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Phase Transitions in Ferroelectric and Antiferroelectric Crystals
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Group theory is applied to phase transitions in ferroelectric and antiferroelectric crystals. The procedure
is given to derive for a paraelectric crystal with a given space group all possible ferroelectric states which
can exist for arbitrarily small values of the polarization, A knowledge of the space groups of the crystal
above and below the transition point makes it possible to predict whether a second-order phase transition is
possible. The predictions made for a number of ferroelectric and antiferroelectric crystals are in agreement
with available experimental data. The classihcation of ferroelectric phase transitions given by Aizu and
Devonshire s theory for BaTiO3 follow quite naturally from these symmetry considerations. In an appendix
the symmetry properties of second-order phase transitions leading to structures which cannot be described
by a three-dimensional space group (e.g. , magnetic spirals) are discussed.

INTRODUCTION

~ERROELECTRIC properties have been observed
in a large number of solids. '—' The transition from

the paraelectric state to the ferroelectric state is ac-
companied by small atomic displacements producing
electrical-dipole moments in the crystal. As a conse-
quence there is an anomalous behavior of the dielectric
constant near the transition point. The symmetry of the
ferroelectric state is lower than the symmetry of the
paraelectric state.

In some crystals a transition from a paraelectric to an
antiferroelectric state has been observed. '' In these
cases also shifts of atoms occur, producing electrical-
dipole moments in the crystal. Here, however, these
dipole moments compensate each other in such a way
that the unit cell of the antiferroelectric state has no
resultant dipole moment.

The nature of phase transitions in these crystals has
been studied extensively. Devonshire4' has given a
phenomenological theory which describes the change of
the electrical polarization with temperature, and the
eRect of an electrical field or a mechanical stress on the
polarization. The possible types of symmetry occurring
in ferroelectric crystals were studied. by Aizu. ' '

Both first- and second-order phase transitions are
observed. A first-order phase transition is an abrupt
change from one phase to another, accompanied by a
discontinuous change of the lattice parameters. At the
transition point latent heat is liberated. If the transition
is from a paraelectric to a ferroelectric state, the polari-
zation changes abruptly at the transition teInperature.
A second-order phase transition is a more gradual
change of the crystal without latent heat; the lattice
parameters and the polarization are continuous, al-
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though the temperature derivatives may change ab-
ruptly at the transition point.

Megaw' has related the nature of the phase transi-
tions to the symmetry of the crystal, but she does not
give the necessary and sufhcient conditions for second-
order phase transitions. These conditions can be ob-
tained in a rigorous form from Landau's theory of phase
transitions. ~ It is remarkable that this theory, pub-
lished as early as 1937, has been applied only to a few
actual phase transitions in metal alloys. ~" Recently,
Landau's considerations were used to describe phase
transitions in magnetic crystals, ' in weakly ferromag-
netic crystals, "" and in crystals with the spinel
structure. "
LANDAU'S THEORY OF PHASE TRANSITIONS

In general one can distinguish the following types of
change of a crystal:

(a) A continuous change without a change of sym-
metry. In this case there is no phase transition. "

(b) An abrupt change by a hrst-order phase transi-
tion. At the transition temperature there are two phases
in equilibrium with each other. Such a first-order phase
transition is possible between any two phases, the only
condition being that the free energies of the two phases
become equal at the transition temperature. There are
no symmetry requirements for a first-order phase transi-
tion to be possible.

(c) In a second-order phase transition the properties
of the crystal change gradually until at a certain transi-

g L. D. Landau, Physik Z. Sowjetunion 11, 26 (1937).
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~ J. O. Dimmock, Phys. Rev. 130, 1337 (1963)."I. Dzyaloshinski, J. Phys. Chem. Solids 4, 241 (1958).
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in which there is no change of symmetry. These transitions are
related to condensation phenomena, and are described in terms of
an essentially positive internal parameter. Examples are the
transition between the normal and the superconducting state, and
the ) transition in liquid helium.
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tion temperature the change is complete. At each
temperature, even at the transition point, only one
phase exists so that a second-order pha, se transition is a
transition within one phase and not between two phases
as was the case for a first-order phase transition. This
type of transition is only possible if certain stringent
conditions for the symmetry above and below the
transition point are fulfilled.

