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An optical-model viewpoint, with a Regge-pole form for the absorptive energy-dependent potential, is
shown to imply an absorptive correction to Regge-pole formulas for charge-exchange scattering amplitudes.
At the same time a closed form for high-energy elastic-scattering amplitudes is obtained incorporating cuts in
the angular-momentum plane. Numerical estimates illustrate the difference between these predictions and
the uncorrected poles. The power law for large-momentum-transfer behavior is shown to be easily obtainable.

ECENT fits to high-energy =—p charge-exchange
cross sections have been carried out successfully,!
with no explicit considerations of unitarity, using only p
exchange treated as a single Regge pole. On the other
hand, analyses of high-energy peripheral reactions such
as 7—p — plV based on single-particle-exchange formulas
have been successful only when appreciable corrections
due to initial- and final-state diffraction scattering are
included.2® Such corrections applied to elementary
vector-meson p exchange are not capable of fitting the
m—p charge-exchange data.! The question has been
raised by several authors*® whether the application of
“absorptive corrections,” following the prescriptions of
Sopkovich,® Durand and Chiu? and Jackson and
Gottfried,?!® to a Regge-pole approximation is theoreti-
cally consistent, or whether one should assume that
these corrections are already contained in a Regge-pole
expression. This question is closely connected with the
foundation of the absorptive correction formula itself
in a relativistic S-matrix point of view, which has been
a subject of considerable discussion.”

In this paper we clarify these points and some
properties of high-energy elastic scattering, on the basis
of an optical-model point of view. The central feature
of our discussion is the conjecture that at energies of a
few BeV, the effective optical-model potential is to be
given by (the Fourier-Bessel transform of) the leading
Regge poles. This conjecture, together with the eikonal
approximation for the elastic-scattering amplitudes,
leads immediately to the absorptive-correction formula
for 7—p charge exchange with the p Regge pole as the
uncorrected amplitude. We will first discuss bases of
this conjecture, then exhibit the above charge-exchange
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result with a numerical example, and finally comment
on consequences for the analysis of elastic scattering.

The optical model for high-energy elastic scattering®?
is based on the determination of an effective complex
energy-dependent potential which, when used in the
appropriate one-particle equation of motion [e.g.,
Dirac equation with potential] for the projectile particle
reproduces accurately the exact scattering amplitude.
Such a potential is determined in principle by eliminat-
ing explicit reference to the inelastic channels which are
coupled by unitarity to the elastic-scattering channel;
the exact equivalent potential operator is nonlocal in
energy, but is approximated by a local operator at high
energy. It is this latter which is used in the eikonal
approximation,® a high-energy approximation for the
scattering solution of the elastic-channel equation of
motion. Omne’s has shown!® that at high energies an
effective eikonal function can be constructed for any
elastic-scattering amplitude which satisfies a Mandel-
stam representation, but the procedure for a prior:
calculation of the potential remains obscure.

An effective complex energy-dependent potential has
been defined by Chew and Frautschi,’* based on the
properties of the Mandelstam representation spectral
functions. This potential is defined such that Mandel-
stam’s iterative construction process for the double
spectral functions, using the analytically continued
elastic unitarity condition,”® will reproduce the exact
amplitude when this potential is taken as input infor-
mation. The analytic properties of this effective poten-
tial are well known, e.g., from inspection of the disper-
sion graphs which contribute; the longest range part is
given simply in terms of the two-particle elastic-
scattering amplitude in the ¢ channel. Since the Chew-
Frautschi (CF) potential plays the same physical role
(at low energies) that the effective optical-model
potential does (at high energies), it is plausible to
assume that the high-energy limit of the CF potential
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is precisely the function whose Fourier-Bessel (FB)
transform appears as the eikonal® for high-energy
elastic scattering.®

For sufficiently large impact parameters, the CF
potential reduces to its longest range components, i.e.,
the nearest {-channel singularity contribution. The
high s limit of this long-range component is given by
the leading Regge-pole terms for elastic scattering in
the ¢ channel, at least if ladder-type diagrams dominate
the ¢ channel; this corresponds to the least coherent
inelastic processes in the s channel, as desired in the
optical-model viewpoint. Our conjecture is now that
these terms dominate the potential—and hence the
eikonal function—not only for large, but for all im-
portant impact parameters in high-energy s-channel
elastic scattering. This is not the same as assuming that
the emplitude approaches the Regge-pole terms; in
nonrelativistic nuclear physics applications of the
optical potential, the high-energy eikonal approxima-
tion resembles not at all the potential itself, unless the
potential strength is very weak.?

