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Energy-Band Structure of Selenium Chains
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The tight-binding method is applied to the valence and lowest conduction bands of selenium chains.
Essentially, the calculations of Reitz have been extended and made quantitative. The general features of
his results have been veri6ed, a fact which is of interest because in recent years several variants of his band
structure have been proposed. However, in detail, our results are quite diferent; for example, we lnd that
s-p mixing has a nonnegligible effect. With only slight modi6cation, our computed energy bands for chains
are found to be successful in interpreting many details appearing in recent reQectivity data on crystalline
selenium.

I. INTRODUCTION

1
~R.YSTAI LINE selenium has a lattice consisting of~ spiral chains oriented along the c axis, ' each spiral

having three atoms per turn with equivalent atoms on
adjacent chains forming a hexagonal plane network of
atoms. Nearest neighbors lie on the same chain, and
second-nearest neighbors lie on adjacent chains. Figure
1 is a diagram of this structure which shows all pertinent
distances. A complete description of the selenium struc-
ture can be found in Ref. 1. It belongs to either space
group D3' (right-handed screw axis) or DP (left-handed
screw axis)."

Although considerable work has been done on the
band structure of selenium, ~' it is mostly qualitative
or semiquantitative. Von Hippel4 treated the crystal in
a tetragonal approximation (whereas it is, in fact,
hexagonal with a screw axis) and Gaspar' discussed the
electronic states largely in terms of the point group of
a selenium atom and its nearest neighbors. The most,
quantitative and realistic treatment is that of Reitz, 6

who observed that a rather simple tight-binding for-
malism devolved from the assumption that the bond
angles within a selenium chain are 90' (whereas they
are, in fact, 105.5' in a crystal). He showed how the
departure from 90' could be treated as a perturbation
on the 90' case and sketched an approximate band
structure for wave vectors parallel to the chain axis
(crystal c axis).

The present paper represents primarily an attempt
to make Reitzs tight-binding calculation completely
quantitative. Hartree-Fock wave functions for Se have
recently become available, ' so that all tight-binding
parameters are now calculable; in addition to computing
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FIG. 1. The crystal structure of selenium. The bonding angle
is y = 105.5', x=2.32 A is the nearest-neighbor distance, y= 3.46 L
is the next-nearest-neighbor distance, a=4.34' is the distance
between like atoms in adjacent chains, and c=4.95 A. is the unit
cell dimension along the c axis.

them, we have extended his formalism to include hy-
bridization of the 4p bands with s bands. Reitz's set of
basis functions included 9 for each wave vector, i.e.,
three sets of 4p orbitals for each of the three atoms in
the unit cell. As will be seen in Sec. II, we have in-
creased the basis set to 15 bands by adding 4s and Ss
states on each atom. (It is interesting to note that
while the atomic Se configuration lying directly above
the ground 4p' configuration is 4p'Ss, many authors
have assumed otherwise and concerned themselves
solely with the much more complex case of 4d bands. )

ultant. Permanent address University of Rochester, The Present calculatIon s t b g ded as a linear
Rochester, New York. variation calculation, with all the advantages and

' J. Bradley, Phil. Mag. 48, 477 (1924).
' M. E. Straumanis, Z. Krist 102, 432 (1940). limitations thereof. It contains "one" adjustable pa-
'R H Asendorf J Chem Phys 27 11 (1957) rameter, namely, the choice of exchange potential,
4 A. von Hippel, J. Chem. Phys. 16, 372 (1948). which is frequently assumed to be quite arbitrary.' R. Gaspar, Acta. Phys. Hung. 7, 289 (1957). APh . R . 10%, 1233 (1957). See, E. Behrens, rguments are g'ven which show what a physically

Z. Physlk 163, '140 (1961), for a'discussion of the r'elationsh p of' reasonable choice of the exchange potential would be.
the Reitz model to a simple cubic Se crystal. Using it, we were able to closely reprodu th b d' F. Herman, Rev. Mod. Phys. 30, 102 (1954). yrepro uce e o served

'H. Gobrecht and A. Tausend, Z. Physik. 161, 205 (1961) band gap. Ke have restricted the tight-binding sums
R. E.Watson and A. J. Freeman, Phys. Rev. 124, 1117 (1961). to members of single chains but discuss the egect this
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approximation has on comparison with experiments on
crystalline Se.

