdv —(1/6)ln'n y'=Ay'+Byp, (81)

(a') 1=—-'a1+k ' (1—v) ' 1npvdv —-', ln'n

——',k ' ln2n+2 (1+k ')'" lnn ——', ,

$,= —(—'+pr'/3) a1—(1/48) (k
—2+k

—4) ln4n

+-,' (1+0 ')ln'n, (A5)

kp= ap (1/48)k ' ln n+[1+ (2—2r /24)k 2)lnpn.

P wanes [N. B. The function a1 is called P in (I)]:
a =[-'k '+-'k ')ln'n+-'k '(1+k ')'" inn

+(—-,'+-,'k '),

where the prime indicates differentiation with respect
to x, and where 2 and B are known functions of x. This
Appendix lists the various y of interest, specifies the
corresponding variable x and coeKcients A, 8, and
finally records the analytic expressions and numerical
results for such 3 and B as are needed explicitly.

We emphasize that (81) is always of such a form that
choosing a given variable x is entirely equivalent to
choosing any differentiable function of x as a variable.
[Thus, whether we use k', k, or (k'+1)'" as a variable
is only a matter of convenience. $ In the following, we
only deal with isospins T=O, 2.

(i) Full Amplitudes below Threshold

—-'k '(1+k ')'" ln'n
We choose

y= (2~) 'v~/v~"',
+ (2r'/24 —-')k ' ln'n

where y2 and y2'"& are taken from (I.2.4) and from
+-,'(1+k 2)'~2 inn —

(-p, 2r2 —-,') . (I.3.13)—(I.3.15), respectively. Here and in what
follows the factor (22r) ' is included for convenience.

D wanes (N.B. The function a2 ts also called D in We reduce the number of variables to one by takingSec. 5):

a2 ——Pk-2+-pk-4+ —'k-']ln'n

+[k '+—'k ')(1+k ')'~' inn

+[—-', + (5/4)k
—'+-'k —4]

—;~&s&4. (84)

~=I= 2—2S
1

and then choose x=s. The prime in (81) thus cor-
responds to 8, ~ of (I.5.15). We are interested in the
range

(a') 2 ———-', a2+k-' (1—v) ' ln'vdv ——,
' ln'n The coefficients are the real functions

0
—[(11/12)k-'+ (7/16)k—4]ln'n

+[—', —('7/4)k '](1+k ')'" inn

~ = (2~)'(v~"'/vv"')',

&=(2 )'[v "'/v "'—(v "'/v "')']'.
(85)

(86)

+[4- (&/4)k '], An explicit calculation gives, at the symmetry point
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s=3, and for T=O,

A. = a'(-', ) =—0.115,

&= 2L—o'(p)+&'(p) —2u(3) o'(p)) =—o 18o (87)

(ii) Full Amplitudes above Threshold

Here again, we set t=l. It is simplest to take

x= &z:=—(-',s—1)'~'.

Equations (82), (85), and (86) can be taken over, if
we keep in mind the new meaning of the prime. In the
present case A and 8 are complex functions. Their
behavior close to threshold is given in Appendix C.

(iii) 8-Wave Aml&litudes above Threshold

A (T=O) =

)11 5 6 ~-
+~ — + (, (818)

&2n 1+n
—2n' 22(1+n) ' ln'v

B(T=O)= dv
1 n—' (1—n)' . 1—v

(1+n) (11+86n+ 1 ln')—1n4n

12(1—n)'

—22 9 (1+n)' 5 (1+n')
+ + ln'n

. 3 (1—n)' (1—n)4 (1—n')'

Appendix D,
2n' 3 (1+n) 5

ln2e- lnn
1—n' (1—n)' (1+n)'

Let F~ be the partial-wave amplitude

8 L Sln5~ (89)
15 tr11zr' 25 1+n

ln'n
1—z

& 6 2 (1—n)'

corresponding to an angular momentum t. (We suppress
the isospin index. ) Then, here,

I 1zr' ) 1 5zrz (1+n')—30
~

y inn
3 j (1—n)P (1—nz)z

y= (2~)-'V,/~, ~». (810)

The superscript (zz) refers, as always, to the zzth-order
Born term with respect to the bare coupling constant
gp Lsee (I.3.1)).The variable x is

(811)

20P
A(T=2) =

CP—

9(1+n) 2
ln2n- lno.

