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In the usual ferromagnetic resonance experiment the uniform precession lies within the magnon mani-
fold, that is, there are long-wavelength magnons degenerate with the uniform precession. Several recent
experiments have been performed with the uniform precession driven outside the magnon manifold. In
this paper we calculate the line shape (y" as a function of applied 6eld) for these experiments. Speci6cally,
the relaxation frequency g of the uniform precession and the line shift BH (deviation of the uniform pre-
cession frequency from the Kittel frequency) are calculated. For relatively large p (p&&p4~M not satisfied)
the line shift bH is at least as important as g in determining the line shape. Explanations are given for the
three interesting observations of Liu and Shaw that: (1) The relaxation frequency has the large value
of the order of 150 Oe when the uniform precession is driven below the bottom of the spin-wave manifold;
{2)The relaxation frequency drops sharply as the uniform precession passes below the bottom of the spin-
wave manifold; and (3) The relaxation frequency within the spin-wave manifold is relatively independent
of applied Geld. Examination of several possible sources of the 150-Oe relaxation frequency (1) indicates
that the 150 Oe arises from the magnon manifold being modified by nonmagnetic voids in the sample in such
a way as to allow two-magnon scattering below the magnon manifold of a perfectly dense sample. The
Geld independence of relaxation frequency within the manifold (2) is in apparent agreement with the two-
magnon scattering theory of Sparks, Loudon, and Kittel; Seiden; and Seiden and Sparks.

I. INTRODUCTION
''N several recent ferromagnetic-resonance experi-
i . ments'~ the uniform precession (or other magneto-
static modes") was excited outside the magnon
manifold. %hen the linewidths were large inside the
manifold, it was found'~ that the linewidth was also
relatively large outside the manifold. The linewidth
and line shape are determined~ by the relaxation fre-
quency p and line shift bH of the uniform precession.
In the present paper the relaxation frequency and line
shift of the uniform precession are calculated and
dIscussed.

In the'paper by Liu and Shaw, ' hereafter referred to
as I, the imaginary part of the susceptibility p" of a
disk-shaped sample of yttrium iron garnet is measured
both below and above the bottom of the bulk magnon
manifold, that is, the manifold appropriate to the
perfectly dense sample. In Sec. II we shall see that
nonmagnetic inclusions in the sample modify the mani-
fold. For the uniform precession above the bottom of
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the bulk manifold, the relaxation frequency has a value
of 650 Oe (strictly speaking, a relaxation frequency
corresponding to a full linewidth of 650 Oe), and for
the uniform precession below the bottom of the bulk
manifold the relaxation frequency is of the order of
150 Oe. The purposes of this paper are to present an
explanation of the relatively large value (150 Oe in I)
of line width remaining when the uniform precession is
outside the bulk manifold and a discussion of the 6eld
dependence of the relaxation frequency within the bulk
manifold.

In the usual linewidth experiments in ferromagnetic
insulators the applied rf 6eld excites the uniform pre-
cession spin-wave mode. An important and often domi-
nant source of line width is the two-magnon process,
in which a uniform precession magnon is annihilated
and a magnon of nonzero wave vector having the same
energy as the uniform-precession magnon is created.
This two-magnon process can be induced by pits left
on the surface by the sample polishing process, ' "
voids and nonmagnetic inclusions in the sample, ' "
polycrystalline grains, " or ion-to-ion disorder. ""The
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existence of the two-magnon contribution to the line
width in ferromagnetic insulators has been well studied
experimentally' "'" and theoretically. '~" '~" The
two-magnon contribution to the line shift has also been
calculated for random pseudodipole coupling, " poly-
crystalline grain-to-grain variation in the anisotropy
Geld" and surface pits, voids, and nonmagnetic inclu-
sions. ~ In the Liu and Shaw experiments of I, non-
magnetic inclusions and voids are believed" to be
responsible for the two-magnon process.

Four diferent types of experiments have been per-
formed in which a linewidth originally controlled by
two-magnon processes is reduced by operating under
conditions which make the mode excited by the rf Geld
lie outside the bulk magnon manifold. In the Grst type
of experiment, BufHer4 used values of applied Geld
sufIj.ciently low to make the uniform precession lie
above the top of the bulk magnon manifold for spherical
samples. His result of interest to us here is that for
polycrystalline samples the linewidth reduces abruptly
as the uniform precession passes above the top of the
bulk magnon manifold. This is to be expected, since
the two-magnon processes for scattering to low-wave-
vector magnons are not possible when the uniform
precession lies above the top of bulk magnon manifold.
In the BufIIer experiments there are Walker modes
which lie above the top of the bulk magnon manifold,
and there are spin wave modes degenerate with the
uniform precession, even though these are separated
from the uniform precession by rather large wave vec-
tors. In the second type of experiment, White' and
Nemarich' have measured the linewidth of magneto-
static modes which lie above the top of the bulk
magnon manifold. The early experiment of White has
not been explained, but Nemarich has interpreted his
later experiment in terms of two-magnon scattering.

In the third type of experiment Risley and Bussey'
varied the resonant frequency of the uniform precession
by changing the angle that the sample, such as a rod-
shaped one, makes with the applied Geld. Thus, they
were able to continuously change the resonant fre-
quency from above the top of the manifold to well
within the manifold. Risley and Bussey' are presently
making a thorough investigation of linewidths by this
method, and there are preliminary indications that the
results of our paper explain their experimental results
quite well.

In the fourth type of experiment, which is of main
interest here, Liu and Shaw' pumped the uniform pre-
cession below the bottom of the bulk magnon manifold
in polycrystalline yttrium iron garnet. There are no
magnetostatic modes or large-k modes degenerate with
the uniform precession for the perfectly dense sample
when the uniform precession is below the bottom of the
bulk manifold. This was accomplished by using a

"E.Schlomann, J. Phys. Chem. Solids 6, 242 (1950)."P.E. Seiden, C. F. Kooi, and J. M. Katz, J. Appl. Phys. 31,
1291 (1960).

disk-shaped sample with the applied dc Geld per-
pendicular to the plane of the disk so that the natural
frequency of the uniform precession lies near the
bottom of the bulk manifold. By using a polycrystalline
sample with a large linewidth of 650 Oe (full linewidth)
the uniform precession was driven with considerable
amplitude (about one-half its resonant value) oG reso-
nance below the bottom of the bulk manifold.

In this way they found that the relaxation frequency
of the uniform precession decreased from 650 Oe when
the uniform precession was within the bulk manifold
to about 150 Oe when the uniform precession was below
the bottom of the bulk manifold. This reduction in the
relaxation frequency has the obvious explanation that
the two-magnon process is absent when operating below
the bulk manifold.

There remains, then, the problem of explaining the
large line@'idth of the order of 150 Oe when the uniform
precession is below the magnon manifold, since most
presently known mechanisms"" predict a linewidth
of the order of 1 Oe. We propose that the 150-Oe
relaxation frequency is indeed still dominated by the
two-magnon relaxation to states which exist below the
bulk dense magnon manifold by virtue of the modiGca-
tion of the manifold caused by the nonmagnetic
inclusions in the samples. In Sec. II we discuss the
nature of these modes and show how they provide an
explanation of the experimentally observed large line
widths outside the magnon manifold such as those of
Liu and Shaw.

