ANNIHILATION OF ANTIPROTONS IN H AT REST.

attributable to w? production. Taking into account the
tails of the w? peak in the two control regions the wrr
and wp fractions can be obtained by the expression:

2.34X (distribution d, first part)—0.67
X (distribution b, second part
~+distribution b, third part).

The result is given in the fourth part of Table I. In
Figs. 4(a), 4(b), and 4(c) the energy distributions
calculated from the best fits chosen above are shown as
solid lines.

IV. CONCLUSIONS
We wish to draw the following conclusions’:

1. The channel w’+4-#t+47~ contains both nonreso-
nant pions and pions resonating as p. The nonresonant

7Qur conclusions 1 and 3 are in good agreement with the
results of M. Cresti, A. Grigoletto, S. Limentani, A. Loria, L.
Peruzzo, R. Santangelo, B. Chadwick, W. T. Davies, M. Derrick,
C. J. B. Hawkins, P. M. D. Gray, J. H. Mulvey, P. B. Jones,
D. Radojicic, and C. A. Wilkinson, in Proceedings of the Sienna
International Conference on Elementary Particles, 1963, edited by
G. Bernadini and G. D. Puppi (Societa Italiana di Fisica, Bologna,
1963), p. 263.

PHYSICAL REVIEW VOLUME

140,

111 B 1045
state dominates. Production of p mesons accounts for
(15£6)% of the channel. We recall that w%° produc-
tion must be from the 1S state.

2. The smallness of the (pyxp_)? term shows that
the nonresonant production is dominantly from the
85 state.

3. The fraction of all §p annihilations which are
attributable to these reactions is pp— '+7t+7—
(nonresonant): 0.039£0.005 of all annihilations, $p
— w4 p: 0.00740.003 of all annihilations.

ACKNOWLEDGMENTS

We would like to take this opportunity to thank
Dr. A. Prodell, the bubble chamber operating crews,
and the AGS operations staffs at Brookhaven National
Laboratory for their help in the exposure. Itis a pleasure
to thank Dr. R. Plano and his associates at Rutgers
University for their collaboration in the early stages
of this experiment. One of us (P. F.) would like to
acknowledge discussions with Dr. A. Pais, Dr. N. P.
Chang, and Dr. J. M. Shpiz. We would also like to
thank the Nevis Scanning and Measuring Staff for
their competent and tireless efforts.

NUMBER 4B 22 NOVEMBER 1965

Shmushkevich’s Method for a Charge-Independent Theory*

G. Pinskif, A. J. MACFARLANE, AND E. C. G. SUDARSHAN
Department of Physics, Syracuse University, Syracuse, New York
(Received 7 July 1965)

The Shmushkevich method for deducing consequences of charge independence is explained and discussed.
This method, which avoids entirely the use of Clebsch-Gordan coefficients, generates linear equalities and
inequalities among cross sections using only a simple counting procedure. A comprehensive list of such
relations, applying to most elementary-particle reactions of interest which involve at least one pair of
isospin-§ particles, is presented. A discussion of the various uses of these relations s given.

I. INTRODUCTION

Y assuming that a set of elementary-particle re-
actionsexhibitsinvariance under a given symmetry
group, we are enabled to deduce consequences of this
invariance in the form of relations among cross sections.
One class of relations, which is particularly easy to de-
duce is the class of relations linear in the cross sections.
Linear relations, because of their simplicity, are also of
greater use. In what follows, consideration will be re-
stricted to consequences of charge independence!~5;

* Research supported in part by the U. S. Atomic Energy
Commission.

T Present address: Department of Physics, Drexel Institute of
Technology, Philadelphia, Pennsylvania.
(II.S)M. Shmushkevich, Dokl. Akad. Nauk. SSSR 103, 235
1955).
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94 (1956).

3L. B. Okun, Zh. Eksperim. i Teor. Fiz. 30, 1172 (1956)
[English transl.: Soviet Phys.—JETP 3, 994 (1957)7.

4P. Roman, Theory of Elementary Particles (North-Holland
Publishing Company, Amsterdam, 1960), p. 443.

5 R. E. Marshak and E. C. G. Sudarshan, Introduction to Ele-
mentary Particle Physics (Interscience Publishers, Inc., New
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8 A. J. Macfarlane, N. Mukunda, and E. C. G. Sudarshan, J.
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7 A. J. Macfarlane, N. Mukunda, and E. C. G. Sudarshan, Phys.
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8 E. C. G. Sudarshan, Proceedings of the Athens Conference on
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II. CONSEQUENCES OF CHARGE
INDEPENDENCE

The standard method of deriving the consequences of
charge independencel™™? requires one to express all
relevant transition amplitudes in terms of the set of
relevant charge-independent transition amplitudes and
appropriate Clebsch-Gordan coefficients. Taking the
absolute square of the amplitude for each reaction gives
the differential cross section for that reaction, except
for purely kinematic factors which we omit in the rela-
tions below. All cross sections are thus expressed as
linear combinations of terms bilinear in the charge-
independent amplitudes. If this set of linear combina-
tions of bilinear quantities is linearly independent, then
there are no linear equalities among the cross sections;
if the set is linearly dependent, elimination of de-
pendent terms gives the desired linear equalities among
the cross sections.

