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attributable to co production. Taking into account the
tails of the co' peak. in the two control regions the curn+

and orp fractions can be obtained by the expression:

2 34X (distribution d, first part) —0.67

)& (distribution b, second part
+distribution b, third part) .

The result is given in the fourth part of Table I. In
Figs. 4(a), 4(b), and 4(c) the energy distributions
calculated from the best Gts chosen above are shown as
solid lines.

IV. CONCLUSIONS

We wish to draw the following conclusions~:

1. The channel coo+sr++sr contains both nonreso-
nant pions and pions resonating as p. The nonresonant

'Qur conclusions 1 and 3 are in good agreement with the
results of M. Cresti, A. Grigoletto, S. Limentani, A. Loria, L.
Peruzzo, R. Santangelo, B.Chadwick, W. T. Davies, M. Derrick,
C. J. B. Hawkins, P. M. D. Gray, J. H. Mulvey, P. B. Jones,
D. Radojicic, and C. A. Wilkinson, in Proceedings of the Sienna
International Conference on Elementary Particles, 1063, edited by
G. Bernadini and G. D. Puppi (Societa Italiana di Fisica, Bologna,
1963), p. 263.

state dominates. Production of p mesons accounts for
(15&6)% of the channel. We recall that ~'p' produc-
tion must be from the 'S state.

2. The smallness of the (p+ xp )' term shows that
the nonresonant production is dominantly from the
'S state.

3. The fraction of all loP annihilations which are
attributable to these reactions is pp —+ coo+sr++sr
(nonresonant): 0. 039& 0. 00 5 of all annihilations, t5p
-+ oso+p'. 0.007&0.003 of all annihilations.

ACKNOWLEDGMENTS

We would like to take this opportunity to thank
Dr. A. Prodell, the bubble chamber operating crews,
and the AGS operations sta6s at Brookhaven National
Laboratory for their help in the exposure. It is a pleasure
to thank Dr. R. Piano and his associates at Rutgers
University for their collaboration in the early stages
of this experiment. One of us (P. F.) would like to
acknowledge discussions with Dr. A. Pais, Dr. N. P.
Chang, and Dr. J. M. Shpiz. We would also like to
thank the Nevis Scanning and Measuring Staff for
their competent and tireless efforts.

P H YSI CAL REVIEW VOLUME 140, NUMBER 4B 22 NOVEMBER 1965

Shmushkevich's Method for a Charge-Indeyendent Theory*

G. Prwsxrt, A. J. MAcrAnLAtrE, aNn E. C. G. SvnmsHAN

Depurtruertt of Physecs, Syrucgse Ueeeersety, Syructtse, Ee7o York

(Received 7 July 1965)

The Shmushkevich method for deducing consequences of charge independence is explained and discussed.
This method, which avoids entirely the use of Clebsch-Gordan coeKicients, generates linear equalities and
inequalities among cross sections using only a simple counting procedure. A comprehensive list of such
relations, applying to most elementary-particle reactions of interest which involve at least one pair of
isospin-~ particles, is presented. A discussion of the various uses of these relations is given.

I. INTRODUCTION

Y assuming that a set of elementary-particle re-
actions exhibits invariance under a given symmetry

group, we are enabled to deduce consequences of this
invariance in the form of relations among cross sections.
One class of relations, which is particularly easy to de-
duce is the class of relations linear in the cross sections.
Linear relations, because of their simplicity, are also of
greater use. In what follows, consideration will be re-
stricted to consequences of charge independence'-';
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H. CONSEQUENCES OF CHARGE
INDEPENDENCE

The standard method of deriving the consequences of
charge independence'~" requires one to express all
relevant transition amplitudes in terms of the set of
relevant charge-independent transition amplitudes and
appropriate Clebsch-Gordan coefficients. Taking the
absolute square of the amplitude for each reaction gives
the differential cross section for that reaction, except
for purely kinematic factors which we omit in the rela-
tions below. All cross sections are thus expressed as
linear combinations of terms bilinear in the charge-
independent amplitudes. If this set of linear combina-
tions of bilinear quantities is linearly independent, then
there are no linear equalities among the cross sections;
if the set is linearly dependent, elimination of de-
pendent terms gives the desired linear equalities among
the cross sections.

When more than four particles are involved in the
reaction, this procedure becomes unwieldy. While the
problem of expanding transition amplitudes involves
mere tedium, that of 6nding linear dependence and
eliminating dependent terms becomes a formidable
task. It was Shmushkevich' who first realized that
linear relations may be extracted without resorting to
this procedure.