There are at least three other possible sources of the
150 Oe relaxation frequency. One is the effect of rare-
earth impurities"" which are known to cause large line
broadening in impure yttrium iron garnet. The impurity
content of the sample is unknown; however, an estimate
of the impurities by J. M. Katz~ based on known im-
purity concentration of other sample materia, ls by the
same supplier (Research Chemicals, Inc.) indicated
that the rare-earth impurities are of the order of 0.01
weight percent, which is too low to explain the 150-Oe
line width. Preliminary measurements by P. Wigen, "
in which the linewidth changes from 550 to 610 Oe on
going from room temperature to 77'K indicate (from
the lack of the characteristic temperature peak of the
impurity relaxation processes) that the 150 Oe is not
due to an impurity relaxation process.

The second further source of loss is the three-magnon
(in general, multimagnon) process induced by the
nonmagnetic inclusions. In Sec. III we calculate the

"T. Kasuya and R. C. LeCraw, Phys. Rev. Letters 6, 223
{1961).' P. Pincus, M. Sparks, and R. C. LeCraw, Phys. Rev. 124,
1015 (1961).

20 J. F. Dillon Jr., Phys. Rev. 127, 1495 (1962).
"A, more complete bibliography of the slowly and the rapidly

relaxing impurity mechanisms is given in Secs. 6.2 and 6.3 of
M. Sparks, Ferrwecgnet~c Re4xefioe Theory (Mcoraw-HiH Book
Company, Inc. , New York, 1964).~ J. M. Katz (private communication}.~ P. Wigen (private communication).
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effect of this process and show that it provides a relaxa-
tion frequency about two orders of magnitude smaller
than the experimental value.

Finally, the nonzero relaxation frequency of the
magnons degenerate with the uniform precession" can
give rise to a relaxation frequency outside the manifold,
but this e6'ect is too small to explain the observed line-
widths; relaxation frequencies of the degenerate mag-
nons which are typically two orders of magnitude
larger than the relaxation frequencies measured by the
parallel pumping experiments (see Ref. 12, p. 208) are
required. This is discussed in Sec. IV.

In addition, we discuss briefly two more topics of
significance to the theory of the magnon relaxation. In
Sec. IV it is pointed out that the experimental result
(Ref. 12, p. 208) that the degenerate magnon relaxation
frequency is two orders of magnitude smaller than the
uniform precession relaxation frequency is consistent
with the present theory. Finally, in Sec. V the depend-
ence of the linewidth on the applied field for fields such
that the frequency is within the bulk manifold is
discussed.

Agreement between the theory of the present paper
and experimental results' 4 is good although a detailed
comparison is difficult (as discussed in Sec. II) since
both p and bII are functions of the applied field H,pp.

The infinities in the relaxation frequency and line shift
occurring at the top and bottom of the manifold in the
previous theories~ ""'~" are removed and reasonable
values of relaxation frequency and 1ine shift are ob-
tained by the manifold-broadening mechanism of Sec.
II.This mechanism gives the correct order of magnitude
of the relaxation frequency and linewidth both inside
and outside the manifold.

IL RELAXATION FREQUENCY AND LINE
SHIFT OUTSIDE THE SPIN-

%AVE MANIFOLD

This section is concerned with an explanation of the
relatively large relaxation frequencies observed' 4 out-
side the ma, nifold. In particular, we consider the 150-Oe
uniform-precession relaxation frequency below the bot-
tom of the spin-wave manifold observed in I. The
theory of two-magnon relaxation previously has been
based on the scattering of uniform precession magnons
inta states in the magnon manifold suitable for a per-
fectly dense sample. This explains the 650-Oe relaxation
frequency when the uniform precession is within the
spin-wave manifold. For frequencies below the bottom
of the manifold, i.e., co(&e,——y(II,»—47r$,3E,), it is
clear that the relaxation frequency of the two-magnon
process is zero because there are no states into which
the uniform precession can scatter with energy con-
servation. Therefore, it is not surprising that the relaxa-
tion frequency decreases strongly below the manifold.
The value of 150 Oe below the manifold is quite large
and is not explainable in this simple picture.

coI,=DII, 'k'+o), —E~ +geo sin'8p, (2.1)

where D is the exchange constant, k is the wave vector,
is the applied field in frequency units, ro =4~M„

and 8& is the angle between the applied field and the
wave vector.

The relaxation frequency 1/T now can be calculated
simply by using the new density of degenerate states
in the Sparks, Loudon, and Kittel' two-magnon scat-
tering result as modified by Seiden and Sparks"

1/T= 2x'yM. PGss,
where

Gss=0. 109(3 cos'8 +1.4)'/cos8„.

(2.2)

Here p, the porosity, is the total volume of all pores
divided by the sample volume, and 8„ is the value of 81,
in (2.1) for k=0 and ~j,- ——cv, the uniform-precession
frequency, i.e.,

u =&a ~~ zm+ gm sin 8~ ~

It is apparent, however, that the bulk manifold, that
is, the manifold appropriate to a sample containing no
pores, is not the correct one for a sample containing
nonmagnetic pores and inclusions. In the vicinity of a
pore the demagnetizing field of the pore causes the net
field to dier from that expected in a perfectly dense
sample. This means that the magnon manifold in the
vicinity of the pore is different from that in the rest of
the sample. Thus, the magnon manifold is modified by
the pores in such a way that there are states below the
bottom of the bulk manifold. The remaining 150-Oe
relaxation frequency is then explained naturally in
terms of two-magnon scattering into these degenerate
modes. Our method is essentially to treat the diagonal
terms in the quadratic part of the Hamiltonian as
changing the dispersion relation and the oQ-diagonal
terms as causing the scattering.

The modes below the bottom of the bulk band arise
as follows: AVe assume that the mean free path of the
magnons is short with respect to the pore size so that
the demagnetization field of the pore varies little over
a magnon mean free path. Since the mean free path in
our sample is probably of the same order of magnitude
as the pore size, the following explanation must be
considered as a rough approximation, the actual condi-
tion lying between the short-mean-free-path case
considered here and the long-mean-free-path case con-
sidered previously. '~" In this short-mean-free-path
limit, each region around the pore may he considered
as having its own dispersion relation. In the region near
the top of a spherical pore, the s component of the
demagnetization field will be —4n-lV, M„with X,=&,
a factor of ~~ arising from the pore and a factor of 1
arising from the surface of the disk-shaped sample.
Thus the magnons in this region can have energies
below the bottom of the bulk band (since 1V.= 1 for the
bulk band) as seen by the high-6eld approximation to
the magnon dispersion relation'2
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or
cos8„=[1—(2/&o„) (&o„—&o,+.V,u&„)]"'. (2.3)

The factor 1.4 in Gzs of Kq. (2.2) unfortunately cannot
be obtained from first principles, " and would be con-
sidered as an adjustable parameter. Rather than ad-
justing the parameter to fit the data, we choose a value
(of 1.4 which was used in Ref. 11) in order to obtain a
better test of the theory. The e6ect on the line width
and line shift of choosing a diGerent value of this
parameter is discussed below. Equation (2.2) is to be
replaced by 1/T=O when the uniform-precession fre-
quency is outside of the manifold. Kith 47{-M.= 1750 Oe,
P=0.16, and cos8„=1, this gives LIB=1/yT=850 Oe,
in fair agreement with the measured value of 650 Oe
from I. The factor Gss in (2.2) will vary from one region
around the pore to another since E, varies from region
to region, thereby changing cos8„according to (2.3).
We must average 1/T, or equivalently GBz, over the
sample of volume V

0.109(3 cos'8„+1.4)'

cos8„
(2 4)

ol
8=2/(o ((u —ra —(a„).