When more than four particles are involved in the
reaction, this procedure becomes unwieldy. While the
problem of expanding transition amplitudes involves
mere tedium, that of finding linear dependence and
eliminating dependent terms becomes a formidable
task. It was Shmushkevich! who first realized that
linear relations may be extracted without resorting to
this procedure.

We now proceed to demonstrate that there exist
linear relations which do not depend on our knowledge
of the numerical values of Clebsch-Gordan coefficients,
but only on orthogonality relations satisfied by these
coefficients. It will then be evident that the second part
of the standard procedure just serves to repair the
damage done by the explicit introduction of Clebsch-
Gordan coefficients in the first part. It suffices to
illustrate these arguments by outlining the procedure
for a reaction involving five particles having arbitrary
isospins,

Ii+1y— I+ 14+ 15,

with third components of isospins, »;. We seek relations
among quantities of the form |72 where 7 is the
transition amplitude

T= T(VI,V2,V3,V4,V5) = (IllllIszl TlIsVsI4V4I§V5> . (1)

This transition amplitude, which is defined for all values
of the v;, vanishes unless charge is conserved, that is,
unless

vitve=vstvetvs.
First, we expand initial and final states in terms of

10 N. Kemmer, Proc. Cambridge Phil. Soc. 34, 354 (1938); W.
Heitler, Proc. Roy. Irish Acad. 51, 33 (1946).

K. M. Watson, Phys. Rev. 85, 852 (1952); L. Van Hove,
R. Marshak, and A. Pais, Phys. Rev. 88, 1211 (1952).

12 M. Peshkin, Phys. Rev. 121, 636 (1961).
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eigenstates of the total isospin,
|[1V112V2>=JZ C(II 2T 5 vivau) | Tu),
[ Tsvsl swal svs) ’ )
= 2 C(Islul3s; vsvahss)C (L3l 5T ; Naaws\) | Tsa,IN).

I34,1,
Azg,\

Our coefficients C(I 1ol ,; vovv,) are defined for all

values of their arguments; they vanish unless v, vy=1»,
and unless I, I, I, can form a triangle. Then

2 CUWIoT 5 vivau)C(Tsl sl 345 v3vehss)
J, 1,134,
A N3

T:

XC(IsJSI;xMVSA)C]M!T!Ia4,I)\>. (3)
Now, imposing conservation of isospin, we have

We denote the charge-independent amplitude (I\|7|
XIsaIN) by T(I34,) to make explicit the lack of
dependence on charge labels. We then have

] Ti 2= IZ:I IZ/I’ C(Illzl, V1V2)\)C(11[21, ; V1V2)\,)
A A

XC (sl sl 345 vsvahsa)C(T3Ial 34 5 vavahsd) @)
XC (T3l s 5 NaavsN)C (L3 TsI” 5 N vs)')
XT3, ) T*(I3d 1)

There are five free charge labels. Summing this ex-
pression over all charge labels gives the total cross
section for all possible charge complexions. Rather than
sum over all labels, we may leave one charge label un-
summed and use the following properties® of Clebsch-
Gordan coefficients:

(1) Orthogonality:
2 CUudl s vaviv)CLIbI e 5 vavsvy))
- =8I (opd). ()
(2) Modified orthogonality:
2 CUudl o5 vavev ) CUJTLI 5 v vovy)
. 2141
21,+1

8(La, 1o )8 (vayrd).  (6)

If we sum over vy, v3, v4, v5, we are left with a function
of V1, '
2141
o1(v)= 2 ——[T(s,0)|%.
I34,I 211+1

By taking the appropriate sums, we find that a like

1 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley & Sons, Inc., New York, 1952), p. 791.
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result holds for each particle,

27+1
oi(v)= 2 ——|TTss,1)]? @
I, I 21 ;41

and observe also that

2+1
G”i(Vi)= (T]’(Vj).

