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trajectory ct(t) remains close to n= 1 in the same limit.
The coupling strength of the dominant pole determines
the power law for the amplitude, as in Serber's analysis,
since the eikonal has logarithmic, small b dependence in
such a case. This form for the residue P conforms to
what one expects on the basis of a dispersion relation, "
where ts is determined by the behavior of ImP(t) above
threshold.

The conjecture of Regge-pole dominance for X thus
enables us to understand, with simple computation
methods and on the basis of well-known properties of
a few poles (mainly the Pomeranchuir. pole), features
of high-energy amplitudes which even in a phenomeno-
logical pole analysis (of the amplitude itself) were
dificult to interpret; i.e. , the large —t dependence,
departure from logarithmic behavior of do/dQ, im-

"H. Cheng and D. Sharp, Phys. Rev. 132, 1854 (1963).

portance of absorptive corrections in p-dominated
charge exchange, and the appreciable real part of the
amplitude near 1,=0 at moderate and high energies. '4"
A decisive empirical test of this conjecture would be
possible if a convincing calculation of the pole pararn-
eters (utilizing two-body t-channel states) could be
carried out. Unfortunately, this does not seem to be
within reach at the moment, since even the decay
widths of two-body resonances such as p cannot yet be
correctly calculated from 6rst principles.

~In our picture, the ratio of real to imaginary parts of the
forward amplitude varies only logarithmically with energy, if we
include only the pomeranchon. This may be compared with the
prediction of Phillips and Rarita L'Phys. Rev. Letters 14, 502
(1965)j who use three-pole its for the amplitudes, and obtain a
rapidly decreasing function.

25 K. J. Foley, R. S. Gilmore, R. S. Jones, S. J. Lindenbaum,
W. A. Love, S. Ozaki, E. H. Willen, R. Yamada, and L. C. L.
Yuan, Phys. Rev. Letters 14, 862 (1965).
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A self-consistent calculation of the parameters of the p and f' resonances is carried out, using an effective-
potential approach. The exchange of these resonances in 2f-2i- scattering is used to construct a lowest order
effective potential at each energy. This is sufficient to produce these same resonances in the scattering
process. The requirement that the masses and reduced widths of these output resonances be the same as
those of the exchanged resonances can then be used to fix these parameters. With 10 jq self-consistency,
we obtained mass =600 MeV, width =100 MeV for the p, and mass =1100MeV, width =90 MeV for the

f0. The width of the p thus comes out considerably narrower than in the usual calculations which ignore the f .

"UMEROUS calculations have been made of the
parameters of the p meson, using the bootstrap

approach. ' In this approach one considers x+ scattering
in which the force (input) is due to the exchange of the

p. This force is sufhcient to produce an, I=1, J=1
resonance (output), which can then be identified with
the p. If one requires that the mass and width be the
same for both the input and output resonances one can
determine these parameters.

Most bootstrap calculations have used the E/D
method, which is simply a device for unitarizing the
input. In these calculations, however, the reduced
width (which, except for a simple numerical factor, is

just the square of the ps.sr coupling constant) invariably
comes out several times larger than the experimental
value. It has also been argued that the shape of the
I=1, J=1 cross section is not correctly given by the

*Present address: Department of Physics, University of Cali-
fornia, Los Angeles, California.

'For a review of bootstrap methods, see F. Zachariasen, in
Strong Interactions and High Energy Physics, edited by R. G.
Moorhouse (Plenum Press, New York, 1964).

E/D method. The cross section above the position of
the resonance does not fall off as rapidly as would seem
to be suggested by experiment. ~

Recently one of us has proposed an effective-potential
approach for making strong-interaction calculations. '
This again is just a device for unitarizing an input. We
shall see that the aforementioned defects of the X/D
approach can be removed in this method.

