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The ground state of an electron gas in a uniform magnetic field is found to be not the customary uniform
state, but rather one in which a spin-density wave exists, directed along the Geld. This conclusion is reached
through what is essentially a Hartree-Pock calculation with a repulsive interaction, but in which no re-
strictive assumptions are made about either the strength or the range of the exchange interaction. Thus static
screening does not eliminate the spin-density wave in the presence of a magnetic field, as it does in the
electron gas when no magnetic field is present. The temperature at which the transition to a spin-density-
wave state occurs approaches zero as the field vanishes. The pertinent question is therefore not the nature
of the ground state, but whether there is a range of field strengths and electronic densities for which the
transition temperature is observably high. It is found that spin-density-wave formation is most favorable
when only a few Landau levels are occupied, corresponding to large field strengths and low electronic
densities. A rough calculation indicates that in InSb a transition temperature as high as 10 millidegrees can
be realized.

I. INTRODUCTION

HE ground state of a gas composed of electrons in
a uniform magnetic field is usually considered to

be a spatially uniform state with a net magnetization
directed along the field, resulting from the combined
effects of Pauli spin paramagnetism and Landau dia-
magnetism. We wish to raise the possibility that this
picture is incorrect, and that the true ground state is a
spatially nonuniform one in which the net spin magnetic
moment has a small component perpendicular to the
magnetic field, which is circularly polarized along the
direction of the field. This is in no sense a rigorous con-
clusion, since we shall be working in what is essentially
a Hartree-Pock approximation. However we shall make
no assumptions about the form of the exchange inter-
action (other than its sign). Thus our analysis is not
susceptible to the objection that has been raised against
arguments that such a spin-density wave should exist in
the absence of a magnetic Geld, namely, that the ap-
parent e6ect is entirely due to the artificial use of a
long-range Coulomb interaction and disappears when
the interaction is properly screened. We shall show that
in any magnetic Geld (as iong as it is not so strong that
the electron spins are completely aligned) there is al-
ways (within the Hartree-Pock approximation) a transi-
tion to a spin-density wave state at su%ciently low tem-
peratures, for any repulsive-static-exchange interaction,
regardless of its magnitude or range.

We hasten to add that this discovery will not revolu-
tionize solid state physics. The crucial question is how
low the transition temperature will be. Since the transi-
tion occurs in arbitrarily weak fields even when there is
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University of California, San Diego, LaJolla, California, where it
was supported, in part, by the OfBce of Naval Research. The work
at Cornell was supported by the Ofhce of Naval Research under
contract NONR 401(38) and issued as Technical Report Number 4.
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no such transition in the absence of a field, the transi-
tion temperature must go to zero for small fields.
Evidently the extraordinary state need only concern
physicists if the transition temperature is observably
high. ' Calculation of the transition temperature is a
very delicate matter and the estimates we shall give,
based on rough calculations, are in no sense conclJsive.
However at present it appears possible that under very
restrictive conditions (high fields, low densities, small
efkctive mass, high purity) the transition may occur at
temperatures in the vicinity of 10 ' degrees Kelvin.

We call the extraordinary state a spin-density wave
because of its close similarity to the spin-density waves
investigated theoretically by Cloizeaux' and Overhauser'
in the absence of magnetic fields. Overhauser's first
communication on the subject pointed out that for
spin--, fermions in one dimension a spin-density wave
state has a lower Hartree-I'ock ground-state energy
than the conventional state for arbitrarily weak short-
range repulsive interactions. Kohn and Nettel' quickly

'The possibility of extraordinary nonuniform states of lower
energy than the conventional one in the presence of magnetic
fields has been known to us for some time LN. D. Mermin and
V. Celli, Phys. Rev. 136, A364 {1964)j. Such a state occurs even
if exchange interactions are neglected as a result of the very weak
magnetic current-current interaction. Its existence results in an
instability in the helicon dispersion relation, if this is calculated in
a fully quantum-mechanical way, using Landau levels for the one-
electron states. However the transition temperature for this state
is unobservably low under nonrelativistic conditions and the state
is of interest only to the more theoretical of theoreticians, as an
explanation for the rather annoying fact that Newcomb's classical
magnetohydrodynamic stability theorem cannot be generalized to
the quantum case. We mention this rather bizarre case to empha-
size that the mere existence of such states, though amusing, need
not be of any practical interest unless the transition temperature
can be shown to lie in an accessible range.

2 J. des Cloizeaux, J. Phys. Radium 20, 606, 751 (1959).'A. W. Overhauser, Phys. Rev. Letters 4, 462 {1960);Phys.
Rev. 128, 1437 (1962); J. Appl. Phys. 34, 1019 (1963).