2141
Before discussing the implications of Eq. (7), we first
establish the structure of the remaining sums which
follow from Eq. (4). Performing the sums over vs, v4, v5
and the sum over »; and v, with the constraint v+,

=y, yields a function of vy,

o(ri)= 2 X|T(TslD)|2. ®)

I>|vi2| T34

Summing over »i, v2, v5 and over »; and v, with the
constraint vz4vs=wvs4 gives a function of vz,

2I+1
1‘T(I34:I)]2' (9)

0'34(1’34) = Z

I Ias>|vaal 2134

If the final sum is performed for Egs. (7), (8), and (9)
the final result is, as expected,

=T T @I+ 1)| TTss,D) 2. (10)

The extension to the N-particle case is obvious. The
Clebsch-Gordan expansion, Eq. (3), involves (N—2)
coefficients with IV free charge labels. In order to leave
one label unsummed, we may sum over (N—1) labels,
obtaining a relation resembling Eq. (7). Alternatively,
we may sum over % labels and sum over the remaining
(V—E) labels with a single constraint, finding relations
similar to Egs. (8) and (9). In either case, all Clebsch-
Gordan coefficients are eliminated in the summation
process.

The result (7) is particularly useful because ¢;(v;) is,
in fact, independent of »;, i.e., the weight corresponding
to finding a particle in one charge state is equal to the
weight for finding it in any other charge state. Shmush-
kevich recognized this result, namely, that the sum of
all cross sections corresponding to any particle having
a given charge is the same for each possible charge of
the particle, as the most direct and intuitive conse-
quence of charge independence. This yields 27, relations

o'@'(],')=0','(li— 1)= v =o'i(—I,-) . (11)

Of these relations, the relations of the form o;(v;)
=0;(— ;) are just statements of charge symmetry. If I,
is integral, there are I, charge-symmetry relations and
I; useful new relations. If 7; is half-integral, there are
I+-% and I;—3 relations of each type, respectively. We
note that a particle will not contribute a relation which
goes beyond charge symmetry unless it has 7> 1.

Results (8) and (9) are different from (7) in that the
functions o15(v12) and os4(v34) do depend explicitly on
their arguments. The reason for this is apparent, since
if the system (734-74), e.g., has a charge label vs, we
may only sum in Eq. (9) over isospin states for which
this system has isospin 73> 3. In this case, charge
independence tells us that the contribution to the
weight corresponding to finding a pair of particles with
a given total charge label v34, coming from states with
a particular value of I3, is the same as the weight
corresponding to finding the pair with charge label 34’
coming from states with that value of I3, as long as
I34> vy and I3>vsy. It would seem at first that the
only equality we can extract is the charge-symmetry
statement, os4(vss) = 0'34(— v34). However, if T34 is unable
to assume values smaller than some value I3, then
the sum in Eq. (9) is the same for vg4= I3 as it is for
vz equal to any value less than I3®i», We can therefore
write the nontrivial relations

034(I34min)=0‘34(134min— 1)= “ee =o’34(% or 0) . (12)

For values of v34 greater than /3, we have inequalities
relating the o34(v34), since they differ by positive multi-
ples of the absolute squares of amplitudes.

034 (3m) <o (L3 — 1)< - - - S oga (T3mi0) . (13)

The isospin 73 has an apparent minimum value given
by |I3—I4| but, in fact, cannot take on a value less
than the minimum value to which the remaining iso-
spins Iy, Is, I5 can couple. Therefore

134min= max{ 113—I4i s mln(11+ I2+ IE)} .
Similarly,
Isgex=min{Is+14, I,+I+15} .

Similar results corresponding to other ways of cou-
pling the isospins follow for any pair of particles.
Relations among cross sections are unaffected by trans-
ferring any number of particles from final to initial
state or vice versa while changing particles to anti-
particles. We can therefore find relations coming from
a13(v13), where vi3=»,—s, if we regard particle three
as an antiparticle in the initial state.

Generalizing to the N-particle case, we can consider
any subset {k} of k particles along with the comple-
mentary subset {N—£k} of N—£k particles. Define
Iy and I as the extremum isospin values that
these subsets of particles can assume. Then

Igyir=max{min(} L)min( ¥ L)}, (14a)
ie{ k} te{ N—k}
Ipym>*=min{ 3> I,, > I}, (14b)
Te{k} te{ N—k}

and the previous results can be summarized by the
relation
o ([ ™)< - - - <o (Lw™)

= e =g"k}(% or 0).

(15)
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TaBLE I. Numbers of cross sections and numbers of charge-
independent amplitudes for various numbers of particles.

n w w’ I3 $0(o+1) W'—3p(po+1)
(A) #» Isospin 1

3 7 4 1 1 3
4 19 10 3 6 4
5 51 26 6 21 5
6 141 71 15 120
7 393 197 36 666
8 1107 554 91 4186

(B) 2 Isospin %, # Isospin 1
1 4 2 1 1 1
2 10 5 2 3 2
3 26 13 4 10 3
4 70 35 9 45 cee
5 192 96 21 231
6 534 267 51 1326

(C) 4 Isospin %, # Isospin 1
0 6 3 2 3 0
1 14 7 3 6 1
2 36 18 6 21 P
3 96 48 13 91
4 262 131 30 465
5 726 363 72 2628

For a charge-independent reaction, we can make the
following assertion: If experiment were to show that for
an Iiy>Iw™", the equality oy (lm+1)=0mm )
held, this would mean that all amplitudes for which
the subset {&} had isospin I vanish.