The volume of integration in (2.6), which contains sV

pores of radius R, is approximated by J'dr 1VJ'((R/R)—
Xdr r'kr J0'dN, where u=cos8 and (4n./3)(R'= V/.V.
Then with P= R'/(R' and defining s = r/R, (2.6)
becomes

p-1/8 1

G =3/(0. 109) ds s QN

1 0~

{3[1+8—xs(3 cos28 —1)(1/s')]+1.4)'
x

1+6—-', (3 cos'8 —1)(1/s')
(2.7)

where cos8„ is given by (2.3) and 5 is the volume over
which 8„ is within the manifold, i.e., over which
0&cos'8„(1.

The value of 1V, in (2.3) as a function of the position
r= (r,8, y) of the elementary volume of integration in
(2.4) for a spherical pore of radius R is

A, = 1+z'(3 cos'8 —1)(R'/r'), (2.5)

where the one comes from the surface of the disk-shaped
sample and (R'/3r') (3 cos28—1) comes from the pore.

From (2.3) and (2.5) the integral (2.4) can now be
written as

0.109 {3[1+8——', (3 cos'8 —1)R%']+14)'
G= dr

[1+8—-', (3 cos'8 —1)R'/r']'~'
(2 6)

where 6 is the volume for which 0(1+8—(2R'/3r')
X (3 cos'8—1)&1, and h is the distance of the uniform
precession below the bottom of the bulk manifold in
units of the width of the manifold, i.e.,

Exact evaluation of the integral in (2.7) is diflicult;
however, we can extract the main features of G, that is,
the cutofI' value of ~„below which G vanishes, the value
of G for the uniform precession within the manifold,
the value of G for the uniform precession just below the
bottom of the bulk manifold, and the width of the
region of applied fields over which G drops from its low
field value (for the uniform precession within the bulk
manifold) to its high field value (for the uniform pre-
cession just below the bottom of the bulk band). The
cutoG value of the uniform-precession frequency co„
below which the integral vanishes is obtained by ex-
amining the region in which cos8 of (2.3) is between
0 and 1, i.e., where the uniform precession is within the
manifold. For the maximum value of JV, = 1+ (-', ), (2.3)
and cos'8„(1 give

2uOa —m 3~m &

so the cutolf is (-', )&u —1 kOe below the bottom of the
bulk manifold. This is in good agreement with the
experimental observation that the relaxation frequency
drops by a factor of approximately 1/2 in going from
just below the bottom of the bulk manifold to 500
Oe below the bottom of the bulk manifold.

For the uniform precession within the bulk manifold,
i.e., —1. &6&0, G is very closely approximated for
PC(1 by

G=0.109(3 cos'8„s+ 1.4)'/cos8„s
(inside manifold), (2.8)

where cos8 s= (1+8)'I' is the value of cos8 for the
bulk manifold. So averaging G gives the bulk value of
Gq8 for the uniform precession within the bulk manifold
for small porosity. This shows that within the bulk
manifold our previous theory"" is not seriously modi-
fied by the smearing of the spectrum due to the pores.
The result (2.8) is almost obviously an examination of
(2.7). Here 6 is very nearly the total region between
R and 61, and 23(3 cos28—1)R'/r' is negligible with re-
spect to 1+8 over almost all of this region.

For the uniform precession below the bottom of the
bulk manifold, that is, for 8 positive and of the order
of 1, the somewhat tedious evaluation of the integral
in (2.7) shows that G is of the order of the porosity p.
The fact that G p is not surprising since it is the volume
close to the pore which has a dispersion relation diGering
appreciably from the bulk value. Mathematically this
results from 6—pore volume in (2.7). The ratio of 1/T,
or equivalently G, just above the bottom of the bulk
manifold to that just below the bottom is of the order
of 1/p=6. 4, in agreement with the experimental value
of 650/150= 4.3.

The decrease from the high-field value of relaxation
frequency to the low-field value occurs over a change of
field of approximately (R'/6l')4grM, P. For the sample
in I this gives 250 Oe, which is compatible with the
measurements of I.



A 976 MOT IZU KI, SPARKS, AN 0 SEI DEN

I 5

s-
Cl

3L (,0
4I
X

g 0.5
IX
C3

P~ REGION OF RAPID
DECREASE

ig

~i

I l I I

—I. 2 -0,8 -0.4 0 0,4 0,8 I.2
NORMALIZED APPLIED MAGNETIC FIELD 3

REGION OF RAPID
DECREASE~ I.5—

EJ

Lal

CÃ
4J
Ir.

~ I.O-
o
I-
X

LLI

~ 0.5—
Lal
I4

K
O
K

(b)

0 I I 1

—I.2 -O.S -0.4 0 0.4 0.8 I.2
NORMALIZED APPLIED MAGNETIC FIELD tI

FIG. 2. (a) Comparison of
calculated and experimental
line widths below the bot-
tom of the bulk manifold
(b = 2.4). (b) Comparison
of calculated and experi-
mental line widths below
the bottom of the bulk
manifold g =3).

The above features are displayed explicitly in Figs. 1
and 2, which were obtained by machine evaluation of
(2./) for various values of porosity. The ordinate G is
the line width divided by 2m yM, p, and the abscissa is
the applied magnetic Geld divided by 2mM, with the
zero shifted to the bottom of the bulk manifold. Figure
1 corresponds to a porosity of 0.16 for the sample in I.
The "experimental points" of I, indicated by triangles,
are normalized to G=1.1 within the manifold in Fig.
1(a). In Fig. 1(a) the value of the parameter b in (2.2)
is b = 1.4, while in Fig. 1(b) this value has been changed
from 1.4 to 3, giving a more realistic shape of the
relaxation frequency curve within the manifold. The
"experimental points" were obtained from the y" curve
by setting bH equal to a constant so that only the order
of magnitude of these points and not the shape of the
curve has meaning, as explained in the following
paragraph.

Unfortunately, it is impossible to determine the values
of relaxation frequency p and line shift bH from the
single experimental curve of the imaginary part of the
susceptibility g" as a function of frequency. This is
because both q and bH are functions of frequency, so
it is impossible to calculate both y and bH from the
single x" curve using the "Lorentzian" expression

g"(H,») = (constant)q/L(H» —H,—bB)'+vPj. (2.9)

The unshifted (Kittel) resonant frequency H~, is"

B =y 'co+krM, Xr 4aM.X. (2.—10)

for a disk with the applied magnetic Geld perpendicular
to the plane of the disk, where E~ and N, are the trans-
verse and s demagnetization factors, respectively. In
these expressions, both g and bH are functions of the
applied Geld H,». An order of magnitude of the experi-
mental value of p can be obtained by setting the line
shift SH equal to a constant independent of the applied
6eld in Eq. (1.1) and solving this equation for q as a
function of p". In this way an experimental curve of p
as a function of the applied Geld is obtained, as in I.