We now proceed to demonstrate that there exist
linear relations which do not depend on our knowledge
of the numerical values of Clebsch-Gordan coeScients,
but only on orthogonality relations satisfied by these
coefficients. It will then be evident that the second part
of the standard procedure just serves to repair the
damage done by the explicit introduction of Clebsch-
Gordan coefficients in the first part. It suffices to
illustrate these arguments by outlining the procedure
for a reaction involving five particles having arbitrary
isospins,

Ii+Is ~ Is+I4+I»

with third components of isospins, v;. We seek relations
among quantities of the form

l
9"ls, where Y' is the

transition amplitude

r= r(v, )vs, v„v4, v,)= (I,viI, vsl T lIsv&4P4I'svs). (1)

This transition amplitude, which is defined for all values
of the v;, vanishes unless charge is conserved, that is,
unless

Pi+Ps= vs+P4+vs ~

First, we expand initial and final states in terms of

"N. Kemmer, Proc. Cambridge Phil. Soc. 34, 354 (1938); W.
Heitler, Proc. Roy. Irish Acad. 51, 33 (1946).

"K. M. Watson, Phys. Rev. 85, 852 (1952); L. Van Hove,
R. Marshak, and A. Pais, Phys. Rev. 88, 1211 (1952).

"M. Peshkin, Phys. Rev. 121, 636 (1961).

eigenstates of the total isospin,

lIiviIsvs)=Q c(IiI2J; vrpsis) l Jp),

I
IsvsI4P4Isvs)

= Q C(IsI4I34 Psv4)L34)C(I34I3I; X34vsX) l I34,I&).
I34,I,
) g4, X

(2)

J,I,Ig4,
p,X,) 34

xc(I34I3I;) 34vsx)(Jpl TlI34,I),). (3)

Now, imposing conservation of isospin, we have

(J~ I
T II34I) )=~(I J)~(b ) )(I~ I

T lI34,I) )
We denote the charge-independent amplitude (IXlTl
XI34,D,) by T(Is4,I) to make explicit the lack of
dependence on charge labels. We then have

C(IiI2I; vsvsX) C(IrI2I'i pr ps)%')
I34,I, I34',I',
'A34, ) Xg4', X'

XC(I3I4I34 vsv4) 34)C(I3I4I34 vsv4X34 )

XC(I34IsI; Xgsvsh)C(I34'I3I'; ) 34'vsX')

XT(I,I)T*(I„',I') .

(4)

There are five free charge labels. Summing this ex-
pression over all charge labels gives the total cross
section for all possible charge complexions. Rather than
sum over all labels, we may leave one charge label un-
summed and use the following properties" of Clebsch-
Gordan coeKcients:

(1) Orthogonality:

g C(I+bI, ; v, vbv. )C(IjbI,'; v,vbv. ')'
V~) V$

=8 (I„I,')3 (p„p,') . (5)

(2) Modified orthogonality:

C(I4IbIg i v~pbvg)C(I, 'Ibl, ) vg vbva)
V/3 Vs,

2I,+1
3 (Ie,I4')5 (v, v, ') . (6)2I.+1

If we sum over v2, v3, v4, v~, we are left with a function
of vg,

2I+1
a, (v,) = Z I T(I34,I) I'.

&34.& 2Ii+1

By taking the appropriate sums, we find that a like

"j.M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley 4r Sons, Inc., New York, 1952), p. 791.

Our coefficients C(I+bI„v,vbp, ) are defined for a]l
values of their arguments; they vanish unless v,+pb= p,
and unless I, Ib, I, can form a triangle. Then

C(I1I2J i Plv2ls)C(I3I4I34i vsv4X34)
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result hoMs for each particle,

2I+ 1
'(v~) = 2 I &(I,I) I',

Ia4.,I 2I,+1

and observe also that

2I,+1
0' v' = 0 v'

2I,+1

(7)

Before discussing the implications of Eq. (7), we first
establish the structure of the remaining sums which
follow from Eq. (4). Performing the sums over vs, v4, vs

and the sum over vi and vs with the constraint vi+vs
= v» yields a function of v»,

~»(v») = 2 Pl &(Is4,I) I'
I) ) v/2[ 7/4

(8)

Summing over v~, v~, v5 and over v3 and v4 with the
constraint vs+ v4

——vss gives a function of vs4,

2I+1
0'34 v34 i r(I„,I) is.

rs4+ 1 &841 2Is4+ 1
(9)

~=+ P(2I+1)
~
r(I„,I)~'.

Ig4
(10)

The extension to the A"-particle case is obvious. The
Clebsch-Gordan expansion, Eq. (3), involves (1»t'—2)
coeKcients with E free charge labels. In order to leave
one label unsummed, we may sum over (X—1) labels,
obtaining a relation resembling Eq. (7). Alternatively,
we may sum over k labels and sum over the remaining
(1V—k) labels with a single constraint, finding relations
similar to Eqs. (8) and (9). In either case, all Clebsch-
Gordan coefficients are eliminated in the summation
process.

The result (7) is particularly useful because 0.;(v;) is,
in fact, independent of v;, i.e., the weight corresponding
to ending a particle in one charge state is equal to the
weight for finding it in any other charge state. Shmush-
kevich recognized this result, namely, that the sum of
all cross sections corresponding to any particle having
a given charge is the same for each possible charge of
the particle, as the most direct and intuitive conse-
quence of charge independence. This yields 2Ii relations

Qf these relations, the relations of the form 0;(v;)
=0;(—v;) are just statements of charge symmetry. If I;
is integral, there are Ii charge-symmetry relations and
Ii useful new relations. If Ii is ha¹integral, there are
I;+is and. I;—ss relations of each tyPe, resPectively. We
note that a particle will not contribute a relation which
goes beyond charge symmetry unless it has I& 1.

