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value of the integrand under the assumption of a
Vukawa potential. This program performs the task of
searching with the five-dimensional space defined by
the above transverse variables for the position of the
maximum of the integrand. Also determined within the
search is a crude estimate of the rate of change the
integrand exhibits around the maximum. The data from
this search program is then used as input data for the
second program —the hypersearch program.

The purpose of the hypersearch program is to provid. e
more detailed information of the functional dependence
of the integrand around the maximum. The hypersearch
systematically calculated 256 points within the Qve-
dimensional space. The value of the integrand from
these points is then used to construct composite graphs
which represent the functional dependence of the inte-
grand for each variable. These composite graphs are
then used to provide the necessary input information
for the third program —the Monte Carlo program.

This Monte Carlo program is a modification of
normal Monte Carlo calculations. By means of the
composite graphs an attempt is made to inhuence the
distribution of points within the five-dimensional space
used by the Monte Carlo program. This permits
reduction of the magnitude of the standard deviation

of the quantity to be averaged, namely the integrand.
The programs were tested as follows. The integrand

was tested by performing repeated algebraic computa-
tions and then a single value of the integrand was
calculated by hand and compared with the value found

by the machine. Other aspects of the programs were

also checked by hand calculations, testing each sub-

routine. A check was made to see if there was the
possibility of overQow. The details of this calculation
and the computer programs are on file as the author' s
Ph.D. thesis at Harvard University (1962).
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The form of the nucleon-nucleon scattering amplitude is determined subject to the restriction that baryon-
baryon scattering be invariant under SU(12)g transformations. The results are found to disagree with
experiment. The possibility that SU(12)z may be a "leading approximation" to a true S-matrix theory is
discussed briefly.

I. INTRODUCTION

SKVERAI schemes for the calculation of scattering
amplitudes have been proposed which are moti-

vated by the desire to extend SU(6) symmetry' to
states of two or more particles in relative motion. ' ' We
have considered nucleon-nucleon scattering in the par-

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

~ F. Gursey and L. A. Radicati, Phys. Rev. Letters 13, 173
(1964)j B Sakita, Phys. Rev. 136, B1756 (1964).

~ M. A. B. Beg and A. Pais, Phys. Rev. Letters 14, 267 (1964),
and earlier papers by the same authors. We follow the notation of
this paper.

3 See, for example, A. Salam, R. Delbourgo, and J. Strathdee,
Proc. Roy. Soc. (London) A284, 146 (1965); K. Bardakci, J. M
Cornwall, P. G. 0. Freund, and B.W. Lee, Phys. Rev. Letters 14,
48 (1965); P. Roman and J. J. Aghassi, Phys. Letters 14, 68
(1965); B. Sakita and K. C. Wali, Phys. Rev. Letters 14,404
(1965); W, Riihl, Phys. Letters 14, 346 (1965).

ticular scheme of Beg and Pais and And disagreement
with the experimental data. The calculation involves

only two assumptions:

I. The scattering amplitude is invariant under trans-
formations belonging to the group which Beg and Pais
have called SU(12)g.
II. Baryon states transform according to the 364-
dimensional representation of this group. That is, the

bar yons are represented by completely symmetric
three-index tensors Bq„„, where ea,ch index runs from
1 to 12.

The disagreement with experiment persists even when
assumption I is considerably weakened. We discuss this
in Sec. IV.

We feel that nucleon-nucleon scattering provides a
particularly good testing ground for this theory for two
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reasons. ' First, there is a wealth of accurate data availa-
ble. Second, the proton and neutron masses are essen-
tially the same. This is to be contrasted with other ex-
perimental tests of higher symmetries where large mass
splittings make it dificult to decide at what energies to
compare different reactions.