4 W. Kohn and S. J. Nettel, Phys. Rev. Letters 5, 8 (1960).
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pointed out that his argument cannot be correct for
general arbitrarily weak-repulsive interactions in three
dimensions, but Overhauser was able to sh.ow that the
spin-density wave will still exist in three dimensions,
provided th.e exchange interaction, though as weak as
one likes, has a long-range Coulombic form. The counter
to this aliment is, of course, that one expects the ex-

change interaction to be screened, and if the calcula-
tion is done using a static Fermi-Thomas screening for
the exchange, the spin-density wave is again ruled out. '
This is about as far as the argument can be carried with-

out running up against horrendous mathematical dif-

ficulties. The spin-density wave enthusiast is down but
not out, for he can claim with some justification that
since the crucial coupling in spin-density-wave forma-
tion involves electrons rather far apart from one another
in momentum space, the Fermi-Thomas exchange inter-
action need not be reliable for such large momentum
transfers; his hope is that a treatment using the full

dynamical frequency and momentum depending screen-

ing, will again rescue the spin-density wave.
We must emphasize that this controversy concerns

only th.e question of whether spin-density waves can
exist under electron gas conditions, or, in applications
to metals, when the Fermi surface is close to being
spherical as in th.e alkali metals. Complicated band
structure e6'ects can, if they lead to a Fermi surface with

large relatively Sat portions, permit spin-density-wave
formation, essentially by making things look one-
dimensional near tbe Rat parts of the Fermi surface.
There does not seem to be any theoretical objection to
the view that the antiferromagnetism of chromium is
due to a spin-density wave, permitted by just this kind
of peculiarity in the band structure. '

However, the existence of a spin-density wave without.
assistance from the band structure, and, in particular,
under electron gas conditions, strikes us as being most
improbable, although as we have said, theorists are
not unanimous on this point. Overhauser, for instance,
not only maintains that a spin-density wave can exist
in potassium, but gives it so large an amplitude that the
transition temperature would appear to be on the order
of the melting point or higher. ' Our point of view is
quite diferent from his. We assume that spin-density
waves do not exist in an electron gas in the absence of a
magnetic Geld, note that a strong magnetic Geldenhances
the possibility of their formation at accessible tempera-
tures, and then, under very favorable circumstances,
estimate a transition temperature in the neighborhood
of 10 millidegrees.

The reason for such an enormous disparity in opinion
is first, of course, that an accurate microscopic calcula-
tion of the transition temperature (or even of whether
the transition exists at all) presents formidable difficul-

P. A. Fedders, P. C. Martin, and H. Ehrenreich, Phys. Rev.
Letters (to be published).' See, for instance, Ref. 5 and the third of Refs. 3.' A. W. Overhauser, Phys. Rev. Letters 13, 1%l (1964).

ties, but, more importantly, that in a weak-coupling
theory T, depends exponentially on the inverse of the
coupling constant, so that small changes in the strength
of the interaction can result in order of magnitude
changes of T,. Since nobody is terribly sure what the
coupling should be, it is hard to settle the issue by such
a calculation. Because of this uncertainity we shall take
a rather conservative point of view, assuming that the
exchange interaction is weak and of short range, so
that the formation of a spin-density wave is out of the
question in the absence of a magnetic Geld.

We stress once more that our conclusion that a spin-
density wave state always arises at su%ciently low tem-
peratures is reached only within what is essentially the
Hartree-Fock approximation, except that we do not
make any assumptions (which are crucial to the exis-
tence of the eifect in no field) about the strength or
range of the exchange interaction. Because of the cal-
culational complexities that a magnetic field introduces
even in a Hartree-Fock calculation, we would like to give
a rough qualitative indication of the basically simple
reasons why even a very weak magnetic Geld can cause
the formation of a spin-density wave at very low
temperatures.

We start from Overhauser's original observation that
the Hartree-Fock ground state of a one-dimensional
electron gas has a spin-density wave (for an appropriate
range of densities) due to the exchange interaction re-
sulting from any repulsive two-body potential. If one
forgot about the spin-density-wave states, one would
think that the ground state would either be ferromag-
netic or without any spin alignment, depending on the
balance between the exchange interaction (favoring
ferromagnetic alignment) and the kinetic energy (favor-
ing equal numbers of electrons with each spin). How-
ever in the spin-density-wave state a compromise is
reached which does better than either of these two
possibilities. Single electron states are taken to be super-
positions of states of opposite spin on opposite sides of
the Fermi surface. Because only states near the Fermi
surface diGer from the conventional single-particle
states, the cost in kinetic energy is not nearly as great
as it is in a ferrorn. agnetic state. Furthermore by taking
such superpositions one can produce a spatially varying
local spin alignment, which lowers the potential energy.
It is important, however, for the lowering of the poten-
tial energy that all pairs of states making up the new
single particle states have the same separation in mo-
mentum space. If this were not so, then the many
paired states would not add up to a coherent spin-
density wave, and there would be no gain in potential
energy. When, however, all the paired states are separ-
ated by the same momentum p, then they do produce a
net local spin alignment, the direction of which varies
with a wave vector p/h. Spin-density waves are therefore
likely to be encountered when there is a set of pairs of
states of opposite spin such that all of the states are near
the Fermi surface, and such that the displacement in
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momentum space of the states within each pair is the
same for all the pairs. Evidently a one-dimensional
electron gas is just the thing one wants, insofar as one
can think of it as a three-dimensional gas in which the
Fermi surface is two parallel planes. Chromium is also
a good candidate for a spin-density wave, because of the
large Rat portions of the Fermi surface. However, in an
electron gas (or, more generally, if the Fermi surface has
no large flat portions) a coherent spin-density wave re-

quires occupation of one-electron states rather far above
the Fermi surface, and the gain in reduced potential
energy will only be large enough to compensate for this
if the exchange interaction is stronger or of longer range
than it is usually thought to be.