We now emphasize the following important point:
The relations which exist among the cross sections, as
well as the number of differential cross sections and the
number of charge-independent amplitudes which occur
for a given configuration of isospins, are ‘“‘channel in-
variants,” that is, they depend only on the set of all
isospins present, ([4,--+,In). It is‘immateria.l to tl.le
problem at hand whether any particular particle is in
in the initial state or its antiparticle is in the final state.
We may therefore find relations for any k-particle sub-
set of the IV particles, but we note that the relations so
found are identical with the relations found by con-
sidering the complementary subset of N—£% particles.
It follows that there are 2¥1—1 independent subsets
to consider. )

In the application of the foregoing, it is convenient
to impose the requirement of charge symmetry from.the
beginning and ignore the charge symmetry relations
rather than to consider all cross sections as independent
and make use of charge symmetry relations. It is worth-
while to look more closely at the number of cross sec-
tions and the number of charge-independent amplitudes,
considered as functions of the isospins, which we denote
by Wx(l4,- - -,Ix) and py([1, - -,In), respe.ctive.ly.

If all the particles do not have integral isospin, th'fxt
is, if there is at least one pair of half—intf:gral isospin
particles, the number of cross sections Wy is even, since
no reaction is related to itself by charge symmetry.
Therefore, by making use of charge symmetry there are
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W y'=Wnx/2 independent cross sections. If all the par-
ticles do have integral isospin, one reaction, namely,
that for which each particle is in the ;=0 state is
charge symmetric with itself, so that the number of
cross sections Wy is odd. Using charge symmetry, there
are then Wy'= (Wy+1)/2 independent cross sections.

We now compare, for some simple cases, the number
of bilinear terms to which the cross sections are related
and the number of cross sections. If py is the number of
amplitudes which describes the process, there may be
o~ (pv+1)/2 bilinear terms to which the Wy’ cross sec-
tions are equated. From Table I, we observe that for
reactions involving a small number of isospin-3 and

TaBLE II. Reactions having the same isotopic structure.

Aa) [3:4'm1)] (B) 53,1 m(1)]
Prototype reaction Prototype reaction
NN — nr NN — p-+nr
Equivalent reactions Equivalent reactions
1) KN — A+nr (1) NN —AZ+nr
(2) Kd — AN4nr (2) NN — AS+nr
3) Nd — N4nr 3) Nd — Np+nr
(4) Nd — AK-+nr (4) Nd — AKp+nr
(5)* NN’ — d+nr (5) KN —Z+nr
(6) AN — K+nx (6) KN — Ap+tur
() Rd —=N+nr
(8) Kd — ANp+nr
©) «N — N-4ur
(10) «N — AK+nr
(11)» 7d — NN'+nx
(12) ZN — AN-+unr
(13) AN —ZN+nr
(14) EN — K+nr
© G338 m1] (D) 33,11 (1)]
Prototype reaction Prototype reaction
NN — RK+nr NN —Z2+nr
Equivalent reactions Equivalent reactions
(1) NN — NN+4nr (1) 2N - EN+ur
2) KN — RN+wnr (2) 22 —NN-+4nr
3) KN — KN+nr 3) EN > ENH+wur
(4)> NN’ > NN'+nr 4) =N —>ZK+nr
(5) RN — ARK-+ur (5) =N — Np+nrw
(6) NN — AKN+nx 6) 7N — AKp+nr
(1) Nd — RKN-+un (7) EN — Zp+nr
8)* Ed — KKN'+nr
() KN - EK+nw (E) E%;%G%”}%rn(l)]

(10) Kd — EKN-+nr
(11)®> NN’ — AKN+nr
(12)* AN — NN’K-4nr
(13) N —EKKN (n=1)
(14)» NN’ - NK=Z (n=1)
(15) KN —zZEKK (n=1) 2) KN — AK+nr
(16)* =N — NN'K (n=1) 3 Kd — ANR+nr
(4) Kd — ANK-nr
(5)2 NN'" — AN+nrw

Prototype reaction
b NN — AN ~+nr
Equivalent reactions
1) RN — AR+ur

& The two nucleons N, N’ are to be considered distinguishable.
b The symbol A is used for an I = 3/2 nucleon isobar.
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isospin-1 particles, the number of linear equalities we
expect, Wx'—pn(on+1)/2, is equal to the number of
isospin-1 particles present, which is just the number of
Shmushkevich equalities. This result holds up to a cer-
tain small value of N, beyond which the number of
bilinear quantities rapidly increases above the number
of cross sections. In this region, we would not know
whether to expect any linear equalities without testing
for linear independence of the bilinear quantities. How-
ever, we do know there are still Shmushkevich equali-
ties, one for each isospin-1 particle.