II. THE SU(12)g-INVARIANT SCATTERING
AMPLITUDE

pi ——(k,E), p, = (—k,E),
pi' ——(k', E), p,

' = (—k',E),
E= (k'+zrz')-*' cos8=k k'/k'

(2)

To reduce Tf; to an expression involving two-com-
ponent spinors we recall that the index i specifies the
component of spin along a particular direction in the
rest frame of each particle. In particular, we choose to
reach the rest frame by a pure velocity transformation
in the direction of motion (the "boost" or "accelera-
tion" convention). If, in its rest frame, the particle is
described by the Pauli spinor x(i), then it follows that
the Dirac spinor is given by

~-(p,z) = Z D-(p)x. (z) . (3)

3' There are, of course, other theories which add some dynamical
assumptions to I and for which this might not be a good testing
ground. For example, the assumed dominance of the nearest poles
in the crossed channel would, on account of the small mass of
the pion, lead to symmetry violation for nucleon-nucleon scatter-
ing. This point of view has been put to us by Professor R. Oehme.

The various observables which we shall discuss are
conveniently expressed in terms of the center-of-mass
scattering amplitude. We shall therefore proceed in two
steps: First, we determine the SU(12)g-invariant scat-
tering amplitude in a form invariant under homogene-
ous Lorentz transformations; second, we evaluate this
amplitude in the center-of-mass frame in the usual
(two-component-spinor) form.

Since the profusion of indices may obscure the argu-
ment let us consider 6rst the case of two spin —,'particles
with no internal quantum numbers. In particular, let
the initial particles have momenta and spin components
piii, pziz and the final particles pi'ii', pz'iz'. The most
general I orentz-invariant scattering amplitude Tf; can
be expressed in terms of the four-component Dirac
spinors N(p, i):
2'r, =(pr'zi'pz'zz! &!pi ipz z)

ZZa4' (pl pl )ZZa4' (p2 yz2 )~a4'a4';a4ay

X (pl pz yplpz) Zzai (plZ1) Zzaz (P2Z2) ~ (1)

In particular, assuming the usual space-time invariance
and the Pauli principle, 5R contains five independent
amplitudes which may be chosen in a variety of ways.

In the center-of-mass frame, we can express the four-
momenta as follows:

In this expression D is chosen so that the matrix in
Dirac spinor space representing the Lorentz transfor-
mation mentioned above has the form:

'D11

W2
Dzt

2 0
. 0

D12 0 0
D22 0 0

Du Dn
0 D4j D42.

2 fi Xar' (Zl )Xaz' (Z2 )i)Iai'az", azar(k yk)

Xx., (z&)x.,(zz), (6a)

~..., ...=(»(p')v. ).;-;(D'(p')v &;,:
XS)ia4'az', aiazD(pl)a4aiD(p2)azaz ~ (6b)

Of course, M still has 6ve independent amplitudes
and they are chosen as follows4:

M(k', k) =M'8+C(4ri+4rz) n+iV4ri n4rz n&r
+-',G(4r, K4r, K+4r& P4rz P)&&+-,'II

X(4rt K4rz K-4ri P4rz P)I'r. (7)

The symbols I'8 and I'z denote the spin singlet and
triplet projection operators; n, K, P are unit vectors in
the directions kX k', k—k', and k+k', respectively. The
Wolfenstein parameters 8, C, E, 6, and H are functions
of E and 0 only.

We can now easily discuss the SU(12)~ symmetric
case. The spinors zz (p, i) are replaced by "spinor-
tensors" B»»»(p, i,I), where I denotes the SU(3)
quantum numbers. Each index p, runs from 1 to 12 and
denotes a pair (nA), 3 = 1,2,3, n= 1,. 4. The fact that
cx and A are paired together represents the mixing of
spin and SU(3) symmetries. In place of Eq. (1) we now
have

Tr, = (Pr'zr'Ii'pz'zz Iz ! TJ!PiziItpzzzIz)

»»» (Pi i i)~a4a5» (Pz z &)
I ~XSit'» ...„,', »...„,(pi pz ) p]pz)

»»»(P&z&It)+84»a4(pzzzIz) ' (8)

In addition to invariance under homogeneous
I orentz transforrnations we now require invariance
under all the transformations in SU(12)g. This means
precisely that the tensor components of 5K are given by
Kronecker deltas:

6

~»""»' »" » 2 fp( 1 )+) II 3»'a(4) '

4 M. H. MacGregor, M. J. Moravcsik, and H. P. Stapp, Ann.
Rev. Nucl. Sci. 10, 296 (1960). (Note particularly pp. 296-301.)