Points from this curve are reproduced as triangles in
Fig. 1 herein. The order of magnitude of the value of q
obtained in this way is correct, but the details of the
curve must not be taken literally. For example, the
relative Qatness of the experimental triangle curve of
Fig. 1 between 8=0 and 8=0.6 is deGnitely not correct
and results from the approximation of setting bH equal
to a constant. This can be seen by noticing that in
solving the above expression of y" as a function for g,
the resulting value of g will have a plus and minus type
solution since this equation is quadratic in p.

Now, for the case of bH and g both constant, the plus
solution for g must be chosen within the half-power
points, and the minus solution for g must be chosen
outside the half-power points. The plus and minus
solutions cross at the half-power points and there is no
problem. By setting BH equal to a constant in the p"
curve of I the fundamental problem arises that the
plus and minus solutions never cross. VA'thin the mani-
fold the plus solution is relatively constant giving a
relaxation frequency of 650 Oe (in units of field). At
the bottom of the manifold. this plus solution increases
very rapidly as the Geld is increased, in other words,
as we go farther below the bottom of the manifold. Now,
the minus solution for q is equal to zero at the maximum
of the g" curve. This minus solution increases as the
Geld is increased, goes through a maximum at a value
of field corresponding to b approximately equal to 0.3,
as seen in Fig. 1, and then decreases. So the Aatness
of the experimental curve in Fig. 1 in the region 8=0
to 0.6 results from the fact that this g minus curve goes
to zero at the peak of the g" curve. There is, of course,
no fundamental problem here; this difEculty arises
from setting bH equal to a constant, which is not cor-
rect. The details of considering the correct behavior of
x" when both g and 8H are functions of the applied
Geld are considered in Ref. 7.

So we see that we can extract the order of magnitude
of g from the experiments, but we cannot obtain an
accurate graph of q as a function of applied Geld because
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bII is also a function of applied Geld. To obtain more
than an order-of-magnitude comparison of theory and
experiment, the values of g and 8H are calculated
theoretically and a graph of y" is drawn using Eq.
(1.1). This theoretical y" curve is then compared di-

rectly with the experimental x" curve. This is much
less satisfactory than a direct comparison of a calculated
relaxation frequency with an experimental relaxation
frequency at every value of applied 6eld, but the p"
comparison is the best that can be done.

It appears that if both the real and imaginary parts
of the susceptibility were measured experimentally the
expressions relating the susceptibility to the line shift
and the relaxation frequency could then be solved for
both the relaxation frequency and the linewidth as a
function of frequency. The real and imaginary parts of
the susceptibility are, of course, related by the Kramers-
Kronig relations.

Figure 2, for p=0.032 and p=0.001, illustrates the
sharpening of the transition region at the bottom of
the manifold 5=0 and the approach to (2.8) as p
becomes small. They also indicate that G is of the order
of p below the bottom of the bulk manifold. The general
features of the theoretical results are in agreement with
the experimental results as disc.ussed above. The shape
of the curve within the manifold is discussed in Sec. V.
From Ref. 7 the expression for the line shift bH is
given by

(2.11)

where P denotes principal part (of the integral corre-
sponding to Pq), F(k) is the coefficient of aotaq in the
scattering Hamiltonian of (3.11), co is the rf drive fre-
quency, and co& is the frequency of spin wave k. This
standard result of second-order perturbation theory is
obtained formally from the usual line shape expres-
sion'~" byreplacingb(co —co&) in1/2TbyP[s (&u

—coI)j '.
Evaluation' of the summation in (2.11) with 3 cos'Hq —1
in (3.11) replaced by 3 cos'Hl, +b as in Ref. 11, gives

BH = ', [1/(b'+3b+3-) jp(4x M)
X [(3N '+b)'Ao —6b—3—9N 'j (2.12)

where
Ap=—(1/2N ) ln [ (u +1)/(u —1) i

.

Ke have defined u„as

I„=(1—b)'12,

which is the value of the cosine of the angle between
the spin-wave propagation vector and the applied 6eld
in the limit as the wave vector goes to zero and the
energy of the magnon goes to the energy of the uniform-
precession drive frequency (not the uniform-precession
resonant frequency). Equation (2.12) is valid when the
uniform precession is driven below the top of the spin-
wave manifold (and also above the top of the manifold
with N„coupled). Evaluation' of the summation in

2.5
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FIG. 2. Calculated linewidth for two small values of porosity.

(2.11) for the uniform precession above the bottom of
the manifold gives a formally diGerent result which we
shall not need here. The result (2.12) should, of course,
be averaged over the diGerent demagnetization 6elds
around a pore just as the relaxation frequency was.
This will remove the narrow in6nity at e„=1. In-
vestigation of the result (2.12) indicates that the line
shift is relatively independent of the parameter b when
the uniform precession is driven below the bottom of the
manifold. However, within the manifold the line width
BH is relatively sensitive to the value of b chosen. As
explained above, the value of b will be chosen as 1.4.
The graph of bH as a function of 8= 1—u„' is given in
Fig. 3. Taking b= —1 as in (3.11) for purely spherical
pits, (2.12) indicates that 8H does not change sign
within the manifold. When the average is taken of the
demagnetization 6eld around a pore this is no longer
true. According to (2.12) the line shift is always positive
when the uniform precession is below the bottom of the
manifold (for any value of b). Examination of (2.11)
shows also that the line shift is always negative when
the uniform precession is driven above the top of the
manifold. This is just the frequency pushing of coupled
oscillators.

We now want to calculate the y" curve using the
relation (1.1) with the theoretical results (2.12) for bH
and (2.2) and (2.7) for relaxation frequency p. The
values of g are taken from Fig. 1(b), which was calcu-
lated from (2.7). The value of rIH which is used in (1.1)
is obtained from (2.12), i.e., Fig. 3, by averaging this
expression (2.12) over the demagnetization 6eld around
the pore as was done for p, which requires the evaluation
of (2.12) above the top of the manifold and a rather
involved machine calculation. Since the comparison of
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emphasized that the porosity p and the nonspherosity
factor b appearing in the expressions for g and gH have
been taken as 6xed constants rather than treating these
as parameters even though neither of these values are
well known. By treating p and b as parameters, a much
better agreement between theory and experiment could
be obtained.

The resulting theoretical g", illustrated in Fig. 4,
agrees quite well with the experimental points.

I.O— III. THREE-MAGNON UNIFORM-PRECESSION
RELAXATION

I—1.0 I I i t I I I I I I I—.8 -.4 0 .4 .8 I.2 I.6 2.0
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FIG. 3. Calculated line shift.

the theoretical y" curve with the experimental y"
curve is not expected to be perfect, and since the value
of bH within the manifold is relatively sensitive to the
parameter b in (2.12) we make a simple approximation
to BH of Fig. 3.