If the final sum is performed for Eqs. (7), (8), and (9)
the final result is, as expected,

Results (8) and (9) are different from (7) in that the
functions 0»(v») and as4(vs4) do depend explicitly on
their arguments. The reason for this is apparent, since
if the system (Is+I4), e.g. , has a charge label vs4, we
may only sum in Eq. (9) over isospin states for which
this system has isospin I34& v34. In this case, charge
independence tells us that the contribution to the
weight corresponding to finding a pair of particles with
a given total charge label v34, coming from states with
a particular value of I34, is the same as the weight
corresponding to ending the pair with charge label v34'

coming from states with that value of I34, as long as
I34& v34 and I34& v34'. lt would seem at first that the
only equality we can extract is the charge-syrrunetry
statement, 0„(v„)= 0s4(—vss). However, if Is4 is unable
to assume values smaller than some value I34 '", then
the sum in Eq. (9) is the same for vs4=Is4~'" as it is for
v34 equal to any value less than I34 '". We can therefore
write the nontrivial relations

I»s»~*=min{ P I;, P I,),
ie( k} ie( N-k}

(14b)

and the previous results can be summarized by the
relation

~»s»(I»s» ")& "&~»s»(I»s» ')
~ =0»s»(-', or 0). (15)

&s4(Is4 ' )=os4(Is4 ' —1)= =ass(ss or 0). (12)
For values of v34 greater than I34 '", we have inequalities
relating the o.ss(vss), since they differ by positive multi-
ples of the absolute squares of amplitudes.

„(I„--)&„(I„--—1)«" „(I„-'"). (13)
The isospin I34 has an apparent minimum value given
by ~Is I4~ but, in—fact, cannot take on a value less
than the minimum value to which the remaining iso-
spins I~, I2, Is can couple. Therefore

Is4 '"=max{ ~Is Is~, min(Ii+Is+Is)) .
Similarly,

Is4 =min{Is+I», I,+Is+Is) .

Similar results corresponding to other ways of cou-
pling the isospins follow for any pair of particles.
Relations among cross sections are unaGected by trans-
ferring any number of particles from anal to initial
state or vice versa while changing particles to anti-
particles. We can therefore And relations coming from
ais(vis), where vis= vi —vs, if we regard particle three
as an antiparticle in the initial state.

Generalizing to the E-particle case, we can consider
any subset (k) of k particles along with the comple-
mentary subset (1»r—k) of E kparticles. Define-
IIg,}

' and I~I,}
" as the extremurn isospin values that

these subsets of particles can assume. Then

I»s» ' =max(min(P Iq),min( P I,)), (14a)
isa I»'} ie( N—k}
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7

51
141
393

1107

W p

(A) e Isospio 1

4 1
10 3
26 6
71 15

197 36
554 91

2p (p+1) IP '—
kp (8+1)

1
6

21
120
666

4186

(B) 2 Isospin —,', e Isospin 1
4 2 1 1

10 5 2 3
26 13 4 10
70 35 9 45

192 96 21 231
534 267 51 1326

7~LE I. Numbers of cross sections and numbers of charge-
independent amplitudes for various numbers of particles.

W~'= W~/2 independent cross sections. If all the par-
ticles do have integral isospin, one reaction, namely,
that for which each particle is in the v;=0 state is
charge symmetric with itself, so that the number of
cross sections 8'& is odd. Using charge symmetry there)
are then WN = (W~+I)/2 independent cross sections.

We now compare, for some simple cases, the number
of bilinear terms to which the cross sections are related
and the number of cross sections. If pN is the number of
amplitudes which describes the process, there may be
pN (p~+1)/2 bilinear terms to which the W~' cross sec-
tions are equated. From Table I, we observe that for
reactions involving a small number of isospin-2 and

Taax,z II. Reactions having the same isotopic structure,

(C) 4 Isospin -'„ I Isospin 1

2 3
14 6
36 18 6 21
96 48 13 91

262 131 30 465
726 363 72 2628

For a charge-independent reaction, we can make the
ollowing assertion: If experiment were to show that for

an Ii,i)I(,)~~~ the equality oizi(I(s)+&)=oil)(Ii~))
, this would mean that all amplitudes for which

the subset (k) had isospin I(si vanish.
We now emphasize the following important point:
e relations which exist among the cross sections, as

well as the number of differential cross sections and the
number of charge-independent amplitudes which occur
for a given configuration of isospins, are "channel in-
variants, " that is, they depend only on the set of all.

isospins present, (I~, ,I~). It is immaterial to the
problem at hand whether any particular particle is in
in the initial state or its antiparticle is in the final state.
We may therefore find relations for any k-particle sub-
set of the Ã particles, but we note that the relations so
found are identical with the relations found by con-
sidering the complementary subset of E—k particles.
It follows that there are 2 '—1 independent subsets
to consider.