The explicit form of the D, (p) is given by

p(p, y~) I+~ p~
D(p) =

[2zzz(po+nz)]'*k(po+zzz)1 —4r y)

where I and zr are the 2X2 unit and Pauli matrices. In-
serting the expression Eq. (3) everywhere into Eq. (1)
we have
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The sum runs over all permutations of the numbers 1
to 6, and s,i, u, are the usual invariants s= —(pa+pa),
5= —(pa —p, ')', u= —(pt —pa')'. Because each tensor B
is completely symmetric, when Eq. (9) is inserted into
Eq. (8) only four linearly independent combinations of
the 61 terms occur. Thus we have

T;=fo(s, t,u)B(2')„,„,„,B(2)„,„,„,
XB(1')sa'sa's s'B (1)s a's a'ss'

+fa(sai u) B(2 )vawass'B (2)srsuu

XB(1')„,„,„,B(1)„,„,„,
+f&( a a ) ( ')nasa'v's ( )w&evs

XB(1')„,.„a„s ( )„,,„,,„,,
+fs(» ) ( ')va'va'vs' ( )w&mes

XB(1')„,„,„,B(1)„,„,„, . (10)

The 56-component baryon tensor B(iI) describing a
particle at rest is related to the spinor X(i) by Eq. (3)
of Beg and Pais. ' The explicit reduction to the form
Eq. (7) is best done in two steps. Inserting Eq. (12) into
Kq. (10) and using the center-of-mass variables Eq. (2),
we perform all the indicated u summations. Each sum
contributes a factor d...(k'k) or d, ,(—k', k):
d...(1',1)=P. (Dt(k')~, )...D(k)..

= L1/m(E+m)/L(E+m)'
—k.k'+iar kXk'j. . (13)

If the quantization direction is taken as kXk', the d's

TABLE I. pp Wolfstein parameters.

&=64Lfoluls —fslpls+(1/81) falnla(14 Renap' 17lnlalpl—a)
—(1/81) f& I p I'(14 Renapa 17

I u I

'
I p I')3

C =32il fo In Is Imn'+ fs I p I4 Imp'
+ (1/81) fa (10 RenaPa Imna+ 21

I
n

I
4 ImP')

+ (1/81) fa (10Ren'p' Imp'+21
I p I' Imn') g.

&=64Lfo lul' «u'+fs I p I' «p'
+ (1/81)fa(10 Renames Ren'+ 21

I
n I4 ReP')

+ (1/81)fr (10 ReuaP' ReP'+ 21
I P I

4 Ren') ]
G It' 64I fo In—l'+=fa IP I'+ (1/81) fa Iu I'(14 RenaP'+17 Inl'IP I')

+ (1/81) fr I p I
'(14 Ren'p'+ 17

I n I

'
I p I

')g.
B=0.