2 (1—n)' (1+n)'

—
5zrz 37 (1+n) 25zr'(1 —n)

+ — +
1—n' 2n(1 —n) 6(1+n)'

(819)

the center-of-mass momentum. The coefIicients are

A = (2zr)'(Pp~'/Fp" &)', (812)

(iv) 8-Wave Phase Shifts above Threshold

8= (2zr)'t pp"&/p "&—(p "&/p &'&)')' (813) 2I(2 —2)—

The functions A (T=O, 2) are complex here. However,
it is easily seen that, owing to a peculiar cancellation,
the B(T=O, 2) are exactly real. (In verifying this, one
uses the fact that bo is real to third order in the coupling
constant. ) The threshold expansions of these A and 8
are given in Appendix C.

(
— y ), (820&

—2n' 43(1+n) ' ln'v
dv

1—n' (1—n)' . 1—v

(1+n) (14+215n+14n')
ln4e

12(1—n)'

43 81(1+n)'

3(1—)P 4(1—n)'

11+10n+ 11n'
ln"'0.

Here we set
y= (2zr)-'bp/bp" &.

Taking as a variable
g= k2

(814)

(815)

2 (1—n')'

9 119 7zr' 1+n
+

1—n2 4 3 1—n'
ln2e

we dehne

A = (2zr)'(8pn&/1&p&'&)', (816)
14zrz 1 3zrz (1+n')—18 lno.

3 (1—n)' (1—n')'

2~= (2~)'L~p"'/~p"' —(&p"'/~p"')')' (817)

These coefficients are real. Their explicit form, although
somewhat unwieldy, is useful for numerical work. |A'e

6nd, with use of the auxiliary variable n (see (A4)), and
by making use of the perturbative terms listed in

3zr' 37 (1+n) 2zr'(1 —n)—
+ + + (821)

1—n' 2n (1—n) 3 (1+n)'

The functions A and —8 are plotted against k2 in
Figs. 4 and 5, respectively. Unless k is very small or very
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the threshold, as discussed in Sec. 6, is an important
feature of the approxima. tion method we are using.

Functions a(s), b(s) near s=O

From Eqs. (I.3.11) and (I.3.12) near s=0+ we obtain

a(s) = 1—s/12 —s'./120 —s'/840 —s4/5040+

b (s) = —(1/12) Ls-'+ (2+s'/6) s

+z'sz/30+ (7rs/140 —1/40) s'

+ (ir'/630 —31/3780)s4+ ]. (C2)

Fio. 4. The coeificients A as functions of k' [see Fqs. (318) and
(820)7. The horizontal and vertical scales are logarithmic. To the
left, the curves approach the asymptotes 3 and 7/4; to the right,
11/4ks is the common asymptote.

Functions a(s), b(s) near s=4+

Again using Eqs. (I.3.11) and (I.3.12), this time near
s=4, and performing an infinitesimal analytic con-
tinuation across the threshold with

we obtain

k = (~is —1)'&', (C3)

cQ
K .4
I0o
l

+s(r =o)

-10B(T=

a(s) = (k' —2k'/3+8k'/15
—16k'/35+128k"/315+ . )

—(irr/2) (k —k'/2+3k'/8
—5k /16+35k'/128+ ) (C4)

b (s) = L
—5s'/12+ (-'+s-'/9) k'

—(—+4s s/45) k4+ (22/45+ 87rs/105) ks

—(1144/2835+ 64s'/945) k'+
—(iver/2) (3k—7k'/6+313k'/360
—3679k'/5040+129719k'/201600+ .) . (C5)

Fro. 5. Log-log plot of the coefficients —B against ks Lace
Eqs. (B19) and (321)g. The asymptotic values of —B are
71/6 —89irs/144=5. 73 and 25/3 —29ir2/36=0. 383 to the left and
37/4k' to the right.

large, a machine calculation of 8 is almost unavoidable.
Individual terms must be computed to high accuracy,
owing to the fact that they nearly cancel each other in
the final result, especially for T= 2.

APPENDIX C: THRESHOLD EXPANSIONS

In what follows we set down the behavior, near k=0,
of several functions described in the previous Appen-
dices. A knowledge of this behavior is necessary for two
reasons: First, these functions are, in many instances,
dif.IIcult to calcula, te for low k from the explicit formulas,
owing to the near cancellation of large terms. The
threshold expansions provide an adequate means of
doing this calculation, and a,t the same time serve as a
check against serious numerical mistakes in higher
regions of k. The second and main reason for wanting
the small-k information is its use in matching the phase
shifts, calcula, ted above threshold, with the full ampli-
tudes, calculated below threshold. This matching across

ap =2+k'/3 —4k'/45

+4k'/105 —32k'/1575+

(a') p
=2+2k'/3 —14k4/135

+2k'/63 —104k'/7875+

kp
———-'rr'+ (2+-'z') ks/3

—4ir'k'/135+ (2s'/7 —1)k'/15
—32 (2rr' —31/3) k'/4725+ .