In order to derive these symmetry conditions, con-
sider some function po(r), for example, the density
function for electrons or for a particular type of atom in
the crystal, which represents the full symmetry of the
crystaL po(r) will be invariant under all operations of the
space group of the crystal. If the crystal changes slightly
and continuously in such a way that the symmetry of
the crystal is lowered, the new density function p(r) can
be written as

p(r) =po(r)+~p(r), (1)

where hp(r) is the small change due to the lowering of
symmetry. The symmetry group of p(r) cannot contain
symmetry operations not contained in the symmetry
group of po(r), and consequently the group of p(r) is a
subgroup of the group of po(r). Therefore a condition for
a second-order phase transition is that there must be a
change of symmetry in such a way that the symmetry
group of one state of the crystal is a subgroup of that of
the other state (condition I).

It is well known from. group theory'7' that an
arbitrary function can always be written as a sum of
functions transforming as the irreducible representa. tions
of a symmetry group. Therefore, it is possible to write

p(r)=po(r)+2 2 c A' *(r) (2)

The functions g„,(r) form a basis for the nth irre-
ducible representation of the symmetry group which
leaves po(r) invariant. The number of functions o for a
particular representation n is equal to the dimension of
the representation. Because a function transforming as
the identical representation gives rise to no change of
symmetry, the identical representation will be omitted
from the summation over n.

It can be only by accident if two independent types
of change (i.e. , changes corresponding to different
irreducible representations oo) would set in at exactly the
same temperature. In general, if two independent
changes occur, then there will be two phase transitions.
Therefore, a second-order phase transition involves a
change of the crystal corresponding to a single irre-
ducible representation (condition II).

Consequently, one can omit the summation over n,
and investigate

p(r) =po(r)+P c;y;(r)

"H. Eyring, J. Walter, and G. E. Kjmball, Quantlm Chemistry
(John Wiley 8r. Sons Inc. , London, 1949).' J. S. Lomont, A pplicatiorls of Fiwite Groups (Academic Press
Inc., New York, 1964).

for a change of the crystal corresponding to a particular
irreducible representation.

The change of the crystal corresponds, of course, to a
change of the free energy. For small values of the
coefficients c; one can write the free energy G as a power
series in c,. Substituting c,=»y, with P, yP=1, one
obtains

G= Go+ay f&'&+A rjfo&+B&Pf'~+Cr&4f &'&+ . (4)

The coefBcients a, A, 8, C, etc. , are functions of the
temperature and f&'& is a homogeneous function. of order
l in the coefficients y;.

The operations of the group of po will transform the
coefFicients y; into each other. The free energy does not
change by these operations. Therefore in the free energy
only functions f&'& occur which are invariant under all
operations of the group of po. Because first-order in-
variants exist only for the identical representation which
is not considered, the linear term in Eq. (4) vanishes.
Furthermore, only one quadratic-invariant exists for
any representa, tion.

G= Go+A rP+BrPf ~o&+Cr& fio&+ . (5)

The actual stable state of the crystal is found by
minimizing 6 with respect to g and y;. From the condi-
tions for stability BG/8»=0 and O'G/BrP&0, one finds
that the state g=0 is stable for A &0, whereas for A &0
the stable state must have q/0. Therefore, a phase
transition from the state of high symmetry g=0 to a
state with a lower symmetry could occur at the point
where A =0. However, for the crystal to be stable at the
point where A =0 and q=0, 6 must increase both for
small positive and negative changes of g. This can not be
the case if Bf@&&0. Therefore a second-order phase
transition is possible only if third-order terms in the free
energy are zero, i.e., the function f&o& should vanish by
symmetry (condition III)."

Conditions I, II, and III are the necessary and suK-
cient symmetry conditions for a second-order phase
transition to be possible. For the special case that one
space group is a subgroup of the other with half the
number of symmetry operations, one can easily show
that all three conditions are fulfilled.

Even if conditions I, II, and III are fulfilled, the
transition will occur as a first-order phase transition if
C&0.9

The symmetry of crystals is given by the space group,
the group of translations, rotations, and reflections
which leave the crystal invariant. The irreducible
representations are characterized by vectors k in the
reciprocal lattice, representing the properties for trans-
lations. " If p&, (r) is one of the basis functions of a
representation, characterized by k, then a translation t

"Iff (3) does not vanish by symmetry, one can have a second-
order phase transition only if both A and 8 vanish at the same
time. Such a situation can occur only at isolated points in a two-
dimensional phase diagram (Ref. 9). These cases will not be con-
sidered in this paper.~ G. F. Koster, Space Gros&ps and Their Representatiorls (Aca-
demic Press Inc. , New York, 1964).
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which leaves the lattice-invariant transforms pk(r) into
8 iksy k (r)

Landau' derived a fourth condition for a second-order
phase transition on basis of the requirement for stability
of the crystal against spatial inhomogeneity. According
to this analysis, a second-order phase transition corre-
sponding to a representation characterized by k is only
possible if —ir=k+g (g is zero, or a vector of the
reciprocal lattice of the state of high symmetry), or if k
is a vector for which the proper symmetry group (i.e. ,
the group of rotations and reQections that leave k
invariant or change ir into lr+g) contains symmetry
planes and. axes intersecting in a point (condition IV).

The validity of this condition has been questioned by
Dimmock, ~ both on theoretical grounds and on the
basis of experimental evidence for phase transitions in
some rare-earth metals. In these metals, second-order
phase transitions have been observed between a para-
magnetic state and a spiral or sinusoidal spin con-
6guration with a periodicity which is not a simple
multiple of the crystallographic lattice parameters. "
These second-order phase transitions do not obey
condition IV.

In our opinion (see Appendix) condition IV properly
distinguishes between two types of second-order phase
transitions. Only for transitions obeying condition IV,
the state of the crystal with the lower symmetry has a
three-dimensional periodic structure, described by one
of the space groups. If condition IV is not obeyed, a
second-order phase transition is still possible, but then
the three-dimensional periodicity is lost in the state of
lower symmetry, and the symmetry of this state cannot
be described, by one of the three-dimensional space
groups. Structures of the latter type have been ob-
served in magnetic crystals as mentioned, "and probably
also in order-disorder transitions in alloys, "~ but not
yet in ferroelectric crystals.

DISCUSSIOH OF THEORIES FOR
FERROELECTRXC CRYSTALS

Some remarks will be made regarding the relation
between Landau's theory of phase transitions and
theories for ferroelectric crystals:

(a) Aizu~ distinguishes three types of phase transi-
tions in ferroelectric crystals: "primitive, " "complex, "
and others.

For "primitive" phase transitions, the syrrnnetry
group of the paraelectric state contains the symmetry
elements of the ferroelectric state plus the so-called P
operation which makes the polarization change sign. In
this case the space group of the ferroelectric state wiH be
a subgroup of the space group of the paraelectric state
with half the number of symmetry elements. Conse-

"R.J. Elliott, Phys. Rev. 124, 346 {1961).
L. Guttman, in Sol&' State I'hyades, edited by F. Seitz and D.

Turnbull {Academic Press Inc. , New York, 1956), Vol. 3, p. 174.~ R. Sato and R. S. Roth, Phys. Rev. 124, 1833 {1961).~ K. Aizu, J. Phys. Soc. Japan 19, 918 (1964).

quently, for these "primitive" phase transitions, a
second. -order phase transition is always possible.

For "complex" phase transitions, the symmetry
group of the paraelectric state contains the group of the
ferroelectric state, the Ii operation and one or more
independent extra symmetry operations. The syDUnetry

group of one state is in this case a subgroup of the
symmetry group of the other state but not. with half the
number of symmetry elements. Condition I is fulhlled,
but in order to decide whether a particular "complex"
transition is possible as a second order phase transition
the other two conditions should be investigated.

For transitions which are neither "complex" nor
"primitive, " one space group is not a subgroup of the
other. Therefore such transitions do not fulfill condition
I, and can occur only as 6rst order phase transitions.

(b) For phase transitions from a paraelectric to a
ferroelectric state the parameters g and y; are directly
related to the electrical polarization P. This corre-
spondence will be used to illustrate the relation with
Devonshire's theory for BaTi03.4 '

BaTi03 has in the high-temperature paraelectric state
the cubic perovskite structure, space group O~' —Pm3m.
Consider a change of the crystal by small atomic dis-
placements such that a ferroelectric state is obtained.
Because an electrical polarization vector transforms as
the representation Ts—,with it= (000), of the factor
group OA,", the change to a ferroelectric state will cer-
tainly correspond to this representation.

In order to obtain the functions f&" occurring in the
expression for the free energy, it is necessary to 6nd the
independent invariants of order / in the coefficients y;.
The number of independent invariants of order l is equal
to the number of times the identical representation A ~+

occurs in the syDUnetrical direct product T~ of order I:
Using the techniqu. es of group theory' ' one Qnds that
for l=2, 4, and 6 there are 1, 2, and 3 independent
invariants. Products with / odd of a representation
which is antisynunetric with respect to inversion (such
as Ts ) cannot contain the identical representation. The
general form of the functions f&'& is found to be

f(2) —1 ~ f(4) —1+g(p 4+~ 4+p 4) ~

f'"=1+1 (vs'+vs'+vs')+O's'vs'vs') (6)

where X, p, , and g are parameters which depend on the
temperature.

In order to 6nd the actual stable state of the crystal
the free energy should be minimized with respect to the
coeKcients y;. Considering only terms of the lowest
order in q one obtains the equations

(
gf(4) —2';=0 or 4) y —2';=0,
8+j

where g is a Lagrange multiplier taking into account
that ys'+ps'+ps'= 1. These Eqs. (7) have the solutions

(a) ~,=1, ~s=o, ~s=o,
(p) ps= 1/v2, ps=1/v2, ps=0,
(v) vs= 1/v3, ps= 1/vS, ps= 1/v3'.
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The states corresponding to these solutions (a), (p),
and (y) are the only ferroelectric states of the crystal
which can be stable for arbitrarily small deviations from
the cubic state.

The quantities p&, p2, and p3 transform in precisely
the same way as the components P„P„,and P', of the
polarization, and therefore one can substitute P„P~,
and P, for gy~, gy2, and gy3

G= Gp+A (P '+P„'+P,')
+C((P,'+P„'+P.')'+X(P 4+P„'+P.4))

+P((P'+P.'+P')'+I (P*'+Pu'+P*')
+$P,'P„'P,')+ . . (g)

Devonshire used this equation (with /=0) to describe
the properties of BaTiOp. The three solutions (n), (P),
and (y) represent in fact the three ferroelectric phases of
BaTi03, with, respectively, the polarization P parallel
to the (100) axes Lsolution (a), tetragonal], parallel to
(110) Lsolution (P), orthorhombic], and parallel to
(111) Lsolution (y), rhombohedral].

The treatment given above illustrates how symmetry
arguments can be used to derive the equation for the
free energy and to determine the possible ferroelectric
states of a crystal with a given symmetry in the
paraelectric state.

(c) AizuP' has pointed out that in ferroelectric crys-
tals with a low symmetry there can be some ambiguity
as to how to de6ne the polarization; in fact in ferro-
electric crystals one is not interested in the total elec-
trical dipole moment per unit cell, but only in the part
which can be sv itched by an electric 6eld. The parame-
ter g emerging from the derivation given above repre-
sents in fact precisely this part of the polarization.

APPLICATION TO PHASE TRANSITIONS IN
SOME FERROELECTRIC AND ANTI-

FERROELECTRIC CRYSTALS

The theory will be used to decide in which cases a
second-order phase transition is possible.

(a) Barium titanate (BaTiOp) and a number of other
compounds have in the high-temperature paraelectric
state the cubic perovskite structure, with space group
Op, '—Pm3m. "At lower temperatures BaTi03 shows a
succession of phase transitions: the cubic phase (c)
transforms at 120'C into a tetragonal ferroelectric phase
0,. This phase n transforms at 5'C into an orthorhombic
phase P, which at —90'C transforms into a rhombo-
hedral phase y. The phases 0., P, and y~ are ferroelectric;
the space groups are, respectively, C4.'—P4mm C2"—Cmm, and C3,'—E3m. Because the unit cell does not
change (except for small deformations) the reciprocal
lattice vector h for all possible transitions between the
phases p, n, P, and y is k= (000), a vector satisfying
condition IV.

First transitions from the paraelectric state c to any
of the ferroelectric states a, P, y will be discussed. The
space groups of n, P, and y are subgroups of the space
group of c, and correspond to a single irreducible
representation. It was shown already that no third-
order invariants exist. Therefore the conditions for
second-order phase transitions are fulfilled, and a transi-
tion from the cubic state c to any of the ferroelectric
states a, P, and y is possible as a second-order phase
transition.

The discussion of transitions between the ferroelectric
states is particularly simple because the space groups of
tt, P, and y are not subgroups of one another. This is
because each of these space groups contains a symmetry
operation not contained in the other two space groups.
Therefore transitions between the ferroelectric phases
tt, P, and y can never occur as second-order phase
transitions, and consequently will always be 6rst-order
phase transitions.

In BaTi03, and also in KNb03 which undergoes the
same sequence of phase transitions, all observed transi-
tions c —+n, u~ P, and P~ y are found to be first-
order phase transitions, as indicated by appreciable
discontinuous changes of the lattice parameters at the
transition points. ' ' An interesting con6rmation of the
prediction that the transition c~o. is possible as a
second-order transition is shown in the binary system
KNb~ Ta,03, which for x(0.8 undergoes the same
sequence of phase transitions as BaTi03."It was found
that the transition c~u is a 6rst order one for x(0.55,
but changes to a second-order transition for x)0.55.
According to our consideration such a change would be
impossible, and in fact was not found, for the transitions
n ~ P and P ~ y.

(b) Lead zirconate (PbZrOp) has in the high-tempera-
ture paraelectric state also the cubic perovskite struc-
ture, but undergoes at 230'C a 6rst-order phase transi-
tion to an antiferroelectric state with space group
C2, '—Pbu2. ' ' By symmetry arguments it will be shown
that a transition of this type must necessarily be a 6rst-
order phase transition.

The antiferroelectric state of PbZr03 has an ortho-
rhombic unit cell which has 8 times the volume of the
cubic unit cell of the perovskite structure. The primitive
lattice parameters of the orthorhombic cell can be
written as a= (110), b= (220) and c= (002), if (100),
(010), and (001) are the primitive vectors of the
(slightly distorted) cubic cell. The reciprocal lattice
can be found in the usual way from the relations
k,= V—'(bxc), kp ——V '(cxa), k.= V '(axb), where
V=a(b xc) is the volume of the unit cell. One finds
It,= (-', -', 0), k p

——(——,
' -', 0) and k, = (00-', ).

The irreducible representations of the space group
which may correspond to these vectors are repre-
sentations with kt= (00p), kp= (p p 0), ka= (p p p),
k4 —(——' ~ 0), and kp= (—~~ ~~ ~p). It is clear that if the

2' K. Aizu, Rev. Mod. Phys. 34, 550 (1962). 2' S. Triebwasser, Phys. Rev. 114, 63 (1959).
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properties of the antiferroelectric state were described,
for example, by functions of the representation k& only,
the translational symmetry would be higher than ob-
served because these functions are invariant for trans-
lations (100) and the antiferroelectric state is not. The
only functions of the representation with lrs= (—~~ ~~

—',)
which are invariant for all translations of the anti-
ferroelectric state are functions transforming as e+'"&'.

However, these functions are invariant also for a trans-
lation (112), which is not a translation of the anti-
ferroelectric state. Therefore, if the antiferroelectric
state could be described by these functions only, its
symmetry w'ould be higher than observed. In this way
it is possible to show that the observed antiferroelectric
state of PbZr03 can be described only by a linear
combination of functions corresponding to at least two
irreducible representations. Consequently, the transition
from the perovskite structure to the antiferroelectric
structure of PbZr03 does not fulfill condition II, and
will be possible only as a first-order phase transition.

(c) In a large group of ferroelectrics the transition
from the paraelectric to the ferroelectric state is "primi-
tive. '" Consequently, a second-order phase transition is
possible in all these compounds. In most cases experi-
mentally a second-order phase transition is observed.
Examples are the phase transitions in triglycine sul-

fate, Rochelle salt, potassium dihydrogen phosphate
(KHRPO4), and antimony sulfoiodide (SbSI).' '

(d) Ammonium dihydrogen phosphate (NH4H2PO4)
has a transition from a paraelectric tetragonal structure
(space group D2P —I42d, with four molecules per unit
cell) to an antiferroelectric structure (space group
Ds4 —P2q2~2~, four molecules per unit cell) at 148'K."

The space group D2' is a subgroup of D2$'. For the
para, electric structure the reciprocal lattice is generated
by the vectors lr, = (011), lr &= (101),and lr, = (110), the
reciprocal lattice of the antiferroelectric structure is
generated by k '= (100), hq' = (010), and ir, '= (001).
Therefore the transition corresponds to a representation
with k= (100). Because —k= k+(200), and (200) is a
vector g of the reciprocal lattice of the paraelectric
state, lr ful6lls condition IV.

Third-order terms will transform as the third-order
direct product of the representation with ir=(100).
Third-order invariants can exist only if this product
contains the identical representation. However, it is not
possible to construct a sum of three vectors out of the
vectors (100), (010), and (001) equal to a vector g of the
reciprocal lattice of the paraelectric state. Consequently,
third order invariants cannot exist, and because the
other conditions are also fulfiQed, a second-order phase
transition is possible.

Experimentally the nature of the transition is not
very clear. Probably, the transition is a 6rst-order one,
because the crystal is reported to crumple if it passes the
transition. "

(e) Ammonium bisulfate (NH4HSO4) occurs in three
structures: state I with space group C~~'—P2~/c is

stable above —3'C, state II with space group C,'—P'c

is stable between —3'C and —119'C, and state III
with space group C&'—P1 is stable below —119'C only
state II is ferroelectric. The monoclinic unit cell in all
three structures contains 8 molecules, and the vector k
for all transitions will be (000). The group C~' is a
subgroup of C,2 with half the number of symmetry
elements, C,2 is a subgroup of C2y, ~ with half the number
of symmetry elements. Consequently, the phase transi-
tions I —+ II at —3 C and II —+ III at —119 C are
possible as second-order phase transitions.

Experimentally the transition I~ II is reported to be
a second-order transition, the II —+ III transition a 6rst-
order one "

(f) Methylammonium aluminum sulfate dodeca-
hydrate, (NH~CH8) Al (SO4)2 12H20, belongs to space
group C~'—P2~ in the ferroelectric state, and to space
group T4—P2i3 in the paraelectric state. ' The vector of
the transition is ir= (000) because the unit cell is the
same for both states of the crystal. Space group C2'—P2~
is a subgroup of space group T4—P2~3. However, be-
cause the number of symmetry elements is not doubled,
the transition is not primitive but complex, and third-
order invariants should be investigated.

The electrical-polarization vector transforms as the
three-dimensional representation T, and therefore the
transition corresponds to this representation. The sym-
metrical direct product (T)&TXT),„ is found to be
A+3T. Because this product contains the identical
representation A, there will be a third-order term in the
free energy (this third-order term can be written as
BP,P„P,). Consequently, the transition from the para-
electric state is not possible as a second-order transi-
tion. Experimentally, a 6rst-order phase transition is
observed. '

CONCLUSION

In conclusion, the information which can be obtained
by applying I.andau's theory to ferroelectrics and anti-
ferroelectrics will be summarized. First, it is possible to
find the most general expansion of the free energy in
terms of the polarization by making use only of the
space group of the paraelectric state. Second, it is
possible to find for a given symmetry of the paraelectric
state all ferroelectric states which can exist for arbi-
trarily small values of the polarization. Second-order
phase transitions from the paraelectric state are only
possible to these ferroelectric states. Third, for crystals
where a second-order phase transition is observed, the
possible space groups of the ferroelectric state can be
easily enumerated if the space group of the paraelectric
state is known. Finally, if the space groups of the two
states of the crystal are known, then in some cases it is
possible to predict with certainty that the phase transi-
tion must be a 6rst order transition. The experi-
mental data discussed are in agreement with these
predictions.
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APPENDIX: TWO TYPES OF SECOND-ORDER
PHASE TRANSITIONS

fP(r) =uP(r)+P P P nf~fV~, .A'
(k» k in (k» s

(A1)