III. PROCEDURE

The task of producing relations is essentially one of
tabulation. Enumerate the Wy reactions and find the
weights o (v(x)) by adding the cross sections for all re-
actions in which the set {k} of particles has charge
label »(x. Alternatively, we can shorten our list by
writing only the Wy’ independent reactions. Then to
find o(v(x;), add the cross sections for all reactions in
which the set {£} has charge label either v or — vy,
if yy#0. For ¢ (vi3=0), count reactions which have
viy=0 twice if they are not self-charge-symmetric,
once otherwise.

The meaning of the relations obtained is sufficiently
clear if the IV particles are all distinguishable. The cross
sections which appear can be regarded either as dif-
ferential cross sections, that is, referring to fixed values
of all variables not involving the isospins, or as partial
(total) cross sections summed over any (all) of the
other variables. Thus if the 7th particle is a = and the
4th particle is a =, there is no danger of confusing a
reaction containing a 7t and =~ with one containing a
7 and =+. However, if the 7th and jth particles are
both #’s, one must be reminded to distinguish differen-
tial cross sections in which a #+ has momentum p;
and 7~ has momentum p; from a cross section in which
a 7~ has momentum p; and =+ has momentum p;. If
one does not measure momentum intervals in which
particles are produced, but only total rates of produc-
tion, then these two differential cross sections con-
tribute to the same total cross section, namely, the
cross section for production of a #+ and =~ irrespective
of other labels. Indeed, in the present context our dis-
tinction between the terms “differential” and “total”
cross sections is actually a distinction with respect to
one point only. If we are given # momentum intervals,
with one particle produced in each interval, we ask
which particle has which momentum for the differential
cross sections while we do not ask this question for the
total cross sections. In a discussion of total production
rates, only total cross sections are relevant.

In processes involving identical particles, restricting
consideration to total cross sections greatly reduces the
number of quantities being related. For instance, for
nucleon antinucleon annihilation into 8 pions, there are
2123 independent differential cross sections, but only 9
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TaBLE III Relations following from charge independence

for the reaction NN — 5.

&)

®)

©

®)

®)

(F)

(ZVN)oZ 1
(2m)1>2

(VN)o21
(371’)02 1
(2m)o>1

g

(NN)o>1
(371’) 2>3
(37r) 0>1
(4r)ox>1
(dm)1>2

Om)ox1
VN) o1
27)1>2
(371’) 2>3
(Bm)ox1
(4) 1>2
(4m)o>1

NN — =
pp— a0
=

g3= 20‘1

NN — 2r
pp — wtr™
pp — 270
m— 0

20'1 = 40’2+¢T3
NN — 3r

pp — wtrn®
pp — 3n®
pn — ot 2x~
pn— 7,270
o3=04+20,
01204
2(o1t04) 203
NN — 4r
PP — 27+ 20—
pp — wta, 240
Pp — 4x®
P — ot 207,70
pn — 7,370
4014-04=202+803+ 505
c1>035105
042> (3/2)as
402420 4+305> 20,

NN — 5r
pp— 27r+:27"—:7ro
pp — wt,a™,320
Pp — Sx°
pn— 27t 37~
pn — o+, 277,240
pn — 7 Ax
201+501=403+1003+054 706
201+02>05+20
2014205204
8c1+-044205> 60214120
11o4+05>90¢
40'1+20'2+0’5+40'6220‘4

NN — 6
pp — 3+, 37~
Dp — 2xF, 207,220
Pp — ot 7 A0
Dp — 6m°
pn — 27t 307 70
pn— 7,277,370
pn — 7,570
201+-05=203+404+ 061307
405> 061607
201+t03>04+F06+207
609+803+05+806+507> 604
4024305306201
20’1+80’2+130’52 160’3+60'5+2007
6024203410054-07> 1204
18«71+2¢72+60'3+300'4+60'5230‘5
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TasrLE IV. Relations following from charge independence
for the reaction NN — p+nr.

&)

®)

©

NN —pr

o1 pp — pta~

o2 pp — p'n°

o3 pp—p7mt

o4 o — p w0

a5 pn— o'~

gi=0s
o1to3=202+04
(NTm)3>4 143032302
(NTp)s>4 3o1+03> 302
NN —p,2n

a1 pp — ptan®

[ Pp — portr

o3 pp — p%2x°

a4 pp— p

23 n— p_7r+7r_

os pn— p~,2m0

a7 pn — plnw®

os pn— pt 27~

p o1tostostostos=2(o2t03+07)