We have denoted B(p&',i&',I&') by B(1'), etc. The gen-
eralized Pauli principle requires Tf; to be odd under the
exchange of 1' and 2', which implies that

fp (s,i,u) = —
fs (s,u, i),

fa (sai&u) =—fa ($&u, i) . (11)

In order to determine the Wolfenstein parameters,
we express 2'f;in the form of Eq. (6a). This requires the
analog of Eq. (3):

B(pas)I)lxaAanaAalxsAs Q Dell l(po)Da a (ap)a
CIG263

XDasas (p)B (&I)asAaaaAarssAs ~ (12)

TABLE II. np Wolfenstein parameters.

are diagonal, with matrix elements proportional to 0.,
n, P, P:

ra=
I 1/2m(E+m))L(8+m)a —kae—"j,

P = $1/2m (E+m) il (E+m)'+k'e —"7 (14)

The second step is to consider speciGc spin transitions
such as (++)—+(+—), (++)—+ (++), etc., com-
puting the matrix elements both in Eq. (7) and in the
partially reduced form of Kq. (10), thus obtaining
simple linear equations for the Wolfenstein parameters.
The results are shown in Tables I and II. The striking
fact that Jr=0, on which most of our conclusions are
based, is seen at once by considering the (++)—+(——)
matrix element of T, which vanishes. The origins of this
result can be seen by considering the explicit form of the
ten. sor B(iI)„~„a~„s~s.If, for the moment, we let each
ai take the values &—,

' in the natural way, we 6nd that
the elements of B vanish unless aq+aa+as ——i. Since the
matrices d, , are diagonal it follows that

6 6

ga =pa, ,

and thus that the total spin component normal to the
scattering plane is conserved. This result is true for all
scatterings described by the amplitude Eq. (10) and is
not restricted to nucleon-nucleon scattering.

III. RELATIONS BETWEEN OBSERVABLES

We have seen that an SU(12)z symmetric baryon-
baryon scattering amplitude has only four independent
complex amplitudes at every energy and angle except
90' in the center-of-mass system, where there are two.
Even though we are considering only nucleon-nucleon
scattering, this is a sharp reduction from the 10 com-
plex amplitudes of the ordinary charge-independent
theory. Nonetheless, a perfectly straightforward test
would require more independent measurements at each
of several energies and angles than are now available
experimentally. )The unitarity restriction usually used
to reduce the number of independent experiments re-
quired for a phase shift analysis is irrelevant here, since
it is known' that this SU(12)g prescription does not

' M. A. B.Beg and A. Pais, Phys. Rev. Letters 14, 509 (1965).

B=64Lfo lu I'+ (1/81)fa lu I'(22 Ren'p'+8lul'I p I')

+ (1/81) fr I P I

a (8 Ren'Pa+ 25 I u I
a

I P I
a) g

C=32iLfolnl4 Imna+(1/81) fa(8 Ren'PaImn'+6lnlsjmPa)
+ (1/81) f&(2 Ren'P' ImP'+15 IP Is Imua)g.

1V =64pfolnI4 Rena+(1/81) fa(8 Re)u'pa Rena+6luls Reps)

+ (1/81) fa(2 ReuaPa ReP'+15 IP I4 Reua) g.
G —Ã=64Lfolula+(1/81)falula(22 ReuaPa 8lulalPIa)

+(1/81)falpl'( —8 Renap'+25lul'Ipl') j
H=O
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E'+A =0

I
C&&

I
+coscrl. .

(16)

The angle between the two final nucleons in the lab
frame is denoted by 0.1,.

For pp scattering the Pauli principle leads to the
following additional relations at 90' c.m. :

A (90')—R(90') cotgl. ——0,

2L1—D(90')7—
I

1—C~~(90')7=0)

D(90') &0.

(18)

(19)

(20)

The laboratory scattering angle is denoted by 01..
We also obtain relations between pp and Np cross

sections:

(a) the following inequality on the differential cross
sections at 90', valid to order

I k/(E+tN)7s,

lead to amplitudes satisfying unitarity. 7 However, there
are a number of definite predictions which follow from
the vanishing of H, and the Pauli principle.

Because H=0 the following constraints apply to the

pp and rtp triple scattering parameterss at all energies
and angles.