In Sec.II, we outline the general tight-binding method
with explicit wave-function overlap and discuss how it
applies to the speci6c case of Se. Section III contains
numerical results, and the calculation is compared with
experiments in Sec. IV.

II. TIGHT BINDING WITH OVERLAP

In general, the tight-binding method consists of con-
structing one-electron Bloch wave functions that are
linear combinations of different atomic orbitals, com-
puting with them a Hamiltonian matrix, and deter-
mining its eigenvalues. Thus, the method is a linear-
variation technique, and as many atomic orbitals as
practical should be included in the basis set. In the
specific case of Se, the effect of considering three non-
equivalent atomic sites and the interaction between 4s,
4p, and Ss states means that approximate energy eigen-
values are determined as solutions of a complex equation
of the form

det(H;,—ES;,)=0,

where B;; is the 15)(15 Hamiltonian matrix, and S;;
is a 15X15 overlap matrix whose elements are not
necessarily equal to zero when i&j. It can be shown
readily that Eq. (1) is expressible in the form of a
conventional 30X30 eigenvalue problem,

-~B —Cy ~f' —Q -'--X, — -X, —

EC Bl (Q I' Xr Xr

where H@=B;;+iCg,S@=I'„+iQ;;, and X~ and. Xr
are the real and imaginary parts, respectively, of the
eigenvectors associated with Eq. (1).

Throughout this calculation, the Hamiltonian is
taken to be

H= p'/2m+Pg V.(r—Rg), (3)

where V, (r—Rq) is an effective potential due to a single
atom located at the lattice point Rq. This potential is
assumed to be spherically symmetric and to consist of
the sum of the Coulomb potential and an exchange
potential. In a selenium atom, the atomic Coulomb
potential falls off rapidly enough, as a function of radial
distance, that there is negligible overlap with neigh-
boring potentials. Hence, it is a good approximation to
consider the crystal Coulomb potential as a sum of
atomic potentials. The choice of an exchange potential
is not as simple. "Since the Slater potential" is properly
taken as proportional to the cube root of the sum of the
charge densities, Lgqp(r —Rd)$"', it is an overestimate
of the crystal exchange potential to use a sum of
the cube roots of the individual charge densities,

"See, e.g. , W. B. Fowler, thesis, University of Rochester, 1963
(unpublished), pp. 25-30; Phys. Rev. 132, 1591 (1963)."J.C. Slater, Phys. Rev. 81, 385 (1951).

Pq[p(r —Rq)j"', as we would like to do in order to
use the formalism of standard tight-binding theory. In
order to approximate the actual exchange potential as
a sum of atomic contributions, we estimated how this
function should be reduced. One estimate was deter-
mined by considering the contributions of the charge
densities arising from four neighboring atoms to several
points in space and calculating the ratio Lgqp(r —@)1"'j
P&Lp(r —Rz))'l3. At all points considered, reduction by
a constant factor of 2 produced agreement to within a
few percent. This held true throughout the entire
range where the exchange potential made a substantial
contribution to the total potential. Even this adjust-
ment appeared to be inappropriate, since a band gap
of (1 eV resulted (compared with the observed 2

eV). We therefore tried reducing the exchange even
further. In a sense, the Slater exchange potential corre-
sponds to a dielectric constant of 1 and tends to be
less accurate for materials with a large dielectric con-
stant, of which Se is one, because of screening effects.
A screened exchange potential, introduced, by Robinson,
Bassani, Knox, and Schrielfer (R.B.K.S.)," may be
obtained by multiplying the Slater exchange potential
by a screening function. As discussed below, our 6nal
potential actually corresponds most closely to using ~

of the screened exchange potential.
Following Reitz's method, the ma. trix elements for

the actual 105.5'-bonded Se crystal are obtained by
first calculating the elements for a hypothetical 90'-
bonded crystal and then. treating the effect of 105.5'
bonding as perturbation. Figure 2 is a diagram of this
hypothetical 90'-bonded structure. The three non-
equivalent atomic sites are labeled A, B, and C, and the
vectors connecting them are denoted as Rq, R„, and
R„. The p functions can be so oriented that they will
lie along the orthogonal X, p, v axes. Then, many of
the matrix elements will be zero due to the symmetry.
The 105.5'-bonded structure is obtained by pulling the
hypothetical crystal out along the c axis. The X, p, , v

axes can remain axed in space as the crystal is dis-

))C

FIG. 2. The selenium chain
geometry assuming 90 bonding
angles.