T o1tostort4(ostoe) =2(o2to5+0s)
(NN)o>1 2(o1to2tostod >ostostortos
2m)o>1>2 2(ootostostoe) >o1tost-07>0s
(pm)o>1 o1tostort205+4(ost0s) > 2(02t06)
(pm)1>2 o1tostort2(oatoe) >os
(NTp)3>3 3(o1+-o5+06) >04tos
(NTp)s>3 3(catostos) =010

NN —p,3n

a1 pp — ptrt 20~

o2 pp — ptr, 220

o3 Pp — plyrtaa®

a4 pp — 030

o5 Pp — p 7, 2n

o6 pp — p w200

a7 pn— p* 20770

as pn — oot 27~

) pn — pn, 270

o10 m— p wtrnd

o1 n— p~,3n°

p o1toe2tostostortonton=2(cstostostag)

T o1tostos=ostostost2(oston)
27)1>2 2(o2tostostost-o10)Fo7>01+05+0s
@27)o>1 2(o1}05+08)+3(oat011) > 07
Bmo>1>2 2(0stostowton) >o1tostostostostoo>ar
(NN)o>1  2(o1toetostostostos) >ortostostonton
(pm)1>2 a1 taet2(ostost06)+3(0sF011) >01F05
(om)o>1 4(01}05) 460413 (o7t09) F010>3(0s+-011)
(p,2m)1>2 3(o1Foston)+2(ostos)tostostor>0s
(0,27)0>1 3(o2t06+07)F60sF40s+010>3(01F05+011)
(NTp)3>3  ostostostostostostowton>oitortor
(NTp)s>3 o1tostostostostostowtou>ostostor
(NTpm)s> s o3tostortostoint20:>01
(NTpm)3>y g1tos3tortostoit2o620s
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independent total cross sections. The prospects of
measuring a sufficient number of the differential cross
sections to verify the differential relations are remote.
One can arrive at the total cross-section relations
directly, rather than by the tedious process of adding
differential relations. In tabulating ¢ (v(#}), regard iden-
tical particles as unordered; each cross section is then
counted as many times as the subset {k} has charge
label »(x). For example, the cross section for the reaction
Pr— wta~rr%7%0 is counted six times in the weight
o (viar}=—1), since with two =~ and three #° there are
six ways to form a two-pion system with charge —1.

The number of total cross sections, and therefore the
relations which exist among them, are not channel in-
variants, since two particles which we might consider
indistinguishable if they were both final-state particles
would be distinguishable if one were in the final and one
in the initial state. For instance, for the reaction
NN — 2, regarding the pions as indistinguishable, there
are three independent total cross sections, while for
7+N — m+N all particles are distinguishable, since we
know which is the incident and which the final pion,
and there are five independent total cross sections. On
the other hand, the reaction NN — p+2r and the
reaction w#+N — N-2r both contain a pair of dis-
tinguishable isospin-j particles, two indistinguishable
isospin-1 particles, and a single isospin-1 particle which
is distinguishable from the others. Therefore the two
reactions have the same number of total cross sections,
with a unique correspondence between the sets of cross
sections for each reaction. The same set of relations is
obeyed by each set of cross sections.

Reactions which contain particles with the same set
of isospins, with corresponding members of each set
being considered indistinguishable, may be said to have
the same “isotopic structure.” The above pair of equiva-
lent reactions has the isotopic structure (%,3/,1,1,1').
The presence of any number of isospin-zero particles
obviously leaves the isotopic structure unchanged.

IV. DISCUSSION

In Tables III-VIII, detailed results of the applica-
tion of the Shmushkevich method are presented. Not a
single Clebsch-Gordan coefficient has been used in
writing down these results. Although the relations are
written in terms of cross sections for nucleon-anti-
nucleon reactions, they hold equally well for all reac-
tions with the same isotopic structure. A partial list
of such equivalent reactions is given in Table II.

For each type of reaction, the independent cross sec-
tions are listed. The charge symmetric partner of each
reaction, which has the same cross section as the given
one, is not written out. When identical multiplets
appear, they are treated as indistinguishable so that,
in these cases, the relations are relations among total
cross sections. If no indistinguishable particles are
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TasLE V. Relations following from charge independence for the reaction NN — KK 4.