8—A'=0,
whence

The interpretation of this discrepancy in the rtp
system presents some difficulties. If the SU(12)z sym-
metry is regarded as a purely phenomenological theory
describing scattering amplitudes, this is strong counter
evidence. On the other hand, it might be argued that the
scattering lengths are so strongly dependent on the lo-
cations of the nearby bound and virtual states that this
large difference between them is a reQection of a small
breaking of the symmetry. Detailed analysis of this
question leads to many deep questions "which we
couldn't answer if we could think of them. "

B. Differential Cross Section at 90'

Experimentally7

(do. (rtp)) d~(pp))

dQ )gp' dQ igp'

for energies below about 75 MeV. However, the frac-
tional difference is not always large, and in some regions
a small symmetry-breaking term might account for the
discrepancy.

TABLE III. The correlation coefficient C~~ and its
predicted upper bound.

do (PP)) d~ (Prt) )
dQ )gp dQ Igp

(21)
Ti b(MeV) (deg) Value'

Upper
bound

(b) a relation between the triplet and singlet scattering
lengths

a, =at=128(fp —(1/27) fg) . (22)

It should be noted that this is really a prediction of
SU(6) and is independent of the manner in which the
theory is extended to moving particles. Note also that,
at rest, there are only two independent amplitudes since

Eq. (11) becomes

52.3
315
382
380
400
450
660

90
45'
90'
30'
90'
90'
90'

0.10~0.14
0.74~0.51b
0.63~0.10e
0.12~0.10
0.32&0.09
0.37~0.14
0.22~0.18

0.014
0.039
0.086
0.047
0.095
0.104
0.147

& Data taken from a reference in Ref. 7.
b Yu. M. Kazarinov et al. , Zh. Eksperim. i Teor. Fiz. 47. 848 (1964)

LEnglish transl. :Soviet Phys. —JETP 20, 565 (1965)j.
J.V. Allaby, A. Ashmore, A. N. Diddens, J.Eades, G. B.Huxtable, and

K. Skarsvag, Proc. Phys. Soc. (London) 77, 234 (1961).

0 3y 1 2' (23)
TABLE IV. The prediction R'= —A.

a, =—23.680&0.028 F,
ut =5.399&0.011 F. (24)

IV. COMPARISON WITH EXPERIMENTAL DATA

A. Scattering Lengths

The experimental values of the gtp scattering lengths
are7:

Tlab
(MeV) tt,

140~ 31.4'
41.7'
52.0
61.8'
72.1
82.2'

R'

0.625~0.062
0.548~0.062
0.470~0.069
0.343~0.058
0.466~0.095
0.190~0.177

Tlab
(MeV) tg,

139 31.1'
41.4'
51.7'
61 9'
72.0'
82.1'

0.368~0.032
0.344&0.031
0.311~0.035
0.231~0.046
0.189&0.056
0.099~0.079

ii There is no good single reference for these parameters. A,R,A',
and R' are essentially polarization rotation coefficients. They are
defined by Wolfenstein /Ann. Rev. Nucl. Sci. 6, 43 (1954)g. The
nonrelativistic forms are correctly tabulated in Ref. 4. The rela-
tivistic corrections were first discussed by Stapp t Phys. Rev. 103,
425 (1956)g. A readable account is given by Roth /Princeton
Technical Report +33, 1964 (unpublished)g, and the results for
A,R,A', R', and Czz are correctly given in a note by Sprung
fPhys. Rev. 121, 925 (1961)g.

g R. Wilson, The 1Iucteort Ãttcleort Inte-raction, (Interscience
Publishers, Inc., New York, 1963).