Rp + Ry - Rx - c

"J.E. Robinson, F. Bassani, R. S. Knox, and J. R. Schrieffer,
Phys. Rev. Letters 9, 215 (1962).
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TsnLz I. Representative matrix elements H" ES—;; [see Eq.
(1)j.The symbols are de6ned in Sec. II and Table II. In the last
six matrix elements, the upper sign is used at R=Q and the lovrer
sign at l,= (O,Q,~/g).

XA

XA XB
XA XC
XB
L4 I B
XA OA

XA crB

L4 0C
oA 0A
crA oB
kA O'A

XA a'B
XA o'C
oA e'A
crA O'B
o'A cr'A

a'A o'B

Matrix element

E.,= V +V,+(«„—E)
eA R&M esk R&Py +(
e'"~"M = '"R"pW,+(q4„—E)S g
X.=2V.+(«,—Z)
e' ~

wf —zu(M, +M )j
Va,
e' &(AM„"J=e'"' &pm($'„+ {«„—E)S„j
es~»M =e"R~PW +(& —S)S j
X.=2V,+ («.—Z)
e'" M =e'+'R

I W +(e —E)s.j
V, '
e'"' »PmM„'~( —Q.70)M, 2'j
e~j.Rgg M s~(P7P)M
2Vea~2(«a —~)Sate
e'~.R.L-(g „~W„,)+(«.—S)(S.,~S„,)j
2V,'+(~„—Z) (1~2S.,')
e'".R~I-(W.'aW. ,')+(...—Z) (S,'~S..')j

For the case of 105.5' bonding, m =0.144. In obtaining
the matrix elements, only interactions between atoms
along a chain and only two-center integrals are con-
sidered. Thus, our eakulatioe is primarily appHcable
to s~ngIe Se chains.

Representative matrixelements for Eq. (1) obtained
using the preceding assumptions are given in Table I.
In this table, the indices i and j are double indices
which refer to both the type and/or direction of the
wave function and the atomic site on which it is situ-
ated. For example, i=RA means a4p functionpointing
in the X direction situated on the A atom, and i =crB
means 4s situated on the B atom. The primes mean
that a Ss wave function, rather than 4s, is involved. As
usual, h is the wave vector. The atomic energy levels
are denoted as e4„e4„and es,. The V's, 8"s, and S's
are all two-center integrals defined in Table II. The
additional subscript 2 or 3 which appears on some of the
symbols means that the expression is evaluated for the
second- and third-nearest neighbors along a chain. The
quantities M., and 3f,., which should be exactly equal
to each other's negative, are computed separately and
their magnitudes averaged. Note that the matrix ele-
ments in Table I are aD for the case of 105.5 bonding.
AVhen m=0 these elements correspond to the case of
90' bonding.

torted. Then R„, R„, and R„are still vectors between
nearest neighbors, but they no longer lie along the
), p, , v directions. Reitz gives the direction cosines of
R„, R„, R„ in relation to the orthogonal X, p, , v axes to
erst order in m,

—m 'X
(4)

1& v

~ t (r)=(F.t(r)/r)Vt"(~, v), (5)

where Fp(8, y) is a spherical harmonic. As will be
discussed in the next section, the 5s function was added
for its variational eBect on the lower-lying energy bands,
and the actual bands resulting primarily from it are not
to be taken too seriously. As a purely variational device,
it need not be determined as accurately as the other
wave functions. Our Ss radial wave function was con-
structed by requiring it to have four nodes, be normal-
ized, and be orthogonal to the 4s state. Its atomic
energy level was estimated crudely from the center of
gravity of the 4p'5s configuratio, "but the calculation
was not sensitive to the choice of e5, within reasonable
limits.

In actual practice, we have developed one-parameter
formulas for adjusting the exchange potential without
recalculating the two-center integrals. To obtain these,
the two-center integrals were calculated for two difTerent
choices of exchange potential, one half of "Slater ex-
change" and R.B.K.S. screened exchange, at difTerent
distances between atomic sites. From these calculations
the following interpolation formulas resulted:

W, =nS'. ,

W =n(0.45+0.55n)R

W„=n(0.45+0.55n)8 „,
V,=P(1.97—0.97P) V„
V„=P(1.97—0.97P)V„,

W, =n(0.78+0.22n)H „
W„=n(1.22—0.22n)8 „,

V, =PV„
V =P(0.52+0.48P) V„

(6)

"P.0. Lowdin, Advan. Phys. 5, 1 (1956).
'4%. Beall Fooler, R. S. Knox, P. J. Eberlein, University of

Rochester Report (unpublished); T. H. Keil, University of
Rochester Report (unpublished).