The exact eikonal will contain other, short-range
contributions X., which may or may not be obtained
from Regge poles. For regions of s and impact parameter
b where the pole contributions X, have a large imaginary
part, e.g., from the Pomeranchuk pole, the total eikonal
function X= X+ X,, will also enjoy this property unless
there is coherent cancellation between long- and short-
range components. The optical-model viewpoint would
seem to preclude such coherence, between pole and
nonpole terms. (Within the pole terms there will be
coherence, as implied by factorization of the residues for
various states in the ¢ channel.) The consequence of
this observation can be seen from the elastic-scattering
S-matrix element representation as a product of central
and pole factors:

S (5,0*) = exp[[iX(s,6%) ]= exp[[iX.(s,6%) ] exp[iX,(s,6%) ].

For regions of small 4 in which X, is large and imaginary,
the magnitude of the last factor will be small, independ-
ently of X,; while for large b, X, is small compared to x,.
The net result is that because of such ‘“shielding,” the
total cross section (and moderately small —¢ scattering)
need not depend appreciably on X, since they are
integrals of (products of slowly varying functions
with) .S(8%).

In {p reactions it seems reasonable that X, introduces
a considerable extra damping at small b, from short-
range annihilation contributions; but the analytic form
one should use in this case for X, is not clear.

18 To raise this from the level of a plausibility argument, it
would be necessary to show explicitly that the construction of
Ref. 12 can be approximated by the eikonal expression for the
amplitude, at higE energies. By utilizing methods of Ref. 14, it is
easy to see that branch points in ¢ are present in Agr which
simulate the infinite number of many-particle thresholds in the
¢ channel. Our amplitudes are, therefore, quite different from
unitary one-meson exchange amplitudes.
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Elastic mp scattering may be analyzed in terms of
definite isospin states, =% and T=%. The optical
potentials will be different for these states, since there
is a nearby singularity (p pole) in the ¢ channel with
isospin 1. Since the p trajectory lies lower than the P
trajectory, at high energies there will be only a small
difference between the eikonal function for 7'=1% elastic
scattering and that for T'=$% scattering. The charge-
exchange scattering amplitude is the difference between
the elastic-scattering amplitudes in the two isospin
states; thus,

Tor(s,b?)=exp[[iXs2(s,0%) J—exp[iX1/2(s,0%) ]

which, if the difference of eikonals is very small,
becomes

Tor(s,0%)=2 exp[iX X, (5,6)=1S(5,69)X,(s,6%). (1)

Here iX, is the Fourier-Bessel transform of the p Regge
pole, assumed to be the only important ¢-channel 7'=1
singularity. This is exactly the form of the absorptive-
correction formula given by Sopkovich,® Durand and
Chiu,? Gottfried and Jackson,'® and others for inelastic
reactions.

This derivation of the correction formula can be
generalized to include other inelastic reactions, but
only insofar as higher symmetries [e.g., SU(3) or
SU(6)] allow the representation of off-diagonal S-
matrix elements as small differences of elastic-scattering
eigenamplitudes.

Unless the elastic-scattering S-matrix element is
sufficiently small, there will be little quantitative
difference between the amplitude given by (1) and the
“uncorrected” p Regge pole. In the case under discus-
sion, we find significant—but not drastic—modifica-
tions, which in a purely phenomenological approach could
be compensated by an alternate choice of p-pole
parameters, but in an e prior: calculation (based on
2-body #-channel states) would be very important for a
comparison of theory with experiment. To see the
effect of using (1) rather than the simple pole, we take
Logan’s fit! to =~ charge exchange. For purposes of
illustration, consider the p-pole amplitude at 10 BeV/c.
Ignoring the slow ¢-dependence of the signature factor,
we have

Acw? ()= a1 exp[tR:*], (2)

where Ri=q,’ In(E/u)=4.22 BeV2, and @, is inde-
pendent of . At the same energy, the elastic scattering
(if it with a purely imaginary amplitude) may be
described by?!®

AgL{)=1ao exp[tR¢*], 3)
where R?=4.20 BeV~2, and a, is independent of ¢.

18 K, Gottfried and J. D. Jackson, Nuovo Cimento 34, 735
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Russell, and L. C. L. Yuan, Phys. Rev. Letters 11, 425 (1963).
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Performing Fourier-Bessel transforms of these, we

obtain
Ter? (bz) = (01/2R12) eXpI:— b2/4R12]

and, with S(8%)=1+24pTEL(b?), where p(s) is a suit-
able phase-space function,

S(8)=1—C exp[—b2/4R¢], @)

where C is inversely proportional to R¢?.