We can make a very good guess at the eGect of aver-
aging (2.12) over the demagnetization 6eld of a pore.
The main eGect of averaging (2.12) is the removal of
the infinity at 6=0 and a lowering of the value of BH
for values of 5 slightly greater than —1. This lowering
results from averaging in some of the large negative
values of bH for 8 slightly less than —1. Thus bB is
equal to a finite constant at B=D and drops oG slowly
as 8 increases. The general shape of Fig. 3 within the
bulk manifold (—1&8(0) is correct, with the slight
lowering near 5=1. Thus the approximation of Fig. 3
by the three straight-line segments

BH= —205 Oe for H pp& —205 Oe
2 47H pp+ 388 for 205 Oe &H pp (274 Oe

= —0.47 (H,»—835)+800 for 274 Oe&H, »
should be reasonably accurate. The amplitude of this
curve was selected to make the width of the theoretical
p" curve agree approximately with the width of the
experimental g" curve. The value of this amplitude
pa, rameter is the correct order of magnitude predicted
by the theory, but is probably somewhat higher than
the value from the theory. This is somewhat ambiguous
since the theory predicts an in6nite BH at the bottom
of the manifold. The general features of the theoretical
y" are correct. The order of magnitude of the linewidth
and the line shift are correct, and the general asym-
metric shape is predicted by the theory. It should be

In this section the contribution to the linewidth
from three-magnon scattering of the uniform precession
induced by the nonmagnetic pores in the sample is
calculated. In order to calculate the scattering Hamil-
tonian, the model of a spherical cavity of radius R at
the center of spherical sample of radius ro(ro&)E) is
used. The magnetic potential at the position r is given by

div[M (r') 8 (r' —f|'.))
&p(r) =- dr',

where the function 8(r' —E) is 0 for r'(R and 1 for
r'&R, the origin of r and r' is the center of the cavity,
and the integral extends over the sample. The demag-
netization 6eld of the cavity is the negative gradient
of this potential. The magnetic moment M(r') can be
expanded in magnon creation and annihilation opera-
tors correct to third order as follows" '4:

(3.1)

2p,
&,(r') =M,——P exp[i( —k„+k„).r']a. ta„,

V vp

~,(r') =- P [exp(ik„- r')a„+c.c.]

—,"";)"'(.,"..) (3 2)

where a, and a„t represent creation and annihilation
operators of spin wave k„, V is the sample volume, M,
is the saturation magnetization and p is de6ned as
kgl~sl.

Using (3.2), the magnetic potential y(r) becomes

y(r) = q ~(r)+ ya(r), (3.3)
~ C. Kittel, Quaetlm Theory of Solids (John Wiley R Sons, Inc. ,

New York, 1963).

&(P (exp[i( —k,+k„+k~) r']a„ta„az+c.c.),
Xfr, v

1 (4pM, '"
M„(r') =—

l P [exp(ik„.r')a„—c.c.]2i( V

1 (4~~ t

2i& V &2VM)

XP Iexp[i(—k„+k„+k~).r']a„ta„aq—c.c.),
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where

and

2p
M, —g—expLi( —k,+k„) r']a„}a„cos8+ —,

' P Lexp(ik„r') exp( —iy) a„+c.c.]
V v

(4',)}}' p cos8'6 (r' —R)
g {expLi(—k.+k„+kq) r'] exp( i—y)a„ta„a},+c c }. . sin8 dr',

V I 2VM', }}
I
r—r'I

2p, i(4pM, 'I'
(r}=—

(
—r}—}.'+}„*}e*p}"(—t„+k„}r'gu„ts + } x }}.exp}ilr„r'ga. —c.c.}

V 2E V v

8(r' —R)
P {(—k, +&„+k}.) expLi( —k„+k„+k}) r']a„~a„a} c.c.)—

2~ V 2VM }}~
I
r r'I—

The magnetic potential (3.3) consists of t}}}}oparts. The first part q g is induced by the moments on the surface of
the cavity. The second part p& is induced by the magnetic moment in the bulk material. We make the approxima-
tion that the spin-wave spectrum is unaffected by the presence of the pit. The magnetic Geld. at r can be evaluated
easily by H(r) =—grad+(r). Then, the scattering Hamiltonian is the integral

exp(ik r') exp(ik r)
8(r' —R)dr' =4}r

I
r—r'I k'

Then, q~ is

i /4@M,) '}' exp(ik„r) exp (—ik„r)
qs ———

I I
4~ P

"
u„-a„—P k„+u„~

2k V r k,2

i&I mpL}( 4+~ }'&3 i 4g}i',}"' g

)+'I —4 g (—k„*+0„*)„t „——
&v "

I

—k+kI' " " ""
2 v i 2vM,

expLi( —k„+k„+k},) r]
&(4}r Q (—k„+k„+k},-)a„ta„ag—c.c. . (3.4)

I

—k„+k„+kgI'

First, we calculate the contribution of q~ to the scattering Hamiltonian of the uniform-precession magnon. Ef
the cavity is small compared with the total volume of a sample, we can use the following approximation:

Therefore, the scattering Hamiltonian of a uniform-precession magnon is

t'pM. jp(kR)-
3'.s&'& =Ss'R'I Q(3 cos'8p —1) (a,ta„+a,a, &),

I V ~ ~R

3'.s&'&= t P )Fs(kk')apa}, a},.t+c.c.],

(3.5)

(3.6)

where
r"= 8}r R'(4@M,/ V)"'(p/ V),

f'k k. 0' k.' 3 (—k' +k )(—k,'+k, ))j,(Ik—k'IR)
P}}(k,k') =

I +
E a' y" 2

I
—k'+kI

(3.7)

(3 g)

and j~ is the first spherical Bessel function. '~

25L. I. Schiff, Quantum c4Ieclsanics (McGraw-Hill Book Company, Inc. , New York, 1955), 2nd ed. , p. 77; M. Sparks pffJgpeIzcand E/ectric Resonance end Re4xakws, edited by G. Smidt (North-Holland Publishing Company, New York, 1963).
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Next, we calculate the scattering Hamiltonian corresponding to y~. If we neglect spin-wave terms having
4~0, yg is

q ~———(4pr R'/3) {M,(cos/r')+ p (4prM / V)"'[ap exp( —iy)+apt exp(imp)] (sin8/r')) . (3 9)

This corresponds to the magnetic potential induced by the magnetic-dipole moment (4pr/3)R 3f, placed at the
center of a cavity. Hence, the contribution to the scattering Hamiltonian is

(p~s
se &&=—Ri

5 V

332—r2

Pupapt exp( —ik r)+c.c.]dr
r5

r5
expLi( —k'+k). r]apap»+c. c. dr. (3.10)

After evaluating the integral, the two-magnon term is the same as (3.5) and the three-magnon term is given by
(3.6) if Fs(k, k') is replaced by

apL( —k'—+k—)(—k, '+k, )/( —k'+k ~][jg(~—k'+k(R)/i —k'+k~R].

Therefore, the total scattering Hamiltonian of a uniform-precession magnon is

If'p,M, j&(AR)-
K~ )=1&r RP~ P(3 cos ep —1) (aptup+apupt),

p kR

K&P&= P P LF(k,k')apapapt+c. c.],

(3.11)

(3.12)

where
-X-u, I' I,' (—X-'-+ S-) (—Z.'+e.)-j,(~1 —k'~R)

F(k,k') = + +3
i p k'*

f

—k'+k[p
I
l —I 'IR

(3.13)

and ] is defined by (3.7).
The scattering Hamiltonian of a uniform-precession magnon by the three-magnon process is given by (3.12).