1 C. E. Moore, Natl. Bur. Std. (U. S.) Circ. 467 (1952), Vol. II.

In practice, the two-center integrals appearing in

Table II are obtained by first expanding either the
wave function or the potential function on one site in
spherical harmonics about the other site and then inte-

grating the resulting functions numerically. ""The
coefBcients of this expansion are the "alpha functions, "
nt(X~M~E, r), first introduced by Lowdin" and are
abbreviatedin Table II asnt-(F); when F=4sor 4p,
it means the corresponding wave function is expanded
and, when F=Z=rV(r) a potential function is ex-

panded; R is the distance between the atomic sites;
r is the radial distance; V(r) is the potential function;
X, I., and M are the quantum numbers of the function
which is expanded about another center at which quan-
tum numbers are taken to be n, l, and m. The numbers
in this table correspond to a choice of parameters corre-
sponding to roughly ~ the screened exchange potential.

Kith the exception of the Ss wave function, Freeman
and Watson's Hartree-Fock wave functions' are used
throughout these calculations. The functions E„t(r) are
delned as r times the radial part of the total one-
electron function
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. All symbols are edeGn ed in Sec. II;o-c a d computing m
F 3

e gr als use in cT z II. w

2V{r— — P,.&(r}dr= —0.0509,'V{r—R)dr = aooo(Z)P4, ' r

( R)dr = aopp ~(r dr+-' a20p{Z)P4p' r r =—'V(r —R)dr= a 00(Z}P '(r r

a2oo(Z)P4p' rr = Z) P4„'(r)dr —
g a2pp 4p' r——R)dr= aooo Z 4p

lv...()l v( fVd'= sdo

OO

, r)P4p(r)dr =0.108,aioo{Z)Ps. r.* r 4pg(r) V(r —R)dr=3 aV..'= ~"o*()~, ~

r— — p(Z}Ps, (r)P4. (r)dr =0.03,r—R)d7 = aoooV-= ~"o (}~"()V(-

—R)d = ooo .( )Zdr= —0.1O8,—R)dr = aooo{4s)P4. r = — 8*(X)V(r) tJ'4.0(r—R)d = 000W, = &40*x, —R)dr

4 )P4p r — 9r — 4 )P p(r}Zdr=0. 18,r —R)dT= ajoo(4P)P4p r@4po*(r)V (r)$4pp(r — r — 4 )P4p r

d = )P, {r}Zd»=0.05,)P4 r —— . 37V r 4 ] — dr= appal(4p)P4p r~ r V (x}+4pg(r—R) dr =44pi ()

r r = 4p)P4 (r)Zdr=0. 305,r—R) dr =3I& ao&0(4p)P4 r$4,0*(r)V(r)$4po(r — r = 4p)P4W„= $4,0

dr= —0.0923,—R dr=3 f atop(4$)P4p(r)ZW„= $4pp* r0+(r) V(r)$4do(r —R)dr =3 'f' atop

o(5s)Ps, (r)Zdr =0,—R)dr = aooo s* r V{r)P...(r—W s.o ( )

—R)dr =3 ~ aoxo(4p)Psd(r)Zdr =0.006,W„'= fs,p*(r) V (r)$4po(x —R)dr =3'~ aoxo(4p sd r

4s P, {r)Zdr=O.00,2r —R)dr = appp(4s 5, rtt sdo*(x) V(x)44.0(r— r — 4$ sd

I v .( ) I v (' f
4p d» = —0.0792,r R T = Z)P4p(r)P4. (r)dr =—r—R)dr=3 '~ aipo 4p4 0*(r)&pi(x) V(r—Rdo 4dp p

1d = apop(Z)Ps. rapop (r)dr = —0.14r—R) r = apop

4s)P, ( )rdr =0.1u,r—R)dr= appp 4s 4 r — .163S = p4 0+(r)$4 p(r — T — 4$4 r

x—R)dT = agyp (r)rdr = —0.332,X—R)dr = aggp{4p)P4p r r — . 25,= $4po~(r)&4po(x —R)dT = agyp