In the application of the foregoing, it is convenient
to impose the requirement of charge symmetry from the
beginning and ignore the charge symmetry relations
rather than to consider all cross sections as independent
and make use of charge symm. etry relations. It is worth-
while to look more closely at the number of cross sec-
tions and the number of charge-independent amplitudes,
considered as functions of the isospins, which we denote
by W~(I~, ,Iv) and p~(I~, ,I~), respectively.

If all the particles do not have integral isospin, that
is, if there is at least one pair of half-integral isospin
particles, the number of cross sections W'~ is even, since
no reaction is related to itself by charge symmetry.
Therefore, by making use of charge symmetry there are

(A) L-', ,—,",n (1)j
Prototype reaction

NE —+ nm.

Equivalent reactions

(1) EN ~ A+nor
(2) Ed -+ AN+ nw

(3) Nd —+ E+nx
(4) Nd ~AE+nx
(5) EX' d+n
(6) 3.X K+n~

(B) 2,— 1',~(1)3
Prototype reaction

N1V ~p+nx
Equivalent reactions

(1) NN +hZ+-n
(2) NE ~m+n~
(3) Nd ~X&+n~
(4) Nd ~AEp+nx
(5) E g z+n
(6) EN ~Ap+Ns-
(7) E d —+ZE+nx
(8) Ed ~ ANp+m.
(9)

(10) s.N ~AE+ cur

(11) d EX'+n~
(12) ZN -+ AN+Is.
(13) AE —+ ZE+nm.
(14) ZN —+ E+N~

L-', ,—,",1',1",e (1)j
Prototype reaction

N1V ~ZZ+n~
Equivalent reactions

(1) ZN ~ZN+ns
(2) zz ~NN+n~
(3) ZN —& ZN+m.
(4) mN~ ZE+e~.
(5)
(6) m2V ~ cUCp+nx
(7) EN +Zp+Nvr-

(c) Ll ll s/I 1/lf N(])g
Prototype reaction

NE —+EK+n~
Equivalent reactions

(1) NS —+ NN+nm
(2) EE —+ XE+nx
(3) EN —+ EN+ e~
(4)' ÃE' EE'+n
(5) X3? ~AEL+nm.
(6) NX ~N+n
(7) Nd +EEN+mw-
(8)'E d EKX'+n
(9) EE ~ ~™K+nm

(10) Kd —+ K%+nx
(11)a 313k' ~AKN+n~
(12) ZÃ ~ NN'K+n~
(13) xN —&EEN (m=1)
(14)' EÃ' XEZ (n=i)
(15) EE ~@EL (n=1)
(16)' ZN ~NN'E (1=1)

Ls s', k" k,~(1)3
Prototype reaction
b NE ~ aN+n~

Equivalent reactions

(1) EX ZL"+n
(2) EcV ~E+n~
(3) E d ~aEr+n~
(4) Ed ~~EK+n~
(5) NE' ~ ~$+n~

a The two nucleons N, N' are to be considered distinguishable.
b The symbol 6 is used for an I = 3/2 nucleon isobar.



SH MUSHKEVICH'S METHOD FOR CHARGE —IN DEPEND ENT THEORY B 1049

isospin-1 particles, the number of linear equalities we
expect, W~' —p&(p&+1)/2, is equal to the number of
isospin-1 particles present, which is just the number of
Shmushkevich equalities. This result holds up to a cer-
tain small value of N, beyond which the number of
bilinear quantities rapidly increases above the number
of cross sections. In this region, we would not know
whether to expect any linear equalities without testing
for linear independence of the bilinear quantities. How-
ever, we do know there are still Shmushkevich equali-
ties, one for each isospin-1 particle.

{A)

pp —+ xp

pe~%'
t72=2g1

01 PP ~~+~
PP —+ 2''
pI ~m mp

201——4o.2+g 3

TABLE III. Relations following from charge independence
for the reaction NX -+ Nw.

III. PROCEDURE

The task of producing relations is essentially one of
tabulation. Enumerate the WN reactions and find the
weights 0 (o»~») by adding the cross sections for all re-
actions in which the set (k} of particles has charge
label v~&~. Alternatively, we can shorten our list by
writing only the TV~' independent reactions. Then to
find o (v»~»), add. the cross sections for all reactions in
which the set (k} has charge label either v»q» or —v(i, »,

if v»o»&0. For 0(v»o»=0), count reactions which have
v~&~=0 twice if they are not self-charge-symmetric,
once otherwise.

The meaning of the relations obtained is suKciently
clear if the N particles are all distinguishable. The cross
sections which appear can be regarded either as dif-
ferential cross sections, that is, referring to 6xed values
of all variables not involving the isospins, or as partial
(total) cross sections summed. over any (all) of the
other variables. Thus if the ith particle is a x and the
jth particle is a Z, there is no danger of confusing a
reaction containing a m+ and Z with one containing a
m and Z+. However, if the ith and jth particles are
both + s, one must be reminded to distinguish differen-
tial cross sections in which a or+ has momentum p;
and or has momentum p; from a cross section in which
a or has momentum p; and or+ has momentum p;. If
one does not measure momentum intervals in which
particles are produced, but only total rates of produc-
tion, then these two diBerential cross sections con-
tribute to the same total cross section, namely, the
cross section for production of a x+ and m irrespective
of other labels. Indeed, in the present context our dis-
tinction between the terms "differential" and "total"
cross sections is actually a distinction with respect to
one point only. If we are given e momentum intervals,
with one particle produced. in each interval, we ask
which particle has which Inomentum for the differential
cross sections while we do not ask this question for the
total cross sections. In a discussion of total production
rates, only total cross sections are relevant.