However, a magnetic field, by quantizing motion in
the plane perpendicular to the Geld, greatly increases
the number of pairs of electrons at opposite ends of the
Fermi surface, separated by the same momentum
(parallel to the field). To take, for instance, an extreme
case, if the Geld is so strong that only the m= 0 Landau
levels are occupied, then one can regard the Fermi sur-
face as a cylinder with two parallel Bat ends perpendicu-
lar to the Geld. In any magnetic field, the density of
states, as a function of p„ the momentum parallel to
the field, looks like a sum of one-dimensional densities
of states (one such term for each I) and this is enough
to give a spin-density-wave ground state for arbitrarily
weak repulsive interactions. As the magnetic field gets
weaker, the weight of each one-dimensional density
of states in the total density of states gets smaller,
as does the e6'ective coupling within each "one-
dimensional" system. Nevertheless, because the one-
dimensional spin-density wave exists for arbitrarily
weak coupling, any magnetic GeM at all is enough to
give a spin-density-wave ground state. '

Because the value of the transition temperature is the
crucial question, and because calculation of the ground-
state properties is very dificult, even in a Hartree-Fock
type of approximation, we shall primarily be working at
temperatures close to T,. In Sec. II we erst derive what
the normal Hartree-Fock thermal equilibrium state is
in a magnetic field. In Sec. III we show that such a state
is always unstable (i.e., is a stationary point, but not a

' These categorical statements are always to be understood to
mean within the Hartree-Fock approximation (but without as-
sumptions on the form of the repulsive interaction).

Note added ie proof. The question of whether our conclusions
are valid beyond the Hartree-Fock approximation is, of course, a
very dificult one. Experimental evidence (e.g., the de Haas
eftect} leaves no doubt that correlation eGects do not destroy
the essential features of the quantized Landau levels, so we would
expect the favorable "one-dimensionality" brought about by the
magnetic 6eld to persist even when correlation effects are taken
into account. The really critical question, then, is whether corre-
lation eGects can remove the spin density wave even when the
"one-dimensionalness" of the situation still favors them. This is
a question that is pertinent to the study of spin density waves,
both in and out of magnetic 6elds. A convincing theoretical answer
is probably beyond computational ability. However the experi-
mentally established existence of spin density waves in chromium
is evidence that correlations need not eliminate spin density
waves.

local minimum of the free energy) at sufficiently low

temperatures. The stability analysis gives us a way of
calculating the transition temperature, and an explicit
expression for T. is found. The manner in which the
normal state becomes unstable suggests what the spin-
density-wave state should look like just below T,.
Guided by the stability analysis, in Sec. IV we construct
an explicit density matrix for the spin-density-wave
state, derive a "gap" equation, and show that it begins
to have solutions at the same T, for which the normal
state becomes unstable. We also prove that below T,
the spin-density-wave state has lower free energy than
the normal state. In Sec. V we make some rough esti-
mates of what the transition temperature might be ex-
pected to be in various substances.

%'e have concerned ourselves only with the question
of the existence of the spin-density-wave state in this
paper, reserving a general discussion of its properties
for a future publication. However one can show that
some of its thermodynamic properties should be similar
to those of the superconducting state. (Overhauser first
pointed this out, and his arguments appear to be quali-
tatively unaltered by the magnetic field. ) For example,
there should be a specific heat discontinuity at the transi-
tion temperature of very much the same form as is
found at the superconducting transition.

Ke conclude this introduction with a summary of the
notation to be used in subsequent sections. We take the
magnetic Geld B to be directed along the s axis and use
the Landau gauge,

A =A, =O, A„=Bx.
The Hamiltonian for a single electron in the Geld 8
is then

H 0(2m) '[p (—e/c) A—5' (aos. ,
—

where
coo ——g*eB/2moc, e = —

~
e ~,

and we allow for the possibility that the mass m ap-
pearing in (1.1) may differ from the free-electron mass
m0. The eGective Lande factor g* takes all band sects
into account, and s, has eigenvalues s= + ~i or s= —~i for
spin parallel or antiparallel to S. (We use units in which
fi= 1.) The eigenstates of the spatial part of Po are speci-
fied by the three quantum numbers q, p, and n, which
we denote collectively by o,. the eigenstates are

1
it (r) =—e'«~&*'y„(x+q/ma&. ),

L,

where p (x) are the orthonormal eigenstates of the one-
dimensional harmonic oscillator Hamiltonian

p2
+-,'duo, mx', co.=

~
e~ 8/mc.

2m
'

(We work in a cubical box of side L with faces per-
pendicular to the coordinate axes. ) The corresponding
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eigenvalues are

E =p'/2m+(n+ 2)»-),

1
v(r —r') =—P exp$ik (r—r') jv(k'),

L3
(1 2)

about which we shall make no restrictive assumptions in
establishing the existence of spin-density waves, except
for the requirement that certain matrix elements be
positive. Thus v could be of very short range, and/or
very weak.