T — 4 )P4p(r) rdr 0.17174—R)dT = aiii(4P 4p r — 17I*(r)&4pg r—04p

r = a, (r)rdr = —0.302,0+ r 4 p
— r=3 ~ apyp{4p)P4d r r = —. 02,p*(r)$4pp(x —R)dr =Sda P4

4
— 02)P (r}rdr =0.30,4.o — r =3 ' atop(4$ 4,'{r)|t4.0(X—R)dr =—S,= $4pp~ X 4.O

— r

Ps.o*(r)gs.o{—r—R}dr=d =0.132,oo(5$)P, (r)rd» =O.

r rdr = —0.153,* r o
— r=3~ apyp{4p)Ps (r r r=—S = ps 0+(r)&4pp(r —R)dr =3 ~ apyp

(x—R)dr = a-o(4s)P.. ~ ~ .—psdp*(r)$4d 0 r — — 00(4$)Ps,dd
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FIG. 3. The results of varying sev-
eral parameters in the computation of
the energy-band structure of selenium
chains, such as potential function,
hybridization, bonding angle (shown
at top), and atomic energy level
(dashed lines}. The section lines de-
note the forbidden gap. The exchange
potentials used are: screened exchange
in case (a); $ screened exchange in
cases (b), (d), (e), (f), and (g); zero
exchange in case (c). In case (d),
there is no s-p mixing. Case (g} repre-
sents our 6nal band structure (see
text).

—1.6—
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where a bar over a capital letter indicates that the
quantity is calculated with one half of the "Slater ex-
change" potential, ~x=0.838/+0. 581 and P=exp(3 26k.
—1.63), with the exchange potential taken as propor-
tional to 1Zqg(r —Rq) j"'.These equations were further
checked by observing that they approached the proper
limit for the case of zero exchange. The parameters
corresponding to our final results (see below) are
u=0.66, P=0.27.

III. NUMERICAL RESULTS

The effects of using "relativistic" atomic energy
levels, choice of potential function, hybridization, and
bonding angle on the energy-band structure are sum-
marized in Fig. 3. These band structure curves have
generally been computed only at the points k, =o and
k, =n/c, but certain of the calculations were carried
out at intermediate k, values to verify that they were
smoothly varying. The dotted lines are the atomic
energy levels. With the exception of cases (a) and (c),
they are relativistic atomic energy levels as computed
from the tables of Herman et a/."The major effect of
the use of relativistic atomic energy levels is to increase
the separation of the 4s- and 4p-like bands without
causing much change in their general shape. Cases (a),

"F.Herman, C. D. Kuglin, K. F. CuB, and R. L. Kortum,
Phys. Rev. Letters 11, 542 (1963).

(b), and (c) are included to show the effect of the
choice of exchange potential. They correspond to, re-
spectively, screened exchange, -', screened exchange, and
zero exchange. The effect of decreasing the potential
function is to increase the band gap. The remaining
curves shown are for the same choice of exchange
potential, that of —,

' screened exchange. Case (d) shows
the effect of neglecting s-p hybridization, namely, the
disappearance of splittings and a sharp decrease in the
band gap. When the bonding angle was increased to
105.5', case (e), which is to be compared with case (c),
the conduction bands were observed to be strongly
dependent upon the choice of potential. To stabilize
these bands, a Ss band was added in cases (f) and (g);
in any linear variational calculation, it is the lower-
lying energy bands that are the most accurately deter-
mined. The fact that this device does indeed stabilize
the lowest conduction bands can be seen by comparing
cases (b) and (e) with cases (f) and (g).

Case (g) represents our final calculated results. A
direct band gap at vr/c of 1.4 eV is obtained which com-
pares favorably with the experimentally determined
gap of about 2 eV."Actually, a gap of 2 eV could have
been obtained by further but perhaps unphysical re-
duction of the amount of exchange potential. By fitting
a cosine function to the energy bands, effective masses
at the point A were estimated, in units of the free

' V. Prosser, Czech. J. Phys. 10B, No. 4, 306 (2960).
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electron mass, to be: 2.2 for the lowest conduction
band, 1.9 for the top valence band, and 1.3 for the next
highest valence band. By simply varying the bonding
angle, we determined values of the corresponding "de-
formation potentials" for this chain structure (which
might be of interest for electron-phonon interactions in
which only longitudinal phonons along a chain are
important). These were 4.3 eV for the bottom conduc-
tion state (A3), 0.3 eV for the top valence state (A3),
and —0.6 eV for the next lower lying valence state (Am).