In processes involving identical particles, restricting
consideration to total cross sections greatly reduces the
number of quantities being related. For instance, for
nucleon antinucleon annihilation into 8 pions, there are
2123 independent differential cross sections, but only 9

(NN)o) i
(2o.)~& o

(NN) o& x

(3o.)o) g

{2~)p&1

(NN)o) i
(3~)o) o

(3~)o& i
(4 )o&i
(4o.)g) o

(&~)o& i
(NN)o& g

(2w) &) o

(3o.)o) o

(3o.)o) g

(4o.)g) o

(4zr)p) 1

Xg —+ 3w

pP~~+~ ~'
pp ~ 3~'
PN ~ zr+, 2'
pI —+ x,2mP

0 3 =0'4+2o'2
01&04

2 (0'1+0'4))o'o

NE —+ 4w

pP ~ 2zr+, 2m=

pp ~ ~+,~-,2~p

pp —+ 4zrp

p@ ~ zr+, 2zr, zrp

p+ ~m, 3~P

4~1+~4——20 2+8g6+5&,
01&o'3+0 6

o4& (3/2)oo
4~2+2~4+3~6& 2g1

Nzr 5

pp ~ 27r+,2zr, zrp

pp ~ zr+, zr=, 3zrp

pp —+ 5~p

ps ~ 2~+3~
pn ~ zr+,2', 2~p

pe-+m-, 4 p

20 1+5&4—4o 2+10g3+0'6+ 70 6

20 110 2 &o'5+2g 6

20 1+2g 5&g 4

801+o4+2o 5&6o 2+12g 6

11g4+&5&90.6
4o1+2g 2+05+4g 6&20 4

6

pp ~3~+ 3~
pp ~ 2m+, 2m, 2zp

pp ~ m+, m, 4mp

pp —+ 6m-'

p~ ~ 2~+,3~-,~p

pn ~ ~+,2w-, 3~P

pe —+ w—,5~p

20'1+0'6 =2' 3+4o.4+g 6+30z

40 5&0'6+60 7

20 1+0'2&0 4+0'6+2g z

602+803+0'6+80 6+SoZ&6g1
40'2+30'5+30'6 &2g 1

2g1+80.2+1305)1603+606+200 z

602+2g 3+1005+0 z& 12g 4

1801+202+6cr3+30o.4+6g 6&3g 6
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(C)

PP +P 7l

pP ~ p0~0

PP~p ~
P% ~P 7l

PS~P 7l

(N~vv) 5) 5

(N~p);) 5

(NN) 0&1

(27v) p& 1& 2

(pa) p&1

(pa)»2
(N'p)5&8

(N~P)5) 8

010

(27v)1& 2

(2a) 0&1

(37I-)0& 1&2

(NN) 0&1

(P~)»2
(P~)0&1

(p, 277) 1&2

(p,22.)0&1

(N'p);&8
(N~p)»&
(N~p7I-) g) )

(N 2'pvv) 5 & 8

01+03=202+0 4

0 1+303+30 2

301+03+302

NN —+ p, 27I-

PP ~P 7I 7l

PP +P 7I

PP ~ p0 2~0

PP + P 7I 7l

PN + P 7I~7I

pe —+ p, 27I-0

pe —+ p07I- 7r0

pQ ~ p+, 27I

«+a4+as+as+as= 2 (as+as+av)
al+a4+a7+4(as+a6) 2(a2+a5+a8)

2 (0 1+o2+as+o 4) &as+o 8+0 v+o.s

2(as+o'3+o'5+as) &ol+a4+a7&os
al+a4+av+2as+4(as+as) & 2 (as+o'8)

o 1+as+o 7+2(as+as) &as

3(al+as+as) &a4+as
3 (a4+as+as) &al+as

NN —+ p, 37I-

pp ~ p+7I+,27I

pp ~ p 7I q27r

PP +P ~7l 7I 7l

pp —& p0, 3'-0

pp + p )27I 7l

pp + p 7l p27I

pe —+ p+, 2m 7I-0

pe —+ p07I.+,27I-

pS + p '?I p27I'

P'8 ~P 71 7I 7I

pe —+ p, 3'-0

al+a2+as+a6+a?+alp+0'll 2 (as+a4+a8+as)
al+a5+a8 a2+a6+a9+2 (a4+all)