%e now calculate the relaxation frequency due to this three-magnon process. The kinetic equation of the number
of uniform magnons no is given by the well-known formula"

dnp/dh= —(n p np)/TM—,

where the bar denotes thermal equilibrium and the transverse relaxation time T20 is given by

(1/T..)= (2~/A)P P ~
F(l,k') ~'(n, —n, .)S(a .+ i',—a, ,),

(3.14)

(3.15)

where np is the number of magnons having wave vector k; F is defined in (3.13) and $ in (3.7). We use the ferro-
magnetic dispersion relation for spin waves, "'4

co&=yE(Hp E*((u /y)+(D/hy)jp')(Hp E (ra /y)+(D/hy)k'+4pr3f. sin'ek)J"

for k much smaller than the Srillouin-zone boundary value. For high fields, this is approximated by"

cop=cd,+ (D/A)k,

(3.16)

(3.17)

where co;=yBO—N~ and E, is the a demagnetizing factor which has the value 1 for a disk-shaped sample with
the applied 6eld perpendicular to the plane of the disk. The energy of the uniform-precession magnon Aau„ is very
nearly equal to Ace; because kv„ is just below the top of the manifold of the spin-wave spectrum. VVe shall Gnd that
the important magnons have wave vectors too near the Brillouin-zone boundary for (3.16) or (3.17) to be valid;
so a modidcation wiQ be made below. The relaxation frequency for the three-magnon scattering is calculated for
both dispersion relations (3.17) and the modified one (3.37).

Using (3.17), the b function of (3.15) becomes

5(Au)„+Au)p —Scop.)= 6[k' (Ace /D+ k')'~']. —
2D(fuu /D+Ip )'I' (3.18)
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Making the usual assumption that the k and k' magnons remain in thermal equilibrium, we have

(Aced„/ksT) exp((Dk'+Ace~)/ksT)
+k +k'

[exp((Aco~+Dk')/ks T)—1][exp((hra;+ qua„+Dk')/k~T) —1]
(3.19)

Here we used the approximation Ace„/ksT«1, which is well satisfied for co„=5X10"sec ' and room temperature.
If we replace the summations over k and k' in (3,15) by integrals, 1/T~0 is written as

(fuu /ksT) exp((Dk'+Aco, )/kgT)
( F(k,k') ['

[exp((hu;+Dk')/ksT) —1][exp((ko~+Aa&„+Dk')/k~T) —1]

X 5[k' —(ha& /D+k')"]dkdk' (3. .20)
2D(Ace /D+k')"'

The angular dependence of the integrals in (3.20),
which is determined by bracket factor in E(k,k') as
defined, by (3.13), makes an exact evaluation of these
integrals rather tedious. For an order-of-magnitude
calculation this bracket angle factor can be replaced by
a constant. Since an upper bound to the square of this
factor is 25, we use the reasonable value of 10 so that
(3.13) becomes

IF(k,k') I'= 1oLji(lk —k'IR)/(Ik —k'IR)]'. (3 21)

The factor jy(( k—k') (R)/( k—k'(R of F(k,k') is an
oscillating and decreasing function of ~k—k'~R. In
order to further simplify the calculation we approximate
this function by

j&(( k—k')R)/[ k—k'( R

for i k—k'iR&yg, (3.22)

=0 fo. (k-k~R-»,

where y~=4.61 is the 6rst zero point of the spherical
Bessel function j&. This approximation means that only
the spin waves which satisfy the condition

~
k—lr'

~
R&&&

contribute to the relaxation of the uniform-precession

magnon. This condition is rewritten as

[ „/D—(y,/R)']+2k' :—Np,
2k (Aced„/D+k')'"

(3.23)

where Nl, l, is the cosine of the angle between k and h,'.
Thus (3.22) may be written

[j~(l k—k'IR)/(Ik —k'IR)]'=—ge(u» —uo) (3 24)

where the 8 step function is defined by 8(x) =0 for x&0
and 1 for x& 0 and uo is defined in (3.23). In evaluating
the integral over dk', we choose the z axis along k so
that in (3.24) u». =u', where u' is the cosine of the
angle between k' and the z axis. Then the azimuthal-
angle integral gives 2w and the polar-angle integral
becomes

= 1—Np for Up&1
du'1(u' —uo) (3.25)

—1 0 for up&1.

This condition up(1 determines the lower limit kl, of
the k integral

kg= [D 'bed —(yg/R)']/[2yg/R]. (3.26)

On evaluating the two azimuthal angle integrals and
the k' integral, (3.20) becomes

~20

(2x)~ V~2 10 h~.
P i

k'dk du du'8 (u' uo)—
h Sm ) 18D AT pz

exp((Dk'+ Ace;)/ks T)(hcu„/D+ k')'I'
X , (3.27)

[exp((hco~+Dk')/ks T)—1][exp((Aced,+Ao& +Dk')/k~ T)—1]
where k defines the Brillouin-zone boundary in the spherical-boundary approximation. From (3.25) and (3.26)
this reduces to

1 5p V'Iud„
dk k(2k[(hco„/D)+k'J" —[(&ca./D) (p&/R)'+2k'])—

T20 9hakgT I,J.
exp[(Dk'+h, )/k, T]

X . (3.2S)
(exp[(hco~+Dk')/k~T] 1){exp[&co„+tuu,+—Dk')/ksT] —1)
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applied Geld for a magnon having the frequency of the
uniform precession and k approaching zero

1/T20(2) = [(2.1)167r4R'I4M, ]/3k V. (3.34)

The factor 16 in Eq. (9) of Ref. 4 is incorrect and
should read 32. Thus, with y~=4.62, we have

[1/TM(3)]/[1/T24(2)]= [10444'k44T]/[Dk44„R]. (3.35)

At 300'K and taking" R=4X 20 4 cm this gives

[1/T44(3)]/[1/Tmo(2)]= 10 2. (336)

0 I I I I 1 I I

-I.9 —I.5 —I. I -0.7 -0.3 0 O. I 0.5 0.9
NORMALIZED APPLIED MAGNETIC FIELD II

FIG. 4. Comparison of experimental (points) and theoretical
(solid) line shape g".

k,'»h „/D»(~&/R) .