Since so many authors have concerned themselves
with the eEect of 4d bands, we have tried to see if a 4d
band would have a significant eGect on our calculation.
A 4d wave function was constructed in a manner similar
to that by which we constructed a Ss wave function.
From the atomic spectrum, we estimated that its
atomic energy level would lie 0.05 Ry above ~&,. As-
suming that the angular dependence of the various 4d
functions could be suitably accounted for by consider-
ing a single spherically symmetric function, we substi-
tuted the radial part of the 4d function for that of the
Ss in the above formalism. There was negligible efI'ect
on the valence bands and on the lowest lying conduction
band. It might be pointed out that adding a complete
set of 4d bands, along with a Ss band (for none of which
Hartree-Pock functions are known), would be a rather
large task, but might be essential in order to obtain a
reliable prediction of band-to-band oscillator strengths
(see Sec. IV).

IV. DISCUSSION

The present calculation can be of help in evaluating
prior work that relates to the band structure of se-
lenium. We shall briefly comment on some of this work.
Gaspar' qualitatively investigated the band structure
of Se in terms of the point group of an atom and its
nearest neighbors, taking into account interactions be-
tween atoms on adjacent chains. He stressed the im-
portance of hybridization and assumed, incidentally,
that the lowest excited state of Se belonged to the
4p~4d configuration. Gobrecht and Tausend have written
several papers in which they relate their experimental
data to their interpretations of the theoretical calcula-
tions of Reitz and Gaspar. In their first paper, ' they
modify Gaspar's calculation so that all of the 4p bands
lie beneath the 4d bands and ascribe peaks in the ab-
sorption coefficient and index of refraction at about 3
and 21 p as being due to p~ p band transitions, with
the large peaks at about 2 eV as being due to p ~ d
transitions. In more recent work, "no mention is made
of the 21-p, peaks, but the same interpretation is applied
to the other peaks. By applying classical theory to
Faraday rotation data, they have also attempted to
give values for effective masses"" which are generally

' H. Gobrecht and A. Tausend, in Proceedings of the Interna-
tional Conference on Semiconductor Physics, Paris 1964 (Academic
Press Inc. , New York, 1965).

'9 H. Gobrecht, A. Tausend, and J. Hertel, Z. Physik 178, 19
(1964).

much larger than those we calculate. Sobolev' makes
no specific mention of any transitions occurring in Se
at either 3 or 21 p and explains other transitions by
applying one aspect of Gaspar's theory, namely, the
possible existence of a very narrow vacant p band lying
either "in the band gap" or in the (d-like) conduction
band. We choose to ignore the 3-p band, since it occurs
in only certain samples and may be an impurity eGect;
the 2i-p, band is undoubtedly vibrational in origin.
Cheglokov" analyzes Gobrecht and Tausend's absorp-
tion coefFicient data by a simple tight-binding method
in which he considers only a subset of the p-type bands,
i.e., the solution of 6)&6 secular equation which does
not contain the effects of the uppermost set of p-type
bands, and interprets transitions at 3 and 21 p, as being
due to free carrier valence-to-valence-band transitions.
Hulin" has done a calculation for tellurium, using the
method of linear combination of atomic orbitals, in
which he includes the eGects of spin-orbit coupling and
atoms on adjacent chains. Double group selection rules
are given in his results. He finds that the behavior of
the energy bands can be quite complex, with the
maxima of the valence bands and minima of the con-
duction bands existing on, although he does not ascer-
tain exactly where on, the hexagonal plane faces of the
Brillouin zone. Robin-Kandare and Robin" have meas-
ured the absorption coefficient in the region from 4 to
110 eV for thin films of amorphous selenium. They
interpret their data using Reitz's model, attributing the
absorption edge to transitions between the second and
third groups of p bands, a set of peaks at about 5 eV
to transitions from the second group of p bands to d
bands, and a large maximum at 9 eV to transitions
between the first and third groups of p bands. Stuke
and Keller'4 have measured the refiectivity for single-
crystal hexagonal selenium in the region 1.8 to 4.1 eV
for polarization parallel and perpendicular to the chain
direction. Their results are in good agreement with the
experimental results summarized in Prosser's paper"
and do not show the crossing of the curves that would
be indicated by the measurements of Gobrecht and
Tausend. '" To interpret their data they propose a
crude band model in which they assume that the energy
extrema are at k=0 and attribute reQectivity peaks to
certain direct transitions.