II. NORMAL HARTREE-FOCK STATE

By the normal Hartree-Fock state we mean a dis-
tribution of electrons in Landau states with self-
consistently determined single particle energies. %e
stress the fact that the Landau states do give a solution
to the Hartree-Fock equations, since this point is essen-
tial to our argument. It is not, however, immediately
obvious, as can be seen by comparing the matrix element
for scattering between Landau states with the cor-
responding matrix element between plane wave states in
the absence of a magnetic field. In the latter case the
total momentum of the scattered pair is conserved:
&p,p, I

v
I p,y4& ~ iI»+p —v —p and it is the presence of this

delta function in the exchange term that permits one
to solve the Hartree-Fock equation with plane-wave
states. Landau states would trivially be solutions in a
magnetic field if scattering conserved the sum of each of
the three quantum numbers n, q, and p, of the initial
and final pairs, but this is not so. In fact &»»PI vI y&& is
proportional to 6p+yp —y~pgBg~+qp q~qyy but lt fails to
vanish when n +nylon„+n)) Lsee Appendix A, Eq.
(A7)j.Nevertheless Landau states do solve the Hartree-
Fock problem. This is because the energy of a Landau
level does not depend on the quantum number q. If we
therefore occupy Landau levels having the same I and
p with the same statistical weight for all q, then the ex-
change potential will enter into the problem only in the
form

Z&oPI vl v&&l.,-»p,

and in this form it does vanish unless n +up ——e~+n~
Lsee Eq. (A8)j. One can then verify that the resulting
single-particle energy levels are still independent of q,
so that the initial ansatz for the occupation of states
di6ering only in q is self consistent.

The only nontrivial part of the Hartree-Fock cal-

%'e shall use Latin indices to denote the three Landau
quantum numbers and the spin-quantum number,

(q,p,n,,s), so that the eigenvalues of the full single-
particle Hamiltonian (1.1) are

»;v =p»/2m+ (n+,')»), »)p—s

%e shall take the electrons to interact through a
potential

culation is the proof of (A8), which is derived in Appen-
dix A. Given this it is easily shown that the Landau
states solve the Hartree-Fock equation with single
particle energies given by solutions to

f(*)=1/(v'*+1), P=1/E. T,
where

"kdk
g- (p) = v(p'+&')

I
&Nlv'"I~'&I',

p 2'

(~l~" I~ ) f*&'a-"(*)~"*».)*)

(2.2)

I As in the absence of a magnetic field, the direct term
gives an energy J'drv(r)nv which is cancelled by the
uniform background of positive charge. ]

III. STABILITY OF THE NORMAL
HARTREE-FOCK STATE

The Hartree-Fock equations are just the condition
that the free energy

~=K(&o);;v;;

+,' p v, ;v-.((inIvI jm& —(ieIvImj))

+—P y;;(in');, +(1—p);;(ln(1 —y)),; (3.1)
p»g

be stationary under variations of the single-particle
density matrix rp. (Here Latin indices stand for spin-
and spatial-quantum numbers, i.e., i++a, s, s=&x2.)-
The stability condition —that the stationary point be a
local minimum —requires that the second variation':

+ 2 ~v»'~~-(&i~lvl j~&—&i~lvl~j&), (3.2)
'42m n

be positive for all variations bp of the density matrix,
where», is the single-particle energy (2.1), and
f;= f(», p). Equation (3.2—) is put in a more useful
form by substituting

~v ' = Df' f )/(» —»') j~—*—(3.3)

Condition (3.2) is derived in N. D. Mermin, Ann. Phys. (N. Y.)
21, 99 (1963). It also arises from requiring that all spin-wave
oscillations about the normal state have real frequencies, provided
one makes some plausible assumptions about the onset of the
spin-wave instability.

»(,np) =»',(np)
dp'

g- (p p')—f(».(&'p ) I )—(2 1)
n' 2x
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equivalent to lowest order in 6 to letting

&v v= Lf(~+~ I-) f-(~ ~-)j' (3.4)

We define a Fermi momentum for each Landau
cylinder and spin by

El~el' + 2
'v t'j, mn

f- f-—
X((its(v~ jm) —(jn~w~mj))A &~0 (35)

&n &m

We wish to examine the stability of the normal state
against variations in b, that are oG-diagonal in spin. For
a general variation of this kind the stability condition
is quite complicated; we consider the general case in
Appendix 8, where we argue that at least for weak
coupling (which is almost certain to be the case in any
real situation) the instability will 6rst occur for 5
diagonal in n and q, and independent of q. The physical
content of this observation is that the transition is to a
state in which the spin-density wave is directed along
the magnetic field. We therefore consider in (3.5)
variations of the form

~;,=-:( „btb~+~. ,»„~)~„„~..., .A, (p;,p;), (36)
1'=+z,

If we define

~-(p+2P, p 2I') =~'(—p), (3.&)

f-t (P+2 I') f-~(P kI')— —
G-'(P)=. . . (3 8)

"i(p kf') ~-t (p+—2I')—

f-(P) = f(~-(P) I ), — (3.9)

then the stability condition breaks up into a sum of in-
dependent terms for each value of I'. Using (A8) and
converting momentum sums to integrals, we find that
the normal state will be unstable provided

4p
0&P —a„&(p)2G.&(p)

n 2r
dpdp'

~. (p)G. (p)
~n (2s)'

Xg.;(p p') & ~ (p') G""(p')—, (3 10)
for some I'.