With this inequality and

[(km~/D)+k']'"~k+If40 /2Dk+ (Aa )'/SD' k'

the brace factor reduces to

(3.30)

{2k[(k4d /D)+k']'" —[(k44 /D) —(y4/R)'/2k']}
—(y,/R)' —(bed„/2Dk)' (3 31)

The integral in (3.28) can now be evaluated numerically
for any values of temperature and of co; and co„. It is
more instructive to evaluate this integral by making
the high-temperature approximation, which with (3.30)
gives for (3.19)

n„n4. A44 ~kT/2—'D4—k. (3.32)

A factor of 2 is included as a correction because the
high-temperature approximation is not very well satis-
fied, since Dkz'/k~T 2.5 at 300'K. Usin—g (3.31) and
(3.32), (3.28) becomes

1 4$v'itu. 4 r ~
p)' (4 „)'-

T20

The value of the integral is Dy44/(kcd„)'R4; with P
from (3.7) we have

1/T, o(3) =6404r y,'I4'M, k44TR'/9DVk'(g„, (3.33)

where (3) denotes three-magnon process.
The two-magnon linewidth is from Refs. 10 and 11

with G(8 )=0.109[(3cos28 —1)+2.4]2/cos8„= 2.1 for
our geometry, where 8„ is the angle between k and the

This can be simpliGed by examining the relative sizes
of the terms in the first brace { }:ha&,/D —her„/D—7X10" cm—', with' R=4X10 ' cm, (y /R)'=10'
cm 2((k441„/D. Thus, (4.13) reduces to

kz,—k4d„R/2Dya —3.3X 10'cm ', (3.29)

so that

(3.37)Ek=Ak,

where A is the order of E„/k as defined in Fig. 5
should give order-of-magnitude accuracy in (3.20). It
is not dificult to rework the above calculation using
(3.37) in place of (3.17). In this case Ik' —kIR is
always much larger than pz so that (3.22) must be
replaced by the asymptotic expression

[j4(l k' —k IR)/I k' —k IR]'
=cos'(I k' —k

I R)/I k' —k
I
4R'.

The rapidly oscillating cosine-squared function can be
replaced by the average value ~. In evaluating the re-
sulting integral,

2 40''M Ace k TE2
d (PIc dQIc dIwt'

fiVA~ 0 g 0T20

[k+ (h4d /A)]'X, (3.3S)
I
k' —kI4

we approximate
I

k' —kI 4 by (k' —k) 4= (A/k44„)4
within the solid angle (k44„/Ak)', i.e., where

I

k' —kI
k' k=k4d„/A, —and —zero outside this solid angle; this

is valid for k ~ (M„/A). For k~ (k40„/A) we approxi-
mate

I

k' —kI~ by the same value of (A/hem„)4, but
within the total solid angle 4x. There results

1/T44 ——[40I4'M, k k44TR']/[VAk'44„]. (3.39)

With A =600k~ ergs/104 cm ' this gives

[1/T2o(3)]/L1/T2o(2)]=—1o

This is an order of magnitude smaller than the observed
value of 150/(650 —150)=0.3.

Now from (3.19) we see that kr, is not negligible with
respect to the Brillouin-zone boundary wave vector so
that the approximate dispersion relations (3.16) and
(3.17) are not valid. The dispersion relation for yttrium
iron garnet is not known, but the curve in Fig. 5 should
not be a bad approximation. In this figure a con-
struction is shown which gives k' as a function of k
from the energy delta function 8 (k44& —ha&, —k44„). In the
expression (3.20) for 1/T24 the function [j&(Ik' —k

I R)/
Ik' —kIR]', which decreases rapidly as Ik' —kI in-

creases, is largest where k' —k is small, i.e., in the
linear region of Fig. 5. Thus the approximate linear
dispersion relation
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Thus, using the more realistic dispersion relation (3.37)
gives an even smaller result than (3.36). We conclude
that the three-magnon scattering induced by the pores
and nonmagnetic inclusions is too small to explain the
observed' ' relaxation frequencies outisde the magnon
manifold.

IV. RELAXATION PREQUENCY OP THE
MAGNONS WHICH INTERACT WITH

THE UNIFORM PRECESSION

I'IG. 5. Approximate
magnon dispersion re-
lation for yttrium iron
garnet with a con-
struction giving k' in
(3.15}as a function of
k from energy conser-
vation.

I

k

NAVE VECTOR

The power-absorption line shape when the uniform
precession is driven outside the manifold was explained
in Sec. II in terms of the variation of the demagnetiza-
tion field around a pore in the sample. An alternative
explanation" is that the degenerate magnons with which
the uniform precession interacts also have a finite re-
laxation frequency, as discussed in Sec. I. In the ab-
sence of these two eGects the two-magnon theory
predicts that the relaxation frequency q is identically
zero outside the magnon manifold; thus, g" is identi-
cally zero outside the magnon manifold. There are other
e6ects which can give rise to nonzero g outisde the
magnon manifold, but all of these seem to be much
smaller than the two effects we consider. For example,
in evaluating the Pp in the expression for g [which is
obtained from Kq. (4.1) by replacing P1/x (co pp&) by-
b(pp —ppp)], it is assumed'p that the coupling coeKcient
F(k) is strongly peaked at very small values of k. If
this approximation is not made but the integral is
evaluated exactly, then it is found that q is nonzero
above the top of the manifold owing to the coupling of
the uniform precession with the degenerate magnons
which now have relatively large k vectors.

Parallel-pumping experiments indicate that the de-
generate magnons relax much more slowly than the
uniform precession, as discussed on p. 208 of Ref. 12.
The reason" for the slower relaxation of the degenerate
magnons is that their relaxation frequency is controlled
by their long mean free path. This mean free path is in
turn controlled by the spacing between the voids or
nonmagnetic impurities. That is to say, the relaxing
magnon is to be considered as a wave packet propagat-
ing through the sample; so it is not scattered by a
given pit except when it comes near the pit. If the
mean-free-path efI'ect were not taken into account, the
scattering calculation would predict that magnons
having nonzero k would relax much more rapidly than
uniform-precession magnons since the density of final
states is proportional to k'.

In order to illustrate explicitly the effect of intro-
ducing a relaxation frequency p& for the degenerate
magnons, we calculate the relaxation frequency 1/2T
for the uniform precession for nonzero qq in the present
section. We find the not-too-surprising results that q~
must be approximately the same size as 1/2T; in other
words, in order to explain the experimental results, ' '

the degenerate magnons must relax as fast as the
uniform precession itself.

The usual expression [Eq. (7) of Ref. 10 before inte-
grating over angles and with (3 cos'8p —1)' replaced by
0.109 (3 cos'8p —1+2.4)'a& /co; s,s discussed in Ref. 11]
for the uniform-precession relaxation frequency

where

1 2'—=—P i F(kR) )'b(hpp~ —hpp„),
T

(4.1)

1/Tp(2) = [16p'pM„R'J]/[3hV].

Here J is defined as

(4.2)

1

J=— du 0.109(3u'—1+2.4)'

X—,(4.3)
or; I [(co;—co„)/-', pp„+1—u']'+ [gp/-', co„]')

where I—=cos8. In the energy-conservation limit of
qq/-', ~ much smaller than one, this reduces to

J= [0.109(3 cos'8„—1+2.4)'/cos8 ]a& /co, (4.4)

within the spin-wave manifold and zero outside the
manifold, where

cos'8 = (co,—(a„)/-,'(a„+1,

F(kR) = 16(0.109)'"pr'R'(pM, / V)
X (3 cos'8p —1+2.4) (co„/co;)[j~ (kR)/kR]

is valid for strict conservation of energy, that is to say,
for the limit of g~ going to zero. For nonzero lifetime g~
of the interacting h magnon the delta function must be
replaced by a normalized Gaussian function:

8(ha) p
—hcp ) ~ (1/prh)g/[(ppp —co„)'+gj].