Since Stuke and Keller's data~ appear to cover the
widest range with the highest resolution, we have
chosen it to discuss our band calculations. Most of the
features in their reQectivity data can be explained with
our energy-band results with only minor adjustments in

~V. V. Sobolev, Dokl. Akad. Nauk SSSR 151, 1308 (1963)
/English transl. : Soviet Phys. —Dokl. 8, 815 (1964)."E. I. Cheglokov, Fiz. Tver. Tela 6, 1845 (1964) LEnglish
transl. : Soviet Phys. —Solid State 6, 1451 (1964)j.~ M. Hulin, Ann. Phys. (Paris) 8, 647 {1963).~ S. Robin-Kandare and J. Robin, Proceedings of the Inter-
national Conference on Semiconductor Physics, 1960 {Academic
Press Inc. , ¹wYork, 1961).

'4 J. Stuke and H. Keller, Phys. Status Solidi 7, 189 (1964).
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Fzo. 5. Room-tem-
perature crystalline-
Se reQectivity data
of Stuke and Keller
(Ref. 24) showering
the transitions pro-
posed in Fig. 4.

Fro. 4. Direct allowed optical transitions in a proposed se-
lenium-&~In band scheme The dotted and solid arroyos corre-
spond, respectively, to light polarized parallel and perpendicular
to the c axis; the numbers are energies in electron volts.

the conduction bands. The irreducible representations
of our energy eigenvectors were determined with the
aid of prior group-theoretical treatments of hexagonal
selenium. "' Noting that vectors perpendicular to the
c axis, x and y, transform as F3, and the vector parallel
to the c axis, z, transforms as F2, we find, by taking the
direct products, that the direct allowed optical transi-
tions are" ~:A ~

—& A2, A 3
—+ A3, F~ —+ F~, and F3~ F3

for light polarized parallel to c; and A~ ~Ae, A~ —+ A3,
A3~A3, FJ~F3, Fg —+F3, and. F3 —+F3 for light
polarized perpendicular to c. Figure 4 is an energy-band
d,iagram showing the pertinent transitions. The valence
bands are exactly those which we obtain in case (g)
of Fig. 3. The conduction bands have been adjusted
slightly to agree with Stuke and Keller's data; in par-
ticular, A 3 and F2 are raised by 0.05 Ry to reproduce a
band gap, and F3 is lowered by 0.17 Ry. Note that the
degeneracies at A3 would be removed by the spin-orbit
interaction. A value of 0.297 eV for the 4p-shell spin-
orbit energy of Se was earlier deduced by one of us
(R.S.K.)" from the atomic spectrum; this value is
reproduced to within 6%%uz by the use of Watson and
Freeman's wave functions. Naturally the splitting in
the solid will not be precisely 0.3 eV but will be of this
order of magnitude. The dotted and solid arrows refer
to, respectively, parallel and perpendicular polariza-
tions. Figure 5 is a redrawing of Stuke and Keller's
refiectivity data upon which our proposed optical transi-
tions are indicated. It has been suggested that the first
rise in the absorption coeKcient might contain an in-
trinsic exciton peak superimposed upon the absorption

"A. Nussbaum, Proc. IRE 50, 1762 {1962}."R. S. Knox, Xerox Research and Engineering Division
Laboratories Report No. RL 63-59 (unpublished).
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"J.L. Hartke and P. J. Regensberger, Phys. Rev. 139, A970
(1965).

edge."In this case, the lowest conduction band shown
in Fig. 4 would have to be shifted to still slightly higher
energy. At the present stage of refinement of our work,
we have not attempted to analyze the effect of excitons
on the spectrum but this is clearly an area for future
study.

As a check on the wave functions resulting from our
calculation, we have evaluated the oscillator strength
for the A 3 ~A3 transition which presumably accounts
for the lowest absorption edge. The result is 0.005,
strongly disagreeing with the rather large oscillator
strength of 15 deducted by Hartke and Regensberger, "
who note that the experimental number may be an
overestimate because of their approximations to the
density of valence- and conduction-band states. While
this discrepancy is surely the worst one resulting from
our calculation, we believe that it can be explained in
part by an insufhcient admixture of 4d and 5s functions
into our conduction band states. The result of 0.005 is
obtained using the single Ss (or quasi-4d) function
admixture, and it will increase sharply with the frac-
tion of even-parity atomic states admixed. This point
deserves considerable further study.