Evidently 6 is the variation in the single-particle en-

ergy; in terms of 5 the stability condition is

~-t(p.t) = ~-~(p-~) =~ (3.11)

The behavior of Eq. (3.10) is very much like that en-
countered in the analysis of the Overhauser instability
of the one-dimensional Fermi gas. At zero temperature
whenP= p~t+p„&, G„~(p) issingularat p=(p t —p~s)/2,
which leads to a logarithmic divergence of the (one-
dimensional) integral, J'dpG„(p). Thus, if g„(p) is
positive, any choice of d which is positive and non-
vanishing at p=-,'(p„t —p q) will lead to the product of
two logarithmic divergences in the second (negative)
term of (3.10), against only one in the erst (positive)
term. Thus the choice

I'= I'~= p~t+ pm' (3.12)

dp—G,~ (p) =A, Inp+ B.
2%

+terms that vanish as T +0. (3.13)-
Evidently T. will be a very sensitive function of A,
which must therefore be evaluated with as much
accuracy as possible. We shall have to be content with
a more crude estimate of 8, but errors in 8 have a con-
siderably less drastic eGect on T,.

To calculate A note that

for any n leads to the value —~ for (3.10) at T=0, i.e.,
the normal ground state is unstable for arbitrarily weak
repulsive interactions in an arbitrarily weak magnetic
field. Since we know4 ' that there is no instability for
arbitrarily weak forces in the absence of a magnetic
field, the transition temperature for the onset of the
instability must approach zero as 8~ 0, and the physi-
cally pertinent question is how high the transition tem-
perature can be for attainable field strengths. To answer
this question we anticipate that T, will in fact be quite
low (probably on the order of co. or less under the most
favorable conditions), and calculate the stability condi-
tion for a particular choice a=v in (3.12) under the
assumption that T, is much less than the range of
occupied energies in either of the two vth Landau
cylinders.

It is first useful to show that in this limit

A=lim p-
smao gp

dp—G(p) =lim
2x

(3.14)
~i(p —pi) —~(p+ pt)

8 8
(~~ (P+P~) v) f~ (P+Pt) (—~~ (P—P~) ~) —

f~ (P P—i)—— —
dp Bet 8tg

2Ã

(Throughout the next two paragraphs we drop the index
v and I'. to simplify the formulas. ) The derivative of f&

is nonvanishing only in the neighborhood of p=0 and
p= —2pt. At both of these points e(p+pt) —p=0, but

at the point p= 0 the denominator of the integrand also
vanishes, whereas it is nonvanishing at p= —2pt, thus
the first term contributes to the integral only in the
neighborhood of p= 0. The same can be seen to be true
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In the normal state either c or b is zero for any value of
n and p, so there is no component of spin perpendicular
to B. However if there are values of n and p for which
both a and b are nonvanishing, then there will be a non-
vanishing spin density perpendicular to the field, the
direction of which is constant in the x-y plane for a
given value of 2, but which varies in the s direction. This
variation can be thought of as a superposition of many
spin-density waves, one for each set of Landau levels
with the same n, all with wave vector I'."Note that if
we replace the a's and f&'s in (4.1) by the set

(4.6)

where q is independent of q, p, e, then all that results is
a shift in phase of the spin-density wave. This de-

generacy will be reflected in the variational calculation,
from which we can conclude that the best choice of u's

and f&'s is one in which they all have the same phase (so
that in particular they might all be real). However there
is nothing in the variational calculation to determine
this phase. LThus, if one is bothered by the fact that the
equilibrium states we are working with are not eigen-
states at T=O of the total spin or total s momentum
(which is reflected in the existence of a nonvanishing
spin current along the direction of 8), one can work with
linear combinations of (4.3) for different phases, to
arrive at states that satisfy the conservation laws. ]

We now evaluate the Hartree-Pock free-energy using
the states (4.1) and statistical weights (4.2), and then
minimize the result with respect to the a' s, b's, and m's.

The single-particle energy can be written in the form"

(Ho) = I.'
2'

ipI'—w.,l

——,'~o I(lf'.,I'—la. I') . (4.7)
(2m

The direct part of the interaction energy is just a con-
stant, cancelled by the uniform background of positive
charge. The exchange energy can be evaluated with the
results of Appendix A, using the fact that the a' s, b's,
and w's are independent of q. The result is"

mes, 1 dpdp'
J3 2 g.- (P-p') {ll'..ll'. .

2n. 4 (2&r)' ~~'

+ -. -'L(lf'-. I'—
I "I')(If-'I'—I -'I')

+4 Re(a„~*b ~a ~.b ~*)j), (4.8)

with g given by (2.2). For a repulsive interaction we wil-
do best by choosing the u's and b's to be real and posi-
tive, so we will restrict ourselves to that case Lbearing
in mind, however, that the transformation (4.6) leaves
(4.7) and (4.8) invariant, and thus provides us with an
equally good choice).

If we add to (4.7) and (4.8) the Hartree-Fock ex-
pression for the entropy, the free energy becomes (we
have absorbed I&iV into E)

(p'+If")+(a+2)~.—& —w„. —2~O t b„2—o„'j
I

2 2 2m 2m i

1 dpdp'
gnn'(p p )(If nyWn'p'+wnywa'y'Dfay &+ny )(bn'y' Qn'y' )++oonpbnyon'y'h~'~'])

4 ea' (2gp)2

dp
+T P —P Lw„,~"& lnw„„&"&+(1—w. „&"&)ln(1 —w. „&"&)j . (4.9)

2m'

The constant yo appearing in (4.9) is numerically equal
to one, but it is convenient, in proving that the spin-
density-wave state has lower free energy than the normal
state, to allow it to assume values between zero and one.
The physical case, however, is always po= 1.

In performing the variational calculation it is con-
venient to define several new quantities. We introduce
an "energy gap,

"h„„by

dp
~. =Var, g-(P —P')w-'"' '~-' '

n' 2'

"One could also consider different P for each Landau n-level,
but it is only when each level has the same P that the spin-density
waves from different levels combine coherently. The distinction

LComparing this with the third of equations (4.4) we
see that 6 is a measure of the magnitude of the self-
consistent exchange field due to the spin-density wave. ]
We also de6ne co „by

4p—g- (p —p')w"'(I- ~' —o"~') (411)
n' 2x

I Comparing this with the second of equations (4.4),
between the two possibilities is, however, probably academic
since, as it turns out, in either case only the spin-density wave in
the last occupied set of e levels has any appreciable amplitude."If one allows for the possibility of different P for different
n levels, then if P has the value P(n) for the nth level, (4.7} is
modified by replacing P by P(n), while (4.8) is unchanged
except that a&p*b&ya„p b„&p~* must be multiphed by bz&~), &«~).
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Q.„=o (pP/oa —(oo (o—.,) . (4.12)

If we minimize (4.9) with respect to the a's and b's

(remembering that a„o'+b„„'=1), we find that

one can interpret —,'co„„as the exchange energy due to
interaction of a given electron with the self-consistent
exchange field arising from the component of spin
along the magnetic field. 7 Finally, we introduce the
total self-energy diGerence, 20„„, between the states
)Pa+ and )Pa,

D.e. , from (4.4), the spin-density wave has a very small
amplitude] so that 5„„=0near T,. As 5 vanishes,
(4.18) reduces to

dp'
g- (p p')—

n' 2Ã

X (r») o
(') —w„„(o))sgn(Q „). (4.19)

a"b.o= kA.o/(~. o'+ll-o')'",

or, equivalently,

b ~' —a„„'=0o/(6„„'+0„„'))".
Minimizing with respect to the w„„(")gives

(4.14)

and

1
(p+-'~)'+( +l) .—l

2tn
1 dp'

g..(p—p') W. .. (4.20)
2 n' 2'

(4 1~) i o i i i
1

»np-1P i , (p ——,&) +(~+o)(oc+ Qo)o+ oo)a p
2m

(i) f(» (i) ~)

where the quasiparticle energies, &„„("),are given by
(~=1, 2) 1

n'

dp
g- (p p')~'- o—, (4 21)

2x1
(X) — (po+ po+ ()o+ ~ ))

2m
1 dp'

2 g- (p —p')~'- '
2 2g n'

Lwhere the notation is the same as in (2.1) in anticipa-
tion of the fact that (4.20) and (4.21) reduce to (2.1)
as 6 ~0j. From (4.16) it follows that as 5~ 0, we
have

dp
~"=V» 2 —g- (p —p')

2Ã

and

"'—~n
X 5, , (4.17)

, (2) ~, , (1)&n»y

~.o= 2 g- (p p')—— —
n' 2m

, C&) ~, , (2)

, (2) to , , (I)&n'y' &n'y'
(4.18)

Just below the transition temperature the u's and b's are
very close to zero or one for almost all values of n and p

+( 1)i(g 2+@ 2)1/2 (4 16)

Equations (4.12)—(4.16)„when inserted in (4.10) and
(4.11),give a pair a pair of nonlinear coupled equations
which determine 6 and Q.

Evidently if one is to go any further, considerable
additional approximations are necessary. Since in
this paper we are only concerned with the existence
of spin-density-wave states and the value of the
transition temperature, we shall limit ourselves to
showing, first, that the gap equation begins to have solu-
tions at just the temperature determined by the stability
analysis of Sec. III, and second, that whenever such
solutions exist they give a lower free energy than the
normal state.