213b 30' 0.491&0.025
40' 0.390&0.024
50' 0.177~0.022
60' 0.120~0.025
70' —0.277~0.045
80' —0.208&0.068
90' —0.340m 0.104

213 30'
400

50'
60'
70'
80'
90'

0.400~0.019
0.317~0,019
0.205~0.021
0.102~0.025
0.012~0.036
0.090~0.046
0.180~0.077

& O. N. Jarvis et al. , Nucl. Phys. 50, 529 (1964).
b K. Gotow and F. Lobkowicz, Phys. Rev. 130, B1345 (1964).
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Tmr.E V. The prediction R=A'.

r~b (Mev)

30'
45'
60'
75'
90'

105'
120'

0.06~0.11
0.40~0.11
0.43&0.08
0.47a0.07
0.47&0.05
0,35~0.11
0.34'0.18

0.47' 0.20
0.06&0.11
0.06&0.09
0.22~0.08
0.36%0.07
0.01~0.11
0.08a0.04

a R.F.Roth, Princeton Technical Report f33, 1964 (unpublished report).

TABLE VI. The prediction 2 (1—D) = 1—C++ and
A =R cot&1, for 8, =90'.

2'g,b (MeV)

310
4300
660

2(1—D)

1.16~0.12~
0.66~0.20
0.14a0.34

Ts,b (MeV)

310
425~
650

1—C~w

0 16 0.10+o'22b

0.34a0.15
0.07&0.20

Ts,s (MeV)

213
430

—0.180&0.077
0.27 ~0.07

R cot81,

0.234'0.055
0.52 ~0.05

ss Data averaged over T =400 and 450 MeV.
b I. M. Vasilevski et al. , Zh. Eksperim i Teor. Fiz. 39, 889 (1960) )English

transl. :—JETP 12, 616 (1961)j.
o R. F. Roth (see footnote, Table V).
d Extrapolation of data in Wilson (see Ref. 7).

V. DISCUSSION

It is possible that careful study of these data will

provide some clue to where the symmetry is good and
why it fails in other regions, but we do not And any
suggestive regularity.

C. Triyj.e-Scattering Parameters

The pp data relevant to the four results given in
Sec. III are listed in Tables III—VI.

It is important to note that these predictions are
quite stable under the introduction of a small sym-
metry-breaking interaction. This is because each
quantity predicted to be zero is, in fact, of the form

Re&*A/([&

['+PI�

& [') (26)

where the 2's are appropriate linear combinations of
the other Wolfenstein parameters. Clearly if Il is
changed from zero to some value small compared to A,
the resulting change in this fraction will be even smaller.
Hence we feel that the comparisons in Tables III—VI
test the suggestion that SU(12)g symmetry provides a
phenomonological leading approximation to some true
theory of strong interactions.

Other results dealing with polarization have been
obtained for meson-baryon scattering by Blanken-
becler, Goldberger, Johnson, and Treiman. s However,
Chang and Shpiz' have pointed out that that result
depends upon the assignment of the mesons to the 143-
dimensional representation of SU(12)g, an assignment
which is not necessary for the successful predictions of
the scheme. The present results are clearly independent
of the assignment of the mesons. The equality of the
scattering lengths is mentioned by Akyeampong et al.'
in a discussion of nucleon-nucleon scattering and the
U(12) symmetry of Salam et al.s

Beg and Pais have argued that their scheme for the
relativistic completion of SU(6) should be regarded as
a procedure for calculating effective matrix elements.
Because of the nonunitary nature of the scheme it can at
best be expected to give a good approximation to the
true matrix elements. We have found that the approxi-
mation is poor in the case of nucleon-nucleon scattering
and we expect that the predictions of this scheme will
not, in general, be reliable.

Note added im proof. A number of authors have pro-
posed schemes for the relativistic extension of SU(6)
which would impose on the scattering amplitude re-
quirements less restrictive than assumption I. We call
attention to the fact that alt of the relations between
obserm bles given in Sec. III, with the possible exception
of Eq. (21), are obtairsed from any of the foltowirsg
schemes: U(6,6) broken by kinetic energy spurions, "
~(12) broken by kinetons ' U(12)8T(143) I U(12)
and U(3)&&U(3)." We would like to thank Dr. S.
Meshkov and Professor R. Oehme for discussion of this
point.
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