In the equa, tion-of-motion derivation ""the Gaussian
arises directly, so the 5-function approximation is not
made. Then, changing the summation to an integral
P&=[V/(2pr)'] J'dk, evaluating the azimuthal angle
as 2m, and evaluating the k integral by using the fact
that [j&(kR)/kR]' is large only for the small values of
k(R ', and using 2p, =ph and f+d(kR)[j&(kR)]P=+/6
gives
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FIG. 6. KBect of re-
laxation frequency pz
of degenerate magnons
on the uniform-preces-
sion relaxation fre-
quency.

A cos 8~= 2tjg/g(d~,

which is equivalent to

(4.7)

case rig/ ,&u-„=1/100 in Fig. 6, it is seen that the line-

width J drops sharply at cos'8„=1 from J=i.9 to
J=O. The width of the dropo6 is icos'8 —1/50 corre-
sponding to Acro/y= (1/50)-', ~ /y=17. 5 Oe. For the
case qqj-,'~ = ~ the width of the dropoB at cos'8=1 is
A cos'8 —-', corresponding to Aa&0/y = (-', )-', cv /y =440 Oe.
These widths of A cos'8„=1/50 and-', for gq/-', co =1/100
and ~~, respectively, are both in agreement with the
relation

5M~= O'Qg. (4.8)

1/yT2= 2vr'M, pJ, (4.6)

with J def'med by (4.3).
For arbitrary pz/2', on contemplating the integral

J(~,—ra ) in (4.3), it becomes obvious that this function
of cos'8„becomes very small as (cu,—co )j-',co becomes
large and positive (i.e., for the uniform precession well
below the bottom of the manifold) and drops to this
small value in a width of co;—~„of the order of gq. In
this limit (co;—cv )/-,'so~)1, J reduces to the small value

8 'gd/ g &mJ~
Sn [(s),—co.)/-', co j'+ [gg/-', co ]'

The width gq/ ', co~ of the d-ropoff at co;=co„of J as a
function of co,—ar„ is illustrated in Fig. 6 which was
obtained by evaluating J numerically for the cases
gq/-', co = 1/100, x~, and —',. The linewidth is proportional
to J according to (4.6). The abscissa is 8= 1—I„',where
~„'=cos'8„=—1+[(co,—co„)/-,'o&„]; this is linear in the
applied Geld coo/y since co, =coo—4ryM, . Notice that
cos'8„=1 corresponds to the crossing of the uniform
precession below the bottom of the manifold and cos8„
=0 corresponds to the top of the manifold. For the

in agreement with the corrected Eq. (9) of Ref. 10.
The factor 16 in Eq. (9) of Ref. 10 is incorrect and
should be 32, and from Ref. 11 the factor (3 cos'8 —1)'
is replaced by 0.109(3cos'8„—1+2.4)'(co /co;). Here
cos8„, the value of cos8q in (3.16) with cuq=a&, k=0 and
cos8i, =cos8„, is the value of cos8~ for the magnons into
which the uniform precession scatters most strongly.
The approximate dispersion relation

cog ——Dh 'k'+&a,+-,'co sin'8p

has been used in obtaining (4.3).A compensating factor
a& /cu; is added to (4.3) to give the limiting result (4.4)
in agreement with the result obtained from the correct
dispersion relation (3.16). Here &a; is dered for (3.17).
This is the high-6eld approximation to (3.16) obtained

by expanding the second factor in the square root. The
two-magnon relaxation frequency 1/T& is obtained by
multiplying the single-pit result (4.2) by the number of
pits pV3/4x. 2P, where p is the fraction of the volume
occupied by pits. %ith yh= 2p we have

Comparison of Fig. 6 with the "experimental" value of
Fig. 5 from I indicates that the uniform-precession re-
laxation frequency 1/2T is of the correct order of mag-
nitude for the value qq

——0.25(-,')co =220 Oe. This is
two or three orders of magnitude larger than the usual
parallel-pumping relaxation frequency. %e conclude
that the relaxation frequency of the degenerate mag-
nons cannot explain the relaxation frequency of the
uniform precession outside the manifold.
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Fro. 7. Field dependence of uniform-precession
relaxation frequency.

V. FIELD DEPENDENCE OF THE TWO-
MAGNOH LINEWIDTH

In this section the two-magnon linewidth for the
uniform precession driven within the magnon manifold
(0&cos8„~1 or —1~8&0) is considered. The experi-
mental low-6eld relaxation frequency from Fig. 6.3 of
Ref. 1 indicates that the uniform-precession relaxation
frequency is relatively independent of applied 6eld over
the full range —1~8~0 for which the uniform pre-
cession is excited within the magnon band.

The theoretical result (4.6) and the experimental
curve from I are shown in Fig. 7. The theoretical curve
of Fig. 7 is drawn for the energy-conservation limit
zz/2&v~ —+0 so that J in (4.6) is given by (4.4). The
agreement of the magnitude of the theoretical curve
with the experimental curve is good in view of the crude
mode used to derive the theoretical result (4.6). The
strict 6eld independence of the experimental results is
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at first surprising, but it is possible that this is not in
disagreement with the theory. As indicated in Ref. 11,
the result (4.4) cannot be expected to give the exact
functional dependence of the relaxation frequency on
the applied. field. It is interesting to note that if the
constant factor 2.4 in (4.4), which was chosen to 6t
Seiden's" high-Geld data, is changed to 4, the relaxation
frequency is constant to within 8% for 0.16~cos'8„~ 1

as shown in Fig. 8. Such a change in the constant seems
not unreasonable since the "pores" in the present
problem are nonmagnetic inclusion of a high density
(~=650 Oe), while the "pores" in Seiden's experiment
are chief voids and surface pits of low density
(68& 50 Oe). The shape of the pores may be different
ia the two cases and close spacing of pores destroys the
spherical symmetry. The sharp rise in relaxation fre-
quency at the top of the manifold (8=—1) in Figs. 7

or 8, which has been observed by BufHer, 4 was probably
not observed by Liu and Shaw because 5= —1 corre-
sponds to the far tail of the Lorentzian curve, where
the accuracy is very low. Also, as seen in Figs. 7 and 8,
the increase in 1/T near 8= —1 occurs at much smaller
values of 8 than for 1/T 1/cos8„, as predicted by
Geschwind and Clogston. "Finally, the finite lifetime
of the degenerate magnons (Sec. IV) and the modi6ca-
tion of the dispersion relation by the pores (Sec. II)
drastically reduce the peak at cos'8 =0.

As explained in Sec. II and Ref. 7, the line shift 8H
is equally as important as the relaxation frequency 1/T
in determining the g" line shape. When the uniform-
precession relaxation frequency 1/T is a constant, then
the line shape is true Lorentzian if either bH is a con-
stant or if bH is linear in the applied field. In the latter
case of a linear 8H, the linewidth of the y" curve is

"S. Geschwind and A. M. Clogston, Phys. Rev. 108, 49 (1957}.
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Fm. 8. Approximate applied Geld independence of uniform-
precession relaxation frequency showing improved agreement of
theory and experiment.

not given simply by 1/T but is determined by 1/T
and the slope of the 8H curve. It is quite reasonable
that bH should be linear in the applied field over a
large range of applied fields within the manifold. This
observation has already been implicitly made in writing
down the approximation to 8H given under Kq. (2.10).
We conclude that a true Lorentzian curve of g" within
the magnon manifold is consistent with the theory.
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