At this energy C=20.8, which means that the small
impact parameter components of the charge-exchange
amplitude will be strongly affected. Explicitly, from (1),

Tor(b?) = (a1/2R:)
X[exp(—b2/4R2)—C exp(—b*/4R:*)], (5)

where Ry2= R;2+ Ry 2; the inverse FB transform of
this yields

Ace()=a[exp(tR?)—e exp(tR2)], 6)

where e=CRs?/R:%.

Now R2IR2, so ¢=20.4; the forward charge-
exchange amplitude is reduced by 40%, and the second
exponential in (5) will dominate the (original) first term
when —#>0.25 BeV2 These modifications are not far
outside the errors in Logan’s analysis in terms of the
uncorrected pole. Such a cancellation (probably of the
real part only) between pole and “correction” term may
explain the minimum observed!” in this cross section near
—1=0.5 BeV?, which is difficult to interpret! in terms
of a single pole. Note that the second term does not
correspond to a Regge pole, since its strength depends
on the energy; it must be interpreted as containing
contributions from cuts in the J plane.

In the elastic-scattering amplitude, if the eikonal is
given by J-plane poles, we will apparently obtain
J-plane cut contributions from the nonlinear terms in
the expansion of exp(i¢X), in a similar way. We can
estimate the range of impact parameter which in 7p
scattering is dominated by the pole (linear) approxima-
tion, by keeping the first nonlinear term in the expan-
sion. If the exponential comes from a single pole,
imaginary for =0 and linearly proportional to s (i.e.,
pomeranchon), ignoring the variation of signature and
reduced residue factors with ¢ yields

X(82)==iC exp(—b/4Ry?),

where R¢? is logarithmically increasing with energy and
C is inversely proportional to R¢?*; we find

ArrL(®)=(i RsC/2p)
X[exp(tR2)— (C/4) exp(tR?/2)+---1. (7)

The first term will be larger than the second term at
10 BeV/c only for —¢>0.60 BeV.2 For sufficiently
small #, we expect the phase of the amplitude will be

17 (As quoted by Phillips and Rarita, Ref. 1): P. Astburg,
G. Finocchiaro, and A. Michelini ef al., in Proceedings of the 12th
Annual International Conference on High Energy Physics, Dubna,
1964 (Atomizdat, Moscow, 1965). A. V. Stirling et al., Saclay re-
port, 1965 (unpublished).
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given qualitatively by the uncorrected pole terms, but
the relationship between the phase of the amplitude
and phase of the potential is relatively complicated in
general'®; the signature factor enters the eikonal for all
1<0 and not just for {=0 as in our simple estimate
above. Clearly, then, if our conjecture is true one needs
to repeat the detailed Regge-pole fits! in elastic scat-
tering to redetermine the pole parameters. Note that
for ultrahigh energies such that (logS) — o, for fixed ¢
the expression (7) approaches the pure Pomeranchuk
pole (first term), since C — 0; but we have no reason
for ignoring x. if x, becomes small. Thus we make no
assertions about the ultrahigh energy limit.

These J-plane cuts evidently are a consequence of
the eikonal approach, based in turn on the elastic-
unitarity condition. The latter has been used directly
by Amati, Stanghellini, and Fubini (ASF)® with a
Regge-pole form for the potential term; they obtained
a sequence of branch points in the angular-momentum
plane which our eikonal formula approximates. Later
work by Mandelstam® has shown that in fact the ASF
cuts are absent in the particular class of field-theoretic
diagrams retained by their two-body unitarity condi-
tion, but that other diagrams with essential many-body
intermediate states in the .S channel produce cuts in the
same position as those of ASF. The strengths of these
cuts were incalculable with available techniques.

Our point of view is that the complete amplitude has
such J-plane cuts with strengths reasonably approxi-
mated by the results of the naive approach of elastic
unitarity, considered as a generalization of potential
theory in the sense of the optical model. This can be
reconciled with Mandelstam’s result if, for example,
essential multiparticle states are brought in by a treat-
ment of the S-channel particles (as well as #-channel
exchanges) as Regge poles represented field-theoretically
by ladders. Such ladders will contribute to the Mandel-
stam class of diagrams with three double spectral
functions when they connect in such a way to yield a
nonplanar diagram, and these could be a large fraction
of the over-all number of diagrams topologically re-
quired by unitarity.

If our approach is valid, the off-diagonal “‘absorptive-
correction” factor thus should be considered as a cut
contribution associated with a given Regge pole, such
as the p in 7p charge exchange.