P eaves:

ai =—k'/9+ 2k'/45
—4k'/175+ 64k s/4725+

(a') i ———2ks/9+ 7k4/135 —2k'/105

+208k'/23625+

(C6)

bi = —(2+s-'/6) k'/9

+2s'k'/135 —(2ir'/7 —1)k'/25

+64(2s' —31/3)k'/14175+ . (C7)

Partial-Wave Projections of a, a', and b

These threshold series are most simp1y obtained by
expanding the integrand of (A1) before carrying out the
integra, tion, rather than by expanding the explicit
results.

S manes:
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D muses:

ap ———2k'/225+4k'/525 —64k'/11025+

aP) 7k4/675+2ka/315 208ks/55125+

bp ———2pr'k4/675+ (2ir'/7 —1)k'/75
—64(2ir' —31/3)k'/33075+ . (C8)

Coefficients A, 8 of the Differential Equations

Using the preceding results of this Appendix, we
obtain the following expansions.

Full amplitudes above threshold )see Appendix 3,
(ii) :

A (T=O) = (6k—106k'/15+ .)
—('~/2) (-;—15ki/4+" ),

8 (T=0) = —(71—41ir'/6) k/3

+ (2881/2 —142ir') k'/45+

A (T= 2) = (7k/2 —49k'/15+ )
—(im./2) (1—3k'/2+ ),

8 (T= 2) = —(50—16m'/3) k/3

+ (1921/2 —100m') k'/45+ ~ . (C9)

It is interesting that, to this order in k, B(T=O, 2) is
real. (This feature is not expected to persist to in-
definitely high order, however. ) As a direct consequence
of this, the threshold unitarity condition (I.5.22), which
was exactly valid within the two-term scheme, is now
exactly valid also within the three-term scheme.

S-wave amplitudes above threshold Lsee Appendix 8,
(iii)

A (T=0) = (6k—36k'/5+ )
—(i /2) (—' —15k'/4+ ),

8(T=0) = —(71—41m-'/6) k/3

+ (4457—448ir') k'/135+

A (T= 2) = (7k/2 —52k'/15+ )
—(iver/2) (1—3ki/2+" )

I&' (T=2) = —(50—16ir'/3) k/3

+ (12533/4 —328m') k'/135+ . (C10)

APPENDIX D ' PERTURBATIVE RESULTS
FOR S WAVES

From (I.3.13), (I.3.14), and (I.3.15) we obtain, after
substituting (I.2.6) and taking S-wave projections, the

(e" sinb) &'& = L5I(s)+3Ip(k')) (T=O),
16m-(k'+1)'"

(D2)

(e" sinb) &p& = L4I(s)+9Ip(k')) (T=2) .
16m-(k'+ 1)'"

Third order:

(e" sins) &'& = $60iJ(s)—25P (s)
16ir(k'+1)'"

+44iJp(k') —11(P)p(k')) (T=0),

(e" sin6) ~p& = $72iJ(s)—8P (s)
16ir (k'+1)'~'

+112iJp(k )—43(I')p(k')) (T= 2) . (D3)

In all these equations, s=4(k'+1); the functions I and
J are therefore taken above threshold; in using (I.3.11)
and (I.3.12), one can use

(D4)

)see (A4)); the subscripts zero refer to the notation
(A1).

The perturbative results for 5 can be obtained from
the above by taking

5&'& = (e' sin5) &'&

8 "&=Re (e" sinb) ~",

8 "&=Re (e" sinb) "&+-'(8&'&)'.

(DS)

These relations have of course no universal validity, but
are due to the reality of 6 to third order in this case.

The automatic cancellation of cutoff-dependent terms
which occurs as one constructs the 3 and 8 of Appendix
8 is worth noting; it may be taken as a partial check on
the manipulations.

following formulas. (Throughout this Appendix,
refers to S waves. )

First order:

/5/16~~ k t 0~
(e" sinb) ' = —

( (, T=( (. (D1)
( 1/8pr ) (kP+1)i~P E2)

Second order:


