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Experimental data on the shapes of the Fermi surfaces of K and Rb are used to determine the first two
Fourier coefficients of the effective potential in the metals for scattering at the Fermi energy. Band-structure
contributions to the specific-heat masses and cyclotron masses are deduced using the empirical values of the
band gaps. Addition of mass-enhancement terms arising from electron-electron and electron-phonon inter-

actions gives fair agreement with experiment.

I. INTRODUCTION

HE use of the pseudopotential approach to the
study of transport properties and Fermi-surface
structures of solid and liquid metals is now firmly
established.! For many metals new and powerful tech-
niques, such as the Heine and Abarenkov? model
potential method, give insight into the nature and form
of the effective potential experienced by conduction
electrons. For the transport integrals what is required
is the Fourier transform of the screened electron-ion
potential. It is therefore often convenient to define the
effective potential by its Fourier transform and it is
more common to talk about the band gap or Fourier
coefficients of a potential in a metal than to consider the
real-space equivalent. For scattering of conduction
electrons on the energy shell the argument of the trans-
form runs from around zero (the plasma-scattering
region) to 2kr (the neighborhood of the structure
region). The curve, V(K) say, is a measure of the scat-
tering probability for processes confined to the Fermi
surface and involving a momentum transfer K(=k—k’).
Because the pseudopotential is normally defined in a
plane-wave representation we can regard V(K) as a
form of ¢ matrix for the scattering for a single ion in the
sense that it is precisely the operator which takes an
electron in a plane-wave state k into a different state k’,
both k and k’ lying on the energy shell Er. If V(K) in
the important structure region is determined from
experiment then all of the most significant higher order
terms are automatically included.?

From the definition of the potential through its
Fourier transform and its use in transport-phenomena
calculations the argument 2kr enters as a natural
physical cutoff. The V(K) curves, with K running from
0 to 2kr have been successfully employed in the Ziman
theory* of the transport properties of liquid metals. For
a solid metal, and particularly here for the case of the
alkali series, we are led to consider the possibility of
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continuing the curve V(K) beyond 2kr. Formally there
is no problem in defining a Fourier transform of the
Heine-Abarenkov (HA) model potential for arguments
greater than 2kr. The physical interpretation of the
continued curve is also quite straightforward: we are
still concerned with scattering processes which conserve
energy. The momentum transfer (k—k’) is larger than
2kp. It therefore follows that such a scattering event
must proceed with an intermediate Bragg reflection and
thus the vectors of the reciprocal lattice enter into the
definition of the potential. HA pointed out that even
for momentum transfers less than 2kr intermediate
states brought in through Bragg reflection could lead to
small changes in the model potential. These were termed
second-order processes and a quantitative study of their
importance in both the model potential and in the
screening function has recently been given by Animalu.5

To include all of the possible Bragg reflection
processes in the definition of the potential for K > 2kp is
a formidable problem. In this paper we seek to avoid
these difficulties for the cases of potassium and rubidium
by appealing directly to experimental Fermi-surface
data currently available for these two metals. Recent
de Haas—van Alphen studies® of the Fermi surfaces of
potassium and rubidium reveal them to be only slightly
distorted from free-electron spheres. From the mag-
nitude of the distortions, which have been mapped out
with great precision, we are able to elucidate informa-
tion on the first two band gaps V119 and V0. We note
that the arguments for these Fourier coefficients of the
potential exceed 2kr and a determination of the band
gaps thus yields a guide to continuation of the V(K)
curve.

II. TWO-BAND MODEL

The scheme we use may be simply termed a two-
band model: we consider the s and p bands only and
ignore the effects of higher (and lower) bands. Without
any zonal structure the Fermi surface of the alkali
metals is a free-electron sphere containing one electron
per atom. The presence of a single Bragg scattering
plane introduced outside of such a sphere mixes in a

reflected component into the otherwise single orthogo-

5 A. E. O. Animalu, Phil. Mag. 11, 379 (1965).
2° (Il)g.&l;oenberg and P. J. Stiles, Proc. Roy. Soc. (London) A281,
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nalized-plane-wave (OPW) wave function. For this
combination the energy surface Ex=Ep is defined by
the secular equation for the energy FEy:

k2—Ey Ve

=0 1
Ve (k—G)2— Ex W

In this equation Vg is the Fourier coefficient of the
effective potential associated with the zone plane
situated 1/2G away from the center of the zone. We
find it convenient to work in mass independent units

w2/ 2m=2r/a=1,

and to use a zero of energy defined by (k| V|k)=0 (see
Sec. IV). From a simple second-order perturbation-
theory argument’ we anticipate the Fermi energy Ep to
be shifted from the free-electron value by an amount
proportional to | Vg|2. In fact, for the simple two-band
case we write:

Ep=Ep'—Cq|Veg|2. (2)
Now suppose we also write
kr=Fkr*(1+A(0)) 3)

representing the polar equation of the distorted surface
of constant energy based on G as azimuth. Thus A(6) is
the dilatation to the free-electron Fermi radius kz°.
Experimentally the quantity A is found to be exceed-
ingly small (of order a few parts per thousand at most),
so that a simple expansion of the secular equation (1) in
A suggests itself. Ignoring squares and higher powers of
A we find the solution

A(8) = (V¢*/2Es"){[G?— 2k#"G cos6T'—Cg}. (4)

Since the Fermi surfaces of potassium and rubidium are
well contained within the zone the fraction in (4) never
becomes large.

The Fermi energy Er (and the coefficient Cg) is
determined very simply from the relation (3) for kr. We
find the volume enclosed by this surface and demand
that it be identical to the free electron volume. With
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Fi1c. 1. Combined distortion curves for {110} planes and {200}
planes as given by Eq. (8).

7N. W. Ashcroft, Phil. Mag. 8, 2055 (1963).

ASHCROFT

[iod] ) ) [ooi]
20 - T T |
| OShoenberg ¢ Stiles >
10 o (Potassium)
I Oo ° °300"
—~ 10°
vg 0 7
x L
<0 f
-20 Rotation in Rotation in
(100) - (o) -

Fic. 2. The experimental deviations from sphericity in potas-
sium (O) and the theoretical anisotropy (solid line) fitted at
[100] and [110].

the use of (4) we obtain an explicit relation for Cq: the
integration is standard and yields

Ce=(1/8Ep)xIn|(1+x)/(1—x)] ©)

with x=2kp/G. It is interesting to record here that the
equation for the shift in energy (2) remains substantially
accurate for values of V¢ approaching the free-electron
Fermi energy. [Equation (2) was tested against the
energy shifts produced in a machine calculation in which
the energy required to produce a volume containing
one electron per atom was plotted against the band
parameter V. ]

We can generalize (2) and (4) to cover the cases of
two or more Bragg reflection planes enclosing the free-
electron sphere. For instance, with zone planes at
+1/2G, expansion of a third-order secular determinant
gives

A(0)= (V¥ Ep){[G*—4Es° cos01—C¢}  (6)

which indicates that in this approximation the devia-
tions from sphericity are simply additive. (Note that 8
is again measured from the reciprocal lattice vector G.)
In conjunction with (6) we also find that to first order
in A the energy shifts (per zone plane introduced) are
additive. Similarly, for any number of Bragg-plane
pairs we have the results

Er=Ef'— Y 2CeV& (N

G pairs
and for the distortion along the direction k
Ag= Z ( ch/EFO) { [Gz— 4ER° COS20kG:]"l— Cg} , (8)

where 6xc is the angle between k and the reciprocal
lattice vectors taken in the sum.

It is important to note that the total distortion in a
given direction k is the combination of the extension of
the Fermi radius towards the nearest Bragg plane super-
imposed upon a slight decrease due to all of the others.
To illustrate, if we consider the {110} set of zone planes,
a bulge along a chosen [110] direction associated with
a selected (110) plane is actually sitting on a slight
hollow which is the combined distortion of the remain-
ing eleven {110} planes. This effect leads to somewhat
higher Fourier coefficients than might be expected.
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TasBLE I. Energies in electron volts.

) V200 aV a0 aVo0o
| V1ol ViV Voot Vi
[ V1ol [ V200 (Alone) (Ham®) (HA) dE Jgg \ dE JEp \ dE /g«
K 0.23 1.16 0.17 —0.24 —0.33 —0.0544-0.068 0.014 0.030 0.12
Rb 0.43 1.43 0.40 —0.37 —0.58 —0.19 +0.05 0.008 0.041 0.15

» The values of V200 are deduced from the splittings at H (see text). Note that V0 and V110 in Ham'’s calculation pertain to the energies at H and N,
respectively, whereas our values listed here are deduced for scattering at an energy Er.

Typical curves of (8) for sums over {110} and {200}
planes are drawn out in Fig. 1. Comparisons with plots
of actual distortions found in potassium and rubidium
(Figs. 2 and 3) indicate that the observed deviations
from sphericity arise from a weighted superposition of
the {110} and {200} curves. The quantitative agree-
ment shown in Figs. 2 and 3 is a result of assigning to
| Viw| and |Vag| the values given in Table I. Distor-
tions from inclusion of higher sets of zone planes ({211},
{220}, etc.) are small, largely isotropic and alter very
little the curves of Figs. 2 and 3.

The agreement between (8) and the experimental
points of Shoenberg and Stiles is reasonable. What is
clearly demonstrated is the importance of including the
effects of the (200) band gaps (see Sec. III). It is
possible, of course, to fit a 110 curve to the principal
(110) distortion but the overall agreement with the
experimental points is poor as can be readily inferred
from Figs. 1, 2, and 3. For the purposes of comparison
we give this value of | V11| in Table 1.

III. THE BAND GAP

From the values of the parameters listed in Table I it
appears that | V10| deduced from Fermi surface data is
in better agreement with Ham’s? calculated values than
with the estimates given by Heine and Abarenkov. We
note that our values of | V11| are deduced for scattering
on the Fermi surface and it follows that the energy-
dependent band gaps determined here pertain to the
choice E=FEp. Ham’s values for Vi (as listed in
Table I) are derived from the band splitting at N and
therefore properly relate to the choice E= Ey. We make
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F16. 3. The experimental deviations from sphericity in rubidium
(% ) E%i,rigjthe theoretical anisotropy (solid line) fitted at [100]
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$F. S. Ham, Phys. Rev. 128, 82, 2524 (1962).

a similar distinction between the Vg parameters
gleaned from Ham’s work and the Vyy parameters
found here. Let us consider the symmetry point H. In
the free electron approximation the lowest level is
sixfold degenerate at energy Ey. Under the action of the
crystal potential these levels split into a triply de-
generate, doubly degenerate and singlet levels; viz.,

His=Eg—"Vap (triple),
Hy=Ep+Va0—2V1o (double) )
Hy=Ep+Vaet+4V1e (single).

It follows that Vygo=%(H1+2H 12— 3H15) and the values
quoted in Table I are calculated from this relation using
Ham’s tabulated values. These parameters are ap-
propriate to an energy E=Ey; our values are ap-
propriate to E=Ep.

It is clear that the empirical magnitudes for Vg are
considerably in excess of the results listed by Ham.
Examination of the experimental distortion data shows
that the deduced magnitude of the Vjg’s are not un-
expected. In potassium the distortion along (100) is
actually larger than that observed along (100), and this
implies a large gap on the (200) face which is far less
effective in producing distortions to the Fermi sphere
than the much closer (110) face. Likewise in rubidium;
if the {110} planes were acting alone the distortions at
(110) would be —80X10~%, but what is observed is
—23X10~* and a substantial (200) band gap is required
to bridge the difference.

Naturally Eq. (8) does not permit us to determine
the sign of Vi or Vag: we elect to make them all
negative for the following reasons. First, this choice of
sign gives the best fit in a determination of the effective
masses [Sec. IV, Eq. (11)7]. Second, the Vi3, match
better with Ham’s values. The differences between
Ham’s Vg and ours may be regarded as a core-shift
effect.” To assign positive values to V3 requires an
exceedingly large change. Third, choosing both to be
negative ensures a fairly smooth continuation of the
model potential V(K) curves for potassium and ru-
bidium.!® These curves, together with those for lithium,
sodium and cesium are shown in Fig. 4. As we have
chosen to work in mass-independent and lattice-

® For a discussion of core shifts and pseudopotentials, see P. J.
Lin and J. C. Phillips (to be publishedg)

1 Lorna J. Sundstrom, private communication, and Phil. Mag.
11, 657 (1965).
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TasLE II. Effective masses for the alkali metals. (8m/m).., is taken from Rice (Ref. 12) using a linear extrapolation. The errors
attached to K and Rb are estimated to cover both extrapolation and the neglect of higher order terms. The errors attached to (8m/m)..p

cover umklapp corrections and the form of potential (see text).

(8m/m) e-e (8m/m)e-p B8 (m*/m) Tota1 (m*/m)cr ® (m*/m)sm
Li 0.03 0.34 0.24» e 2.19¢
Na 0.06 0.18 0.01= N, 1.24 1.25¢
K 0.1140.05 0.15+0.01 0.05 1.184-0.06 1.21 1.234
Rb 0.1340.07 0.17+0.02 0.21 1.38+0.09 cee 1.36¢
Cs 0.15 0.18 0.34» N 1.63¢

a These values of 8 are deduced from (m*/m)s
b C, C. Grimes and A. F. Kip, Phys. Rev. 132 1991 (1963).

constant independent units the differences in the
potential are best displayed by normalizing the curves
to 2Ep (where —2Ep is the long-wavelength limit of the
screened electron-ion potential). In the plasma region
(small K) the curves are almost inseparable, which is
not unexpected. Only in the region of large K, where
core effects are increasingly important, is there a notice-
able divergence.

Five of the curves shown in Fig. 4 (Li to Cs) in-
corporate local first order screening of the electron-ion
interaction. A sixth, due to Animalu® is given for Li.
This includes a small correction for the nonlocal nature
of the screening function and gives a small shift in the
case of this particular metal. Nonlocal screening correc-
tions to V(K) for the other alkali metals are small and
are neglected here. Note that the form factor for Li,
beyond 2k is a model potential continuation.

Being empirical or experimental values, the band
gaps deduced here already include the most important
higher order terms. They lie on a curve which may be
regarded as a continuation of the form factor for mo-
mentum transfers in excess of 2kr. Vi and Vg are
shown as crosses on Fig. 4. The circles are the corre-
sponding values found by Ham and the squares indicate
the HA-model potential values (V119 only).

0 Heine 8 Abarenkov x -
© Ham
x  Two-Band Model 4

1 1 ! 1
10 12 14 13 18
K(2x/a)

1 1 1 L
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FiG. 4. Pseudopotential form factors for the alkali metals and
the principal band gaps for K and Rb. In the three sets displayed
the upper point refers to K and the lower to Rb. The curves in the
range 0 <K <2kr are HA-model potentials taken from the work
of Sundstrém (Ref. 10) (all normalized to EF).

e Reference 10 and D. L. Martin, Phys. Rev. 124, 438 (1961).
4. D. Filby and D. L. Martin, Proc. Roy. Soc. (London) A284 83 (1965).

IV. EFFECTIVE MASS

The total observed effective mass (thermal, cyclotron
resonance, de Haas-van Alphen, etc.) has contributions
from three major sources, viz., electron-electron inter-
actions (ém...), electron-lattice interactions (ém..,),
and band structure!! (dmss). In a sense, the latter can
be further subdivided into a part arising from the shift
in the band minimum when the valence-electron energy
is shifted and a part which expresses the effect of dis-
tortions to the Fermi surface by the pseudopotential.
The latter is well known and is normally evaluated by
computing S5 dS(|VkE|)™* over a constant energy
surface S. The former is less well-known and represents
a correction due to the energy dependence of the
pseudopotential.

Quantitative estimates of the effect of Coulomb inter-
actions on the electron mass have been carried out by
Rice!? working in the Hubbard approximation. In
Table IT we give the results taken from Rice’s (m*/m)
versus electron-separation curve. The figures for K,
Rb, and Cs are taken from an extrapolated part of the
(almost linear) low density region of the curve. This
may introduce some uncertainties in addition to those
arising from higher order corrections. In any case, the
Coulomb effects are quite small and can be accounted
for in terms of the opposing roles exhibited by the wave
number and frequency dependence of the dielectric
function.!?

From the fact that the geometry of the alkali metal
Fermi surfaces are nearly all identical (certainly from
the point of view of evaluating transport integrals) we
may obtain an estimate of the electron-phonon enhance-
ment of the electron mass. A calculation of the electron-
phonon mass has been completed for sodium,!! and we
use similarity arguments to proceed to the remaining
alkali metals.

To second order in the effective electron-phonon
matrix element gi_i+ the phonon-induced effective mass

(1;161;1) W. Ashcroft and J. W. Wilkins, Phys. Letters 14, 285
2T, M. Rice, Ann. Phys. (N. Y.) 31, 100 (1965).
13 For some comment on this point, see Ref. 9.
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may be written
ém* ko' ko I Zr—k’ l 2
(%) = =22 @
m /ep dr A Foor

where the angular integrations are taken over the Fermi
surface. In (9) pps is just the band-structure density
of states to be considered next. If we use the rigid ion
approximation to give us g and assume that the
phonon dispersion curves (w, versus ¢) in the alkali
series are isometric, we find:

(am*/m) e_:‘)Alk (EF2)A1k (wMZ)Na
(6m*/m) !_pNa N (EF2)Na (wM“’)Alk
MNa (mBs*)Alk

MAK" (sppg*)Na )

(10)

Here w, represents the maximum phonon frequency
propagated in the metal and M is the ion mass. The
factor which cancels from the above ratio is purely
geometrical and depends only on the class of crystal
structure and the shape of the Fermi surface and hence
is common to each metal. To make this completely
tenable we must also assume that the pseudopotentials
of the metals (normalized to 2Er) are identical. This is
apparently well satisfied for K less than gp (the Debye
cutoff) as can be seen from Fig. 4. In Na the bulk of the
contribution to the phonon-induced mass comes from
normal processes (K= |k—k’| <gp). Only 209, or so
of (dm*/m),., results from umklapp contributions. In
this region (i-e|(k’'—k) ModG|<g¢p) the pseudo-
potential varies somewhat from metal to metal and the
results calculated from (10) shown in Table II include
a small correction for these differences. At present only
in sodium have the phonon dispersion curves been
measured so that the values of the wy ratios have been
deduced from elastic-constant data.!*

To obtain a reliable estimate of the band structure
effective mass it is necessary to know the energy de-
pendence of the pseudopotential. In the formulation of
Sec. I, the expression for the distortions to the Fermi
surface were deduced from a second-order secular
equation whose diagonal elements contained the energy
zero (k| V|k). The presence of this term implies that in
addition to the usual density-of-states factor arising
from deviations from sphericity!® there are additional
contributions arising from the energy dependence of
V (both explicitly and through variations in |k) via
the relation E=%2). The same is true of the band gaps
V. There is no difficulty (in principle) in evaluating
this dependence: one method might be to go straight to
the OPW formulation for the potential and evaluate the
energy derivative of the repulsive term

Z (E—' Ec)bkc*bk’c )

1#Y. P. Varshni and F. J. Bloore, Phys. Rev. 129, 115 (1963).
15 H. Jones, Proc. Phys. Soc. (London) 49, 250 (1937).
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but to do this a knowledge of the overlap function dx.
(~ S e ¢ (r)d%r) is required and this, in turn, implies
we know the energies E. and wave functions ¢. for the
core electrons.

A more direct method is to use a model form for the
potential which accounts for both the angular and
energy dependences implicity in the pseudopotential.
The model potential of Heine and Abarenkov provides
this information. In their approach the bare-electron-ion
interaction is represented by a system of square wells
for the short range behavior, augmented by a Coulomb
potential for the long-range part. The strengths of the
square wells (indexed by / and representing the cancelled
potential in the OPW method) are determined by
matching the energy levels they produce to the spec-
troscopic series for the free atoms. The values for these
parameters appropriate to the solid are found by
extrapolating or interpolating the curve of strength
against energy to the Fermi energy. (It follows that the
potential is specifically defined at the energy E=Ep.)
We are primarily concerned with the slope of the curve
and this quantity is not sensitive to interpolation errors
to the same degree as the strength parameter.

For our purposes we require (dVg/dE)g, and
(@Vo00/dE)gp.'® The values of (dV¢/dE)g, listed in
Table I are small and of little consequence to the cal-
culation of the band structure effective mass. Also pre-
sented in the table are values for (dVyo/dE)Ep: these
differ slightly from those given by HA and the dis-
crepancy is due to a contribution arising from the
change in kr accompanying any change in Ep.

In terms of an arbitrary energy scale, we may write

Er=Ef4+Voo— 2. 2CeVe?

@G pairs

and it follows that the band-structure effective mass
may be written

m* adVooo -1
GG,
. m / Bs dE Ep
with

dC¢ dVq
= ¥ 2[%2(——) +2Vocc(—> ] 1)
G pairs dE / gy dE / gp

which is evaluated using the parameters listed in Table
I. The values of 8 for potassium and rubidium are given
in Table II. The total effective mass, also presented in
Table II, is appropriate to a density-of-states factor
involving an average over the entire Fermi surface as is
given, for example, by the low-temperature electronic
specific heat. Neglecting the anisotropy of the electron-
phonon interaction, or more accurately, neglecting the
resulting anisotropy where this quantity is integrated
around a central cyclotron orbit, the cyclotron mass is

18T am grateful to Dr. V. Heine for allowing me to use un-
published data.
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TastLe III. Energies in electron volts.

Vit
[ V1ol (Ham) Ao
Li 1.3 1.37 1.3X1072
Na 0.18 0.11 5X104
Cs 0.50 —0.57 2X1072

equal in this approximation to the specific-heat mass.!”
The agreement between the calculated and experimental
masses is reasonable and indicates the need for further
data on the remaining alkali metals.

Fermi-surface mapping for Li, Na, and Cs is as yet
very incomplete. In the case of Li and Na complications
arise through the tendency of these metals to undergo
a martensitic transformation into the hcp phase at low
temperatures. Some indication of the size of the first
band gap in these metals may be obtained by using the
specific-heat effective masses and working back through
the corresponding B’s. These are marked with an “a’ in
Table II. Ignoring contributions from Vg for the
moment we find values for | V11| as listed in Table ITI.
We have compared them with Ham’s calculated values
and the agreement is satisfactory. The distortions along
the [110] direction can be evaluated with the aid of (6)
and they are listed in Table III. In Li some comparison
may be made with dimension obtained from position
annihilation experiments.!®* These give a dimension

17 §S. Nakajima and M. Watabe, Progr. Theor. Phys. (Kyoto) 30,
772 (1963).
18 . J. Donaghy, A. T. Stewart, J. H. Kusmiss, and D. M. Rock-
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corresponding to A;;0~0.03, in some disagreement with
our figure but confirming as we do that there is likely
to be no contact of the Fermi surface with the nearest
zone boundary (assuming we are dealing with the bcc
phase). Shoenberg and Stiles are able to give an upper
limit on the distortions to the Fermi surface in sodium
of about 5X10~4 in good agreement with our rough
figure. There is no data of sufficient accuracy in Cs with
which to compare the dimension obtained here. The
effect of including a set of (200) planes does not alter
significantly the value of the Vi, band gap. For
example, in Rb the ratio Vapo/Viu has the value 3.3. If
we use the same ratio in Cs the effect is merely to lower
V110 to 0.42 V.

Finally, using the band gaps and parameters listed in
Tables I-III we may readily determine the Fermi
energy (as measured from the band minimum) and
hence evaluate the minimum energies required for
direct and indirect (e.g., phonon assisted) interband
transitions. In K and Rb these are 1.43, 0.89 and 1.16,
0.99 eV respectively. Using the estimates of the band
gaps given in Table III the corresponding values for
the metals Li, Na and Cs are 5.3, 4.3; 2.05, 1.14; and
1.64, 1.36 eV respectively.
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