2 (a2+a3+a6+a 9+a 10)+a 7 &0 1+a 5+as
2 (0 1+&5+&8)+3(~4+~») &~7

2 (03+04+0 10+011)+01+02+0 5+0 6+08+0 9+0 7

2 (al+a2+as+a4+as+a6) &a7+a8+a9+alp+all
a7+0'9+2 (a2+a3+a6)+3 (a8+all) &al+as
&(al+as)+6a4+3 (av+as)+alp& S(as+all)
3 (o'1+o'6+o'll) +2 (o 8+a 9)+as+o'6+o 7 &a 8

3 (0 2+0 6+0 7)+60 4+40 8+0 10+3 (0 1+05+0 11)

0 3+04+0 5+0 6+0 8+09+010+0 11+0 1+02+0 7

&1+&2+&3+&4+&8+&9+&10+&11+05+06+&7

0'3+0 5+0'7+0 8+0 10+20'2+01

0'1+0'3+0'7+0'8+0'10+20'6+ 0 5

TABLE IV. Relations following from charge independence
for the reaction N2V ~p+ex.

independent total cross sections. The prospects of
measuring a sufficient number of the differential cross
sections to verify the differential relations are remote.
One can arrive at the total cross-section relations
directly, rather than by tb.e tedious process of adding
differential relations. In tabulating o.(p(2I), regard iden-
tical particles as unordered; each cross section is then
counted as many times as the subset (k) has charge
label a~I, ~. For example, the cross section for the reaction
pe —+ m+x x x'x'm' is counted six times in the weight
a(p~2 )

=—1), SinCe With tWO vr and three vrp there are
six ways to form a two-pion system with charge —1.

The number of total cross sections, and therefore the
relations which exist among them, are not channel in-
variants, since two particles which we might consider
indistinguishable if they were both final-state particles
would be distinguishable if one were in the final and one
in the initial state. For instance, for the reaction
Xg —+ 2m, regarding the pions as indistinguishable, there
are three independent total cross sections, while for
vr+X ~ vr+Z all particles are distinguishable, since we
know which is the incident and which the final pion,
and there are five independent total cross sections. On
the other hand, the reaction E1V~ p+27v and the
reaction vr+X —+E+2vr both contain a pair of dis-
tinguishable isospin--, particles, two indistinguishable
isospin-1 particles, and a single isospin-1 particle which
is distinguishable from the others. Therefore the two
reactions have the same number of total cross sections,
with a unique correspondence between the sets of cross
sections for each reaction. The same set of relations is
obeyed by each set of cross sections.

Reactions which contain particles with the same set
of isospins, with corresponding members of each set
being considered indistinguishable, may be said to have
the same "isotopic structure. "The above pair of equiva-
lent reactions has the isotopic structure p22, —,",1,1,1').
The presence of any number of isospin-zero particles
obviously leaves the isotopic structure unchanged.

IV. DISCUSSION

In Tables III—VIII, detailed results of the applica-
tion of the Shmushkevich method are presented. Not a
single Clebsch-Gordan coefficient has been used in
writing down these results. Although the relations are
written in terms of cross sections for nucleon-anti-
nucleon reactions, they hold equally well for all reac-
tions with the same isotopic structure. A partial list
of such equivalent reactions is given in Table II.

For each type of reaction, the independent cross sec-
tions are listed. The charge symmetric partner of each
reaction, which has the same cross section as the given
one, is not written out. When identical multiplets
appear, they are treated as indistinguishable so that,
in these cases, the relations are relations among total
cross sections. If no indistinguishable particles are
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TAsLz V. Relations following from charge independence for the reaction ¹7—& EX+A.

(A)

(NN) o)1
(NTK) p&1

(N K)p)1

pp —+ E+E
pp —+ E'K'
pe -+ E'E

2(01+os))og
2 (0'2+03))0'1

2(al+a, ))a,

(NN) 0)1
(KK)o)1
(NTK) g&1

(NTK) 0& 1

(N TK) p& 1

(NTK) o) 1

(NT )~&~

(NTzf) )& 0

(Ea)6) g

(Ka);&0

010

011

(NN) p&1

(KE)o&1

(NTK) o)1
(NTE) o) 1

(2a) o& 1)2

(NNKT)5& 0

(NNKT)s&g

(NTKK)s& 7,

(NTKE) 6& 0

(NNaT) 1)2

(NNzf )0)1
(NTKzf) 1),g

(NTKzf) p& 1

(gTK~)
(NTEg )o&1

pp —+E+E ~o

pp —+ E'K x

pp —+ E+Kox

pp ~ EoE-7+
pn —+E+E m.

pn —+EoE ~o

pe —+ EoKom.

o g+ o 4+0 s+0 7 ——2 (0 1+02+0 s)

0'3+0'4+ 0 6

0'5+0 7 OO'6

0-4+0-7+0.1

03+0'5+01
0'3+0'7 +0'2

04+05+0'2

01+02+0'6+ 30 3

01+0'2+0 6+ 304

0 1+02+0 6+ 30 5

~1+~2+~6& 3~7

S N —+EK,2~

pp ~ E+E m+m

pp —& E+E,2m.~

pp —& EoKox+7t.