If we believe in Regge-pole dominance of X even for
very small impact parameters, at energies of a few BeV,
we can reproduce Serber’s power-law result for large-
momentum-transfer scattering® if the leading pole
residue has a large (—¢) dependence (fp—¢)~%, and its

18 The appearance of an appreciable real part generated by
purely absorptive potential has been commented on by H. E.
Conzett, Phys. Letters 16, 189 (1965).
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trajectory «(f) remains close to a=1 in the same limit.
The coupling strength of the dominant pole determines
the power law for the amplitude, as in Serber’s analysis,
since the eikonal has logarithmic, small 4 dependence in
such a case. This form for the residue 8 conforms to
what one expects on the basis of a dispersion relation,?
where £, is determined by the behavior of Img(¢) above
threshold.

The conjecture of Regge-pole dominance for X thus
enables us to understand, with simple computation
methods and on the basis of well-known properties of
a few poles (mainly the Pomeranchuk pole), features
of high-energy amplitudes which even in a phenomeno-
logical pole analysis (of the amplitude itself) were
difficult to interpret; i.e., the large —?¢ dependence,
departure from logarithmic behavior of do/dQ, im-

% H. Cheng and D. Sharp, Phys. Rev. 132, 1854 (1963).
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portance of absorptive corrections in p-dominated
charge exchange, and the appreciable real part of the
amplitude near t=0 at moderate and high energies.?25
A decisive empirical test of this conjecture would be
possible if a convincing calculation of the pole param-
eters (utilizing two-body f-channel states) could be
carried out. Unfortunately, this does not seem to be
within reach at the moment, since even the decay
widths of two-body resonances such as p cannot yet be
correctly calculated from first principles.

2 In our picture, the ratio of real to imaginary parts of the
forward amplitude varies only logarithmically with energy, if we
include only the pomeranchon. This may be compared with the
prediction of Phillips and Rarita [Phys. Rev. Letters 14, 502
(1965)] who use three-pole fits for the amplitudes, and obtain a
rapidly decreasing function.

2 K. J. Foley, R. S. Gilmore, R. S. Jones, S. J. Lindenbaum,
W. A. Love, S. Ozaki, E. H. Willen, R. Yamada, and L. C. L.
Yuan, Phys. Rev. Letters 14, 862 (1965).
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A self-consistent calculation of the parameters of the p and f° resonances is carried out, using an effective-
potential approach. The exchange of these resonances in 7w scattering is used to construct a lowest order
effective potential at each energy. This is sufficient to produce these same resonances in the scattering
process. The requirement that the masses and reduced widths of these output resonances be the same as
those of the exchanged resonances can then be used to fix these parameters. With 109, self-consistency,
we obtained mass =600 MeV, width ~100 MeV for the p, and mass =~1100 MeV, width ~90 MeV for the
#°. The width of the p thus comes out considerably narrower than in the usual calculations which ignore the f°.

UMEROUS calculations have been made of the
parameters of the p meson, using the bootstrap
approach.! In this approach one considers wr scattering
in which the force (input) is due to the exchange of the
p. This force is sufficient to produce an I=1, J=1
resonance (output), which can then be identified with
the p. If one requires that the mass and width be the
same for both the input and output resonances one can
determine these parameters.

Most bootstrap calculations have used the N/D
method, which is simply a device for unitarizing the
input. In these calculations, however, the reduced
width (which, except for a simple numerical factor, is
just the square of the prm coupling constant) invariably
comes out several times larger than the experimental
value. It has also been argued that the shape of the
I=1, J=1 cross section is not correctly given by the
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N/D method. The cross section above the position of
the resonance does not fall off as rapidly as would seem
to be suggested by experiment.?

Recently one of us has proposed an effective-potential
approach for making strong-interaction calculations.?
This again is just a device for unitarizing an input. We
shall see that the aforementioned defects of the N/D
approach can be removed in this method.

In the lowest approximation, the method turns out
to be quite elementary.® Suppose m=p mass (with
pion mass=1), s=square of the total c.m. energy,
and ¢=—2¢?(1—cosf) where ¢?=%1s—1 and f=c.m.
scattering angle. Then we first evaluate Fig. 1(a) as
a dispersion diagram, i.e., we compute it as a Feynman
graph, express it as a function of s and ¢ and replace ¢
by m? everywhere except in the denominator of the p

2 J, R. Fulco, G. L. Shaw, and D. Y. Wong, Phys. Rev. 137,
B1242 (1965).
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4 Actually this approximation breaks down near s=0. Since,
however, there are no zero-mass particles in strong-interaction

physics, we can simply assume some lowest mass #min (say, the
mass of the pion) and never look at s <#min%