In summary, we may say that our results confirm
Reitz's proposed band structure, but we would like to
stress the important effect that s-p hybridization has
on the band structure. Note that even when we con-
sidered only 12 bands the distance between the 9th
and 10th was of the order of magnitude of the experi-
mentally determined band gap. %e would also like to
comment on the relevance of our chain model to real
crystals. A chain calculation should be expected to ex-
plain the gross but not the fine features of either
hexagonal or amorphous selenium. In the case of
hexagonal selenium, the proximity of atoms on adjacent
chains will have a secondary but probably noticeable
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effect on the band structure. "For amorphous selenium,
deviations from perfect chain structure will be import-
ant, but it is conceivable that the bulk of the valence
and conduction electrons exist in states resembling
those computed here.

Tight-binding theory produces good results for the
valence bands, as can be seen by their general invari-

"Note added in proof. In this connection, D. B. McKenney has
called the authors' attention to the work of %. J. Choyke and
L. Patrick /Phys. Rev. 108, 25 (1.957)7 and that of F. Eckart and
%. Henrion t Phys. Status Solidi 2, 841 (1962)j in which there
appear strong indications that the lowest band gap is indirect
in hexagonal Se. Absorption which has the quantitative char-
acteristics of indirect transitions even appears in amorphous Se
LD. S. McKenney, M.S. thesis, University of Rochester, 1965
(unpublished) j. %e suspect, as does McKenney, that points of
the zone other than I' and A are involved, as in Hulin's model of
Te (Ref. 22}. Ke are proceeding to investigate interchain inter-
actions in order to determine the band structure away from the
(0,0,k,) direction.

ance across Fig. 3. However, the conduction bands
probably need a more sophisticated treatment (such as
orthogonalized plane wave or augmented plane wave)
which will take into account more efhciently the eGect
of both the Ss and 4d bands and that of atoms on
adjacent chains. In any event, it is highly unlikely that
the uppermost set of 4p bands will turn out to be as
narrow as has been proposed by some authors.
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The Electronic Band Structure of Arsenic. II. Self-Consistent Approach~
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The band structure of arsenic was calculated by the orthogonalized plane-wave metbod. The Coulomb
potential of the valence electrons was calculated self-consistently to within 0.01 hartree. Spin-orbit coupling
was put in a posteriori; the other relativistic effects as well as correlation and exchange among the valence
electrons were not put into the calculation, but the magnitudes of these omissions were estimated. The
self consistent valence potential is found to compare favorably with the potential calculated in the tight-
binding limit, and unfavorably with other ad hoc valence potentials often assumed in band-structure cal-
culations. The band structure thus calculated is very similar to the band structure previously calculated by
the pseudopotential method.

1. INTRODUCTION

HIS paper describes a first-principle orthogonal-
ized plane-wave (OP%) calculation'' for the

semimetal arsenic; the crystal potential was computed
self-consistently to within 0.01 Hartree. As is well
known, the calculation of the crystal potential is the
most important part of any band structure calculation.
Once the potential is given, the band structure, at least
for a simple system, follows in a more or less straight-

forwardd

manner.
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'For a review of the OP% method, see T. O. %oodru8, in

Solid State Physics, edited by F. Seitz and D. Turnbull (Academic
Press Inc., New York, 1959},Uol. 4, p. 367.

The potential seen by the valence electrons divides
neatly into two parts: that due to the ion cores and that
due to the valence electrons, The self-energy of a
crystal wave function in the Hartree scheme is neglig-
ible. The potential due to the ion cores can be accurately
calculated in a more or less straightforward manner
as seen below. However the calculation of the valence
contribution to this potential is considerably more
difficult and one often resorts to various ad hoc assump-
tions about the distribution of the valence charge.
One popular and successful assumption for metals, '4
that the valence charge distribution is uniform, is
shown in this paper to be poor for arsenic. The resulting
band structure thus depends on these ad hog assump-
tions which do not allow any direct test of the more

'U. Heine, Proc. Roy. Soc. (London) A240, 340, 354, 361
(1957).

4 L.M. Falicov, Phil. Trans. Roy. Soc.London, A255, 55 (1962).