First note that quite generally we can write (4.10)
and (4.11) as

and

&np = &n, ~)p,g
(&)—

Q„,&0,
&ny = En, ~)p,t

&ny = &n, ~P*,t(&)—
Q„„&0.= &n, ~~P,S

(4.22)

(4.23)

Therefore, one can write (4.19) as

dp'
~-o=Z g- (p p')—

n' 2'

Xpf('",o+)p, o )i) f(» & 1p
—

o )—i)j. (4,24)—

p2
+()o+k)(o.+oo)o

2m
dp'

g (p p')f(»" o )), —(4 26)—
n' 21r

so that (4.20) and (4.21) reduce to the normal Hartree-
Fock quasiparticle energies as 6—& 0.

If one retains only terms linear in 6 in (4.17), one

Placing (4.24) in (4.20) and (4.21) we find

p'
» ot +()o+o)(o o(oo

2m
dp'

g- (P P')f(»" o t )) —(4 2~)—
n' 2'
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finds, using (4.22) and (4.23),

dp'
g- (p-p')G-'(p')~-; (427)

2%'

Before concluding this section we should point out
that the best values of P can also be determined by dif-
ferentiating with respect to the explicit occurence of P
in (4.9); this gives

where G is given by (3.8). Now the normal state be-
comes unstable at that value of T for which (3.10) can
be made to vanish for some P=PO, and h„„~o=h„„'.
Since the Hermitian form (3.10) assumes (at T,) its
minimlm value for P=PO, 6 „=h„~', it must also be
true that

dp'
0=~. '—Z g- (p p')G-"—(p')~- ' (4.28)

2

A solution to (4.27) (when yp ——1) at T. is therefore
given by taking P=Pa and 5 „=6 ~'. Thus the linear-
ized gap equation will have solutions at the T, calcu-
lated in Sec. II.

Ke next prove that when nontrivial solutions to
(4.17) and (4.18) exist, they always give a lower value
to the free energy than the corresponding normal solu-
tion, 6—=0. To see this, consider minimizing the free
energy (4.9) for cack value of yp between zero and one.
Because the e's, b's, and m's are determined by making F
stationary, BIi ~,

' /8+p Es given by differentiating only
the explicit occurence of yo, so that

dpdp'
P min

,g- (p p')—
en' (2pr)'

X~&~~~~~~nI bny~n p Ip~~ py'

1 dp
p/(0 p+ g p) 1/p

2+0 st' 2X
(429)

a
Fsow Fnormsl d+0

O /+0

m„„A „21 dip dp

2, yp 2s (0,'+h.„')'"
where hF is just the free-energy diGerence between the
normal and spin-density-wave states for the given tem-
perature and chemical potential. Since e„„&'&&~ p('),
w„p= f(p„p"' ii) f(p„p&" ii—) is —always p—ositive, so
QF~0 12

Drom (4.13) and (4.10)j. Now when yp
——0, (4.17) re-

quires that 6=0, so the solution to the self-consistent
equations minimizing F is just the normal state. If we
are below T., then for some value of yo between zero and
one, nontrivial solutions to (4.17) will appear, and at
go= j., the solution is the actual spin-density-wave state.
Hence

dp dp
P —P W.„= —P w„„(b.„' a.—,P) (.4.30)

2~ - " 2x-

Comparing this with the first two of equations (4.4), we
see that P is just minus the spin-current density divided
by the mass density. (Spin-density wave states have the
peculiarity of having a net nonvanishing spin-current
density —i.e., spin-up electrons have a net current, as do
the spin down ones. The two currents are equal and
opposite so there is no net current. ) To get the best
spin-density-wave state one should also investigate the
solutions to (4.30) along with (4.10) and (4.11).This is
a diKcult matter. Even near T, the linearized equation
turns out to be satis6ed identically for any P. Since P
is closely related to the wavelength of the spin-density
wave, it is a parameter of some physical importance, and
(4.30) deserves further study.

p(p) =4pre'/(p'+kr r'),

kyar'=

(4/pr)pipe'p (5.1).
(&f many Landau levels are occupied the screening
should be quite close to its value in the absence of a
magnetic field; in the case in which only a few Landau
levels are occupied, which we shall examine later, we will
have to take into account the magnetic field dependence
of the scree~iiig. ) We make the further approximation of
replacing s(p) by its value at p=0:

v(p) —=p(Q) =pr'/ppppp. (5.2)

We suspect that since this has the eGect of increasing the
size of e everywhere in momentum space, it will lead to
an overestimate of T, (although we have not verified
this in any detail).

When p is given by (5.2), g„„ is most easily computed

V. ESTIMATE OF T,

We conclude with a rough estimate of the transition
temperature as determined by (3.30). One should not
give too much quantitative significance to the results of
this section. The calculation is crude, and our aim is to
get some idea of the circumstances under which a spin-
density wave might be observable, rather than to com-
pute T. accurately. Thus at best we are estimating the
order of magnitude of T, (and at worst, the order of
magnitude of its order of magnitude).