(A) NN - KR
a1 pp— KK~
oy pp — KK°
a3 m — KK~
(NN)o>1 2(o1t02) =03
(NTK)o>1 2(cat03) 201
(NTK)o>1 2(o1t03) =09
(B) NN — KRx
o1 pp— KK
a2 pp— K°K_°1r°
a3 pp — K+Ko%~
o4 pp — KKzt
as pn— KYK—n~
a6 pn — KK~z
ay o — KOKOT—
- g3tostostor=2(c1+os}06)
(NN)o>1 o3t04>05
(KK)d.le o5ta7 >0
(NTK)OZ 1 0'4‘|'<77201
(NTR)o>1 o3tos5>01
(NTK)o>1 o3tar>02
NTR)o>1 citos>02
(NTm)3>4 o1to2t06> 303
(NTm)s>3 o1tortos> 30y
(Bm)s>3 o1tostoe> 305
(Km)i>y oitortoc>Fos
© NN — KR, 2r
o1 pp— K¥Kntn—
o2 Pp—> K+E-2m0
o3 Pp— K°I§°7r+7r—
oy pp — K°KO, 270
o5 Ppp — KK x0
og pp — KK nFn®
a7 pn — KYK—7~n0
os pn — KK —wto~
oy pn— K°If—,21r°
o010 pn — KK 70
o1 o — K+K°,27r_
P 2(o1t-ostostou) =ostoetorto10t-4(oetost-00)
(NN)ox1 2(e1toetostostostoe) >artostostaoton
(KR)o>1 2(o1to2tostostortoi) >ostostostoston
(NTK)o>1 2(01+o2tostostoet010) 203 tostostorton
(NTR)oz1 2(ostostostort0st09) >01t02tost-o10ton
@2m)o>1>0 2(o1tostostostos) >ostostortow>on
(NNEKT)3>3 o1tortostostostostostoston>orton
(NNET);>4 o1tortostoitostostortostos>oton
(NTKR)3>3 g1tostostostostortostostow>oston
(NTKR)3>3 oitortostostostortostoston>oston
(NNnT)1>2 ostostortoit2(o1tosto9) >0
(NNxT)ox>1 ostostort-o10t-205+4(024-0st-011) > 2(014-03409)
(NTKm)1>2 ostoctortowt2(ortostos) >o1
(NTK7)o>1 ostoetorto0t201+4(0st00F-011) > 2(02+03+0%)
(NTEm)1> 2 ostostortoint2(o1tostos) >0

(NTE7)o>1 ostostortoit20s+4(oetoeto11) >2(0utostos)
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Tasre VI Relations following from charge independence
for the reaction NN — ZZ.

NN —2%r
a1 pp— a0
o2 Pp— = Ttx0
a3 Pp — 20~
o4 pp— 2T tr—
a5 pp — = 20xt
ag pp— T xt
o7 Pp — 20T0x0
o8 pn— ot
a9 pn— ST a
10 pn— = Ztr—
o1 P — Z 2070
o12 pn — ZZ 70
013 Pn — 20305~

ost+ootow0=2071outontos
o3toston=ostoetorn
a3tosto=01tostorn

(NN)ox1 g1tortostostostos>ontontons
E2)o>1>2  o1tortortostownton>ostoston>os/2
Em)o>1>2  ostostortostoorton>oitosto>o10/2
CEmo>1>2 catoetortostoton>oitorto12>00/2
(NTZ)3>4 o1totostowtost2(ostoi) >oatos
(NTE)3>3 ostortostostont2(oitor)>o1town
(NTr)3>1 ostortootortout2(ostoz) >ostos
(NT2)3>4 ostortostowtoint2(erton) >ostos
(NT2)3>3 ostortostostont2(eitoin) >oator0
(NTr)3>3 ostortostontont2(oston) >os+tas

present, the relations can be thought of either as dif-
ferential or as total cross section relations.

Where there is more than one equality for a given re-
action, the “raw” equalities which follow from Shmush-
kevich have sometimes been combined with each other
to simplify them. The “raw” inequalities have often
been reduced to a more useful form, but only by com-
bining them with equalities, never with other inequali-
ties. We remark that the relations for NN — KK+2n
have been left in their raw form. Next to each inequality
is a notation indicating which subset of particles it
arises from and what values of the charge labels are
involved. A notation {3m}o>1 means that an inequality
comes from

o (i =1)<o(vn=0).

A superscript “7” appears on the symbol for a particle
when the particles in a subset are taken partly from the
initial and partly from the final state. For example, the
notation (N7KK);> 3 indicates that the subset contains
an antinucleon selected from one side of the reaction and
a KK pair from the other side. It will be noticed that
inequalities corresponding to some particle subsets and
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to some values of the charge labels have been omitted.
This has been done when an inequality is either satisfied
identically or follows from an equality or another,
stronger inequality.

One particularly apparent inequality may be written
for each set of reactions, namely,

o(vzm=1<o@Em=0),

olppltolAan]=2¢[pp]2 o[ pn].

The equality holds only if all isospin-zero amplitudes
vanish. Even such an obvious inequality is capable of
yielding an unexpectedly useful result. For example,
when combined with the equality for the reaction
NN — 4, it gives

giving

o (pp — 2xt277) 2 o (pp — 47 +o (Pr — 7,37

Depending on the level of certainty with which rele-
vant cross sections have been determined experi-
mentally, there are various uses for which these results

TaBLE VII. Relations following from charge independence
for the reaction NN — AN +#nar.