pp —+ EoK0,27t-o

pp —& E+K'~ m'

pp —+ E'E m+~0

Pe E+E
pe —+E E' x+x

pe ~EoE,2mo

pe —+ E'K'x 7f

pn —+ E+K0,2m=

2(01+03+08+0'll) =0'5+06+177+alp+4(as+04+as)
2 (al+o 2+o 8+0 4+as+ o 6))o 7+0s+a 9+010+au
2 (o 1+og+ag+04+a 7+0 10))afi+06+a8+0'g+all
2 (0'1+02+05+as+as+alp) )08+0'4+06+07+all
2 (ag+04+as+az+as+09) )al+a2+06+alp+0 11

2 (al+a2+03+a4+08) )as+06+07+010)0 11

01+0'2+0'3+0'4+0'5+0'6+O'8+0'9+0'10+ 0'7+0 11

&1+&2+&3+04+&5+06+&7+&8+09+0 10+011

01+02+03+&4+05+07+08+09+010 0 6+011
&1+02+&3+04+06+07+08+09+010+0 5+011

0 5+06+a7+alp+2 (al+a3+a9) )a8

05jas+az+alo+2as+4(a2+0'4+0'll) )2 (0 1+o3+0'g)

0 5+as+az+o'lo+2(og+o 3+08))01
as+a6+07+a 10+20 1+4 (a4+09+0 11))2 (02+03+08)

afi+06+az+alp+2 (al+04+08) )03

as+as+az+o'lp+20'8+4(0'2+o'g+0'll) )2(au+04+as)



B 1052 PINSKI, MACFARLANE, AND SUDARSHAN

010

011

(NN) 9&1

(ZZ) 9)»2
(ZTT) 9)1& 2

(ZTT) 8&» 2

(N~Z) )& y

(N~Z) 6&6

(N~TT) y) y

(N~Z) 6&6

(N~Z))&y

(N~TT) 6& 6

pp ~ Z+Z-~0

pp ~ Z-x+~0

pp ~ Z+Z0~-

pp ~ Z02+~-

pp ~ Z-Z0~+

pp ~Z0Z-~+

pp ~ Z020~0

pn-+Z-Z-~+

pe~Z+Z m.

pn ~Z 2+m.

p~ ~ Z-Z0~0

pS ~@0'—zt0

pe ~ Z020~-

&8+09+0 10=20 710 11+012+0 13

0 3+05+0 11=0 4+0 6+0 12

0 3+05+013=01+0'2+0 12

0 1+02+0 3+0 4+0 5+0 6+&11+012+013

0 1+02+0 7+09+010+0 13+0 3+05+0 11+0 8/2

03+05+07+O8+09+'012 &04+06+073&079/2

0'4+0 6+07+08+0 10+0 11+0 1+02+0'12+0'9/2

04+07+08+010+013+2(03+011)&02+09

02+07+08+09+013+ (04+012)&05+019

0 6+0 7+0 9+0 19+IT11+2(0 5+0 13) &0 4+0'8

05+07+08+019+012+2(02+011)&08+IT9'
06+07+08+09+011+2 (01+012)&04+019

08+07+0'9+019+012+2(IT4+0'13) &05+08

Ter.z VI. Relations following from charge independence
for the reaction N37-+ ZZzi-.

to some values of the charge labels have been omitted.
This has been done when an inequality is either satis6ed
identically or follows from an equality or another,
stronger inequality.

One particularly apparent inequality may be written
for each set of reactions, namely,

glvlng

0 (v(777IT) =1)~&47(v(7') =0),
asap)+4TLn78j=

257+)pj&~0+73j.

T~LE VII. Relations following from charge independence
for the reaction NE ~ ~+ezt-.

(NN)9 1

(N~h)P 1

NX

pp~ ~+8
pp~ Z0n

pn ~ a-n
pn ~ S0p

0 3 =01+0'2+0 4

2 (01+02)=08+04 ~01=02 08/3 =04——
2(02+04) =01+08

The equality holds only if all isospin-zero amplitudes
vanish. Even such an obvious inequality is capable of
yielding an unexpectedly useful result. For example,
when combined with the equality for the reaction
NN ~47r, it gives

0 (pp ~ 27r+7 27r ) ~& 0.(pp ~ 47r6) +0 (@73—9 77—,37r6) .

Depending on the level of certainty with which rele-
vant cross sections have been determined experi-
mentally, there are various uses for which these results

present, the relations can be thought of either as dif-
ferential or as total cross section relations.

%here there is more than one equality for a given re-
action, the "raw" equalities which follow from Shmush-
kevich have sometimes been combined with each other
to simplify them. The "raw" inequalities have often
been reduced to a more useful form, but only by com-

bining them with equalities, never with other inequali-
ties. We remark that the relations for NN —4 EX+271.
have been left in their raw form. Next to each inequality
is a notation indicating which subset of particles it
arises from and what values of the charge labels are
involved. A notation (37r}6&1means that an inequality
comes from

~(~I8-) = l) &~(~(8-)=o) ~

A superscript "T"appears on the symbol for a particle
when the particles in a subset are taken partly from the
initial and partly from the Anal state. For example, the
notation (NrICE')5) 9 indicates that the subset contains
an antinucleon selected from one side of the reaction and
a EE; pair from the other side. It will be noticed that
inequalities corresponding to some particle subsets and

0'10

011

(N~~, ,&,
(NTg) 9

(N~&)o 1&2

(a~) )&6

(N77) )&6

(N7'TT)y& 6

(N' )6&6

(NN) 9&1

(N~N) 9)1
(N7'N) 9& 1

pp~~ p~
pp ~ a+p~0
pp-+ 6+nz-

pp ~ ~0p~+

pp —+ Ldnzt-0

pp ~ z-n~+
pn ~ a-n~0
pe~ 6 pzl.+

pn ~ S0a~-
pn ~ a0p~0

pn ~ 6+pm.