In the lowest approximation, the method turns out
to be quite elementary. e Suppose rl=p mass (with
pion mass=1), s=square of the total c.rn. energy,
and t= —2q'(1 —coso) where q'=srs —1 and. O=c.m.
scattering angle. Then we first evaluate Fig. 1(a) as
a dispersion diagram, i.e., we compute it as a I'eynman

graph, express it as a function of s and t and replace t
by m' everywhere except in the denominator of the p

' J. R. Fulco, G. L. Shaw, and D. Y. Wong, Phys. Rev. 137,
B1242 (1965).' L. A. P. Baldzs, Phys. Rev. 137, B1510 (1965).

4Actually this approximation breaks down near s=0. Since,
however, there are no zero-mass particles in strong-interaction
physics, we can simply assume some lowest mass m; (say, the
mass of the pion) and never look at s &mmjn'.
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FIG. 1.Diagrams for p exchange.

Pro. 2. The I=i,
l = 1 partial-wave
cross section in the
p-f bootstrap. We
are using pion mass
units.

q'

C&r(q') =2s 'I'q '+' cot8&, (4)

where 8~ is the phase shift for angular momentum /

and isotopic spin I. If we have a resonance at q'= pg,
then C'~r(v~) =0 and the reduced width is

I't'= —1/C t' (~rt) . (5)

The requirement that the mass and width of the p
resonance in the I= 1, /= 1 state as calculated by the
above procedure be equal to the corresponding values
assumed in Eqs. (1) and (2), is su6icient for fixing these
parameters. We obtain m=4. 2, F~'=0.47. The cor-
responding experimental values are m= 5.5, F, =0.18.

The above lowest-order calculation does not depend
on any arbitrary parameters, such as cutoffs or sub-

propagator. This gives a contribution to the relativistic
amplitude

8 (s,t) = L3Prtl't'/(m' —t)$(ms —4+2s), (1)

where I'tt is the reduced width of the p, and Prt (which
is an element of the crossing matrix) has the values

Pet ——1, Ptt ———',, and Pst ———z. In our lowest aPProxima-
tion the e8ective potential at any given energy is
simply the potential which, in Born approximation,
leads to the same amplitude as is given by Eq. (1). It
therefore has the form

P (r,q') = —12PrtI't's '~'(m' 4+2s)r 'e ~—~, (2)—
where we have added an extra factor of 2 to take into
account Fig. 1(b). The factor of 2s 'I' comes from the
fact that the relativistic amplitude is zs'I'f, where f
is the usual physical amplitude. Now we just slove the
Schrodinger equation

VV+Lq' —I"(r,qs) 3f=0, (3)

traction points. The reduced width, however, is still
large compared with the experimental value. It was
therefore decided. to include the exchange of the fs
along with the p, and calculate the (output) mass and
reduced widths of both these resonances. The input
values of these parameters were varied until they were
equal to the output values to within about 10%.
Thus if we take as inputs m=4.0, F~' ——0.25 and m =8,
F,o=0.007 for the masses and reduced widths of the p
and f', respectively, we obtain the outputs m=4.4,
F~' ——0.24 and m =7.3, Fq'=0.0064. The corresponding
experimental values' are m= 5.5, F~' ——0.18, and
m'= 9.0, F2' ——0.0045+0.0011.

We thus see that the inclusion of the f' leads to a
considerable narrowing of the width of the p.' Moreover,
if we plot the I= j., l= 1 partial-wave cross section

~t'(q') =12sg '/(1+cot'5t'). (6)

We see from Fig. 2 that it does fall off fairly rapidly
above the position of the resonance. In fact the cross
section is more or less symmetric about its maximum,
and gives a width which is about the same as was ob-
tained above from Eq. (5). Our calculation therefore
seems to be capable of reproducing, at least roughly, the
main features of the p resonance.
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~ We are taking mass=765 MeV, width=ii0 MeV for the p,
and mass=1250 MeV width=100&25 MeV for the P. See A. H.
Rosen6eld et ut. , Rev. Mod. Phys. 36, 977 (1964).

'This does not seem to happen in E/D calculations. See, for
instance, L. A. P. Ba16zs, Phys. Rev. 129, (1963).