The free energy of the crystal is given by

G=Gp+ Z~ f~f~f~f'+ "
For stars {k}differing only slightly from each other, the
corresponding basis functions are related to each other
by

In this Appendix the validity of condition IV will be
discussed. The discussion will be based on a derivation
which differs from that given by Landau. '

The representation of space groups~ are characterized
by "stars" (k};such a star is a set of k vectors invariant
for all rotations and reQections of the space group. The
basis functions belonging to an irreducible representa-
tion characterized by {k}are

tlat;,

where k are vectors
from (k).

Consider in the density function p(r) of a crystal
contributions of representations (k}with slightly differ-
ent values of {It):

Second-Order Phase Transitions of Tyye I

Consider the case that cx~k, »
vanishes by symmetry.

2 (kg+$k» is invariant for all operations of the group, k)
is invariant for all operations of the proper symmetry
group of k&. As a consequence, aI&, »

must be invariant
also for all operations of the proper symmetry group k&.

Therefore, n~k, »
vanishes by symmetry only if the proper

symmetry group of k~ has no invariant vectors. This is
the case if —kt= k~+g, or if the proper symmetry group
of k& contains symmetry axes and planes intersecting in
a point. Thus, the condition that 0.~»» vanishes by
symmetry leads directly to condition IV. This is not
surprising because the consideration of spatial varia-
tions of the coefficients in Landau's analysis is in fact
equivalent to the consideration of a set of representa-
tions with slightly different values of {k).

DimmockI2 has criticized Landau's derivation using
the argument that the introduction of a spatial variation
of the coefficients is not allowed because the density
function has been developed already in a complete set of
functions. However, we obtained condition IV without
the use of a spatial variation of the coefficients.

For phase transitions obeying condition IV, only very
special values of k~ are allowed. It is easily seen that
these k~ values can always be written as simple fractions
of a small reciprocal lattice vector g. Consequently, the
symmetry of the crystal below the transition point can
be described by an ordinary three-dimensional space
group, with a unit cell which is a simple multiple of the
original unit cell.

A+pg, ;(r) =At(r)e*'"'. (A3) Second-Order Phase Transitions of Type II

The function 2 Ik» will change continuously for varia-
tions in {k}.Because all stars {k}are invariant for
rotations and reQections of the space group, 2~k» will
exhibit in k space the full symmetry for rotations and
reQections.

Suppose that there is a second-order phase transition
with a change of the crystal corresponding to a particu-
lar irreducible representation {kt}.The condition for
stability of the crystal in the region of high symmetry is
that 2 fg) 0 for all representations {k).The condition
for the occurrence of a second-order phase transition
corresponding to a representation {kt) is that at the
transition point, AIk, »=0, and 3~k»&0 for all other
representations. Therefore, a condition for a second-
order phase transition corresponding to a representation
{kq) is that Afg is a minimum at {k&).

A ~k» can be written as a power series in the neighbor-
hood of {k,}:

(A4)

Afa» has a minimum at {k&) only if the vector of»f
vanishes at the transition point. This is possible in two
ways.

Even if O.~k» does not vanish by symmetry, it is
possible that this quantity vanishes at the transition
point, and that a second-order phase transition occurs.
However, in such a case the value of k~ will not be a
special point in reciprocal space. A consequence of this
is that the symmetry of the crystal in the state of lower
symmetry cannot be described by a three-dimensional
space group. In at least one direction the lattice
periodicity is entirely lost, due to a component in the
density function proportional to e'k", with a period
2pr/

~
k&

~
which has no simple relation with the crystallo-

graphic periodicity of the crystal above the transition
temperature.

Below the transition point in general the period of the
extra contribution to the density function will change
continuously with temperature. This is possible without
any phase transition, because it involves no change of
symmetry (in fact, translation symmetry is lost already
at the transition point).

The characteristics of such second-order phase transi-
tions of type II, corresponding to a representation not
obeying condition IV, represent correctly the experi-
mentally observed behavior of the transitions in mag-
netic crystals with spiral spin configuration.