0'7 = $0'9

0 1+06+0 7+0 8 0 2+0 3+04+0 5+09+010+011

0 1+03+04106+0 7+0 10=2(02+&5+09+011)&08

07+04+05+07+08+011 2(02+08+09+019)&06

02+03+06+07+IT8+011=2 (04+0'5+09+019)&0'1

01+06+08+09
0 7+0'8+011

0 7+0'6+03

0 7+01+0'4
01+0'3+04+0'6+0'7+0'10

0'3+0 6+0'8+0'll +0'7+0 2

0'1+0'4+0 8+0'll +0 7+0 5
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TABLE VIII. Relations following from charge independence
for the reaction gE ~ A8, .

cedure, such effects could be investigated only by
examining every possible coupling scheme.

o3

(N &)o»o
(Nrh)o r&o

(NN) o& t

pp ~ Q~Q
~+~-

pp ~ g0g0

pp~A 6+

Pn ~ S-Zo

pe ~ Z0Z-

pn ~ &+5

o g=o'y

o'i+o'4= o'2+o 3+o'6

2 (&o+o'o) =o'o+o'4+2o'o) o' r

2(os+os) =oi+oo+2oo&o4

4o2+4o 3+o6)2o5

may serve. If a su%.cient number of the cross sections
has been measured, the relations will serve as a test of
charge independence. On the other hand, if certain cross
sections are unmeasured or unmeasurable, the relations
will often provide upper or lower bounds for them.

Some of the results can be easily compared to the
predictions of the statistical model, in which statistical
weights' for each charge complexion are calculated
giving each isospin amplitude equal weight. For ex-
ample, charge independence requires that

~(pn-+ or+ 2or- or' )

~(pn ~ or-, 3~o)

no matter how the individual amplitudes behave,
whereas the statistical weights give the value 4 for this
ratio.

Pbserving the notation (3or) o& t next to our relation,
we see that the inequality becomes an equality only if
all amplitudes corresponding to three pions having
isospin zero vanish.

We may expect, in general, that inequalities will be
easily satisfied; if some inequality is close to being an
equality, then the vanishing of a set of amplitudes is
indicated. The possession of sufficiently detailed experi-
mental results will therefore permit us to investigate
the relative strength of amplitudes and to uncover
effects occurring in any channel. Using the usual pro-
"F. Cerulus, Nuovo Cimento Suppl. 15, 402 (1960); G. Pinski,

Ph.D. thesis, University of Rochester, 1963 (upubhshed).

V. CONCLUDING REMARKS

We have been able to find relations linear in the cross
sections merely by tabulating sums of cross sections
which correspond to any subset of (k) particles having
any charge label a~I, ». The linear relations follow from
Eq. (15). Each such sum of cross sections is equal to a
linear combination of the absolute squares of all the
amplitudes, in a given coupling scheme, for which

I~&» &~ v~A, ». These combinations may be written at sight,
the coefficient of each squared amplitude being (2I+1)/
(2I(ql+1). When we take such a sum, all phases dis-

appear and with them all information concerning inter-
ference effects. However, as is pointed out in the
Appendix, the relations which arise from dealing with
phases are complicated. nonlinear equations and involve
explicit Clebsch-Gordan coeKcients. These relations,
being nonlinear, cannot be added to give relations
among total cross sections, when indistinguishable
particles are present, and hence are useless for many-
particle reactions.

APPENDIX: NONLINEAR RELATIONS

If p is the number of amplitudes, there are also p
phases, one of which is arbitrary. There are therefore
(2p —1) independent real quantities. If one enumerates
the amplitudes as T~, .~,T~, then each cross term,

I
2''*~;+2' *2'*I =2

I
2''112'~

I cos(~'—~i),

which appears in the expansion of a particular single
cross section introduces a phase difference (8;—8;)=5;,,
i&j. There may be as many as p(p —1)/2 phase dif-
ferences appearing, if each cross term appears in the
expansion of at least one cross section. Only p—1 of
these phase differences are independent. We may choose
as the independent ones the 5g, ~~. The dependent phase
differences are then

p—1

&~i=Z &t, st.t ~

If there are 8"-independent cross sections and 2p—1-
independent real quantities, there must be a total of
W' —(2p—1) equalities among the cross sections. We
have discussed how linear equalities may be found.
Those relations which are nonlinear arise from the
elimination of dependent phase differences.