A) NN — AN
o1 Pp— AP
o2 Dp— A
o3 n— AR
g pn— A%
A o3=01102t04
(V) o1 2(01t02) =03t0spo1=02=03/3=04
(NTA) o1 2(0st0s) =01t03
(B) NN — ANx
o1 Pp— AT pr—
a2 pp — Atpxd®
o3 pp— Atna—
a4 pp — A%rt
o5 ?ﬁ — A0
o6 Dp— ARt
a7 pn — A~ nad
o3 pn— A prt
a9 pn — A%ir—
a10 pn — A%r0
o1 n— Atpr—
ar1=(§)o9
A o1toetortos=ortostostostostoioton
(NA)ou1>2  o1t0stoitostorto=2(cotosooto11) >os

(NTA)om1>2 o1tostostortoston=2(cstos+eot010) >0
(NTA)om1>2 o2tostostortoston=2(citostooto) >0

(Am)s>3 g1togtas>oy
(NW)!Z! ortos>on
(NTm)3>4 ortos>os
(NTm)3zy o7to1204
(NNN)ox1 o1to3tostas>arto
(NTN)o>1 o3tostoston>orto2
(NTN)o>1 o1tostostou>ortos
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TaBLE VIIL. Relations following from charge independence
for the reaction NN — AA.

NN — AA
a1 Pp— ATFATT
a2 Pp — ATA™
o3 Pp — A'A
a4 pp— A—A*
o5 Pn— A~A
og pn — AA~
o7 pn— ATA™~

O5=0a7

o1tos=02tostos

(NTA)0m1>2 2(os+to6) =cstost205>01
(NTA)o1>2 2(o2toe) =01t05+205>04
(NN)DZI 40’2+40'3+0'3220'5

may serve. If a sufficient number of the cross sections
has been measured, the relations will serve as a test of
charge independence. On the other hand, if certain cross
sections are unmeasured or unmeasurable, the relations
will often provide upper or lower bounds for them.

Some of the results can be easily compared to the
predictions of the statistical model, in which statistical
weightst* for each charge complexion are calculated
giving each isospin amplitude equal weight. For ex-
ample, charge independence requires that

o (pn— at, 20—, 7%)

>3,
o (pn— 7=, 37

no matter how the individual amplitudes behave,
whereas the statistical weights give the value 4 for this
ratio.

Observing the notation {3w},>: next to our relation,
we see that the inequality becomes an equality only if
all amplitudes corresponding to three pions having
isospin zero vanish.

We may expect, in general, that inequalities will be
easily satisfied; if some inequality is close to being an
equality, then the vanishing of a set of amplitudes is
indicated. The possession of sufficiently detailed experi-
mental results will therefore permit us to investigate
the relative strength of amplitudes and to uncover
effects occurring in any channel. Using the usual pro-

1 F. Cerulus, Nuovo Cimento Suppl. 15, 402 (1960) ; G. Pinski,
Ph.D. thesis, University of Rochester, 1963 (upublished).

cedure, such effects could be investigated only by
examining every possible coupling scheme.

V. CONCLUDING REMARKS

We have been able to find relations linear in the cross
sections merely by tabulating sums of cross sections
which correspond to any subset of {k} particles having
any charge label »(z. The linear relations follow from
Eq. (15). Each such sum of cross sections is equal to a
linear combination of the absolute squares of all the
amplitudes, in a given coupling scheme, for which
Iy 2 v(xy. These combinations may be written at sight,
the coefficient of each squared amplitude being (27+41)/
(2Iy+1). When we take such a sum, all phases dis-
appear and with them all information concerning inter-
ference effects. However, as is pointed out in the
Appendix, the relations which arise from dealing with
phases are complicated nonlinear equations and involve
explicit Clebsch-Gordan coefficients. These relations,
being nonlinear, cannot be added to give relations
among total cross sections, when indistinguishable
particles are present, and hence are useless for many-
particle reactions.

APPENDIX: NONLINEAR RELATIONS

If p is the number of amplitudes, there are also p
phases, one of which is arbitrary. There are therefore
(2p—1) independent real quantities. If one enumerates
the amplitudes as 7,- - -,T,, then each cross term,

| T#Ti+T#Ts| =2| Td|| 75| cos(8:—3;),

which appears in the expansion of a particular single
cross section introduces a phase difference (8;—8;)=0.j,
i<j. There may be as many as p(o—1)/2 phase dif-
ferences appearing, if each cross term appears in the
expansion of at least one cross section. Only p—1 of
these phase differences are independent. We may choose
as the independent ones the 8;,;41. The dependent phase
differences are then

i—-1
8= 01,141.

=i

If there are W’-independent cross sections and 2p—1-
independent real quantities, there must be a total of
W'~ (2p—1) equalities among the cross sections. We
have discussed how linear equalities may be found.
Those relations which are nonlinear arise from the
elimination of dependent phase differences.