To get a preliminary orientation, we first consider the
case in which many Landau levels are occupied, and the
interaction is of the static screened Fermi-Thomas form:

~ At zero temperature it is easy to carry out the same argument
at fixed density, leading to the condusion that the spin-density

wave ground state has lower energy than the normal one at a
given density.
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large as 10 kG, n, will be on the order of a thousand;
M. at such 6elds could be as high as a few degrees K, so
(5.8) requires the transition temperature to be hopelessly
low due to the large argument of the exponential. It in-
creases quite rapidly as n gets closer to n, , but even
when we consider the last few occupied levels, the tiny
factor

Z
—~(~~)I/' (5.12)

where 0 is of order unity, eliminates any hope of ob-
serving the transition at metallic densities.

We therefore consider next the case in which 8 is so
large and the density so low that only a single Landau
cylinder is occupied at T= 0. In this case (3.30) leads to
a T, given by

e~ prpgT— (pt+ pg ) / gpp (o)

"r dp goo(p)'
gexp —— 1—2, p goo(o)'

'«p g (p)'—1— . (5 13)
p goo(o)'—

(We again neglect the effective mass difference at the
spin-up and spin-down Fermi surfaces, and assume a
parabolic spectrum. ) We suspect that the size of T. is
primarily determined by the first exponential in (5.13).
By neglecting the second we overestimate T, (since the
argument of the second is negative), so requiring the T,
determined by

4e& pgpg
~
—r (pt+yg) /mgpp {0)

m
(5.14)

to be observably high gives a necessary condition that
the transition be observable. If we can achieve this it
will then be necessary to go back and examine the second
exponential to make sure that it does not depress T, too
much.

For v(r) we continue to use a statically screened
Coulomb potential, but since we are now under extreme
quantum conditions, the Fermi-Thomas screening is
inadequate, and we must calculate the screening using
the dielectric constant in a magnetic 6eld. This calcula-
tion has been done by Stephen" and by Mermin and
Canel. "The result is

,(k„k,)=4ne /(k„'+k, '+4xe'IL'(k. ,k i) I),
L,o Lto+I

dp j( ..(p .'k )
—

l ) f(—-—(p+—k—)-
(2x)2 nn' e„,(P—2k'() —en'~(P+ k )

(5.15)

At this point we assume, for simplicity, a parabolic
spectrum:

e,=p2/2m+(n+~~)(u, —svo, (5.16)

where m is the effective mass and coo contains the re-
normalized g factor. Since f(e„p)=0 unle—ss n=p,
(5.15) can be considerably simplified. Using the fact
that

I see Ref. 14, Eq. (A8)j

Using (5.19) we can calculate goo(0). LNote that the
argument of Appendix A does not require an isotropic
v(lr), but goes through unchanged if v has the form
v(&) =v(k ' k ') ] Since

I (0 I

ei,uzi
I p) I

2 —e
—kp~/2m(u

we have

goo(0) = e' dx
0

I (0I e"~'In)
I
'=x"e-*/n!, x= kg'/2mco, . (5.17)

x+e-* x,+x, P
~-i ne t

We find that
8$~o

IL'(k, 0)I =
ptpl

2prpl ~ x
e * 1+ P, (5.18) Inserting this in (5.14) one finds

(5.24)

ol
%re' ( gn )—1

v(p, k, ') =
I
x+e ' xo+xr P I, (5.19)

2m .& ~nn! )

4prp~
T,= e~ expL —(pr+ p&)-'/prp&I'(xo, x&)], (5.25)

where

xo= (me'/z. )L(pt+ pg)/pr pg j,
xg ——(2e'/x(a. )(pr+ pg),

(5.20)

(5.21)
(5.26)

x
x+e-* x,+x, P

~=i nn tand we have used the fact that when a single Landau
cylinder is occupied

np ——(mcus. /2'')(pr+pg) .

"M. J. Stephen, Phys. Rev. 129, 997 (1963).'4N. D. Mermin and K. Canel Ann. Phys. (N. Y.) 26 247
(& 22) (1964).
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Llf we had replaced 2)(0,k&') by its value at k&=0, we
would have found I'(xo, x2) = 1.This corresponds to tak-
ing a 8-function interaction in real space, with ampli-
tude determined by the screening in a magnetic Geld.
We find, however, that I'(x2, x&) is considerably less than
1, so that the approximation of a delta function inter-
action is quite unjustifiable in the present case.)

We have carried out a preliminary computation of
(5.25) for the case of InSb."This material has a small
effective mass (1/75 of the free electron mass) which
makes it easy to reach the situation in which only one
Landau level is occupied. However a small m tends to
decrease F, which is unfavorable to a high T,. Further-
more, a small m is correlated with a large static dielec-
tric constant (from interband transitions), which, when
taken into account, will further depress F. Pending a
more careful analysis, we have treated the interband
contributions to the dielectric constant by simply re-
placing e2 by e2/20, using the value 2&=17 for InSb.
We also take for &ao the value (negative g factor)
a,=+0.33Ico,I.

Using these values we find that (5.25) leads to the
highest T, at a 6eld of 630 G and an electronic density of
6.4)&10"/cm'. The upper bound for T, in this case is
about j.4 millidegrees.

One can verify that for the density and held strength
quoted above our assumption that only a single Landau
n level is occupied is satisfied. Because of the small
efI'ective mass the value of or, corresponding to 630 G
is co,=6.5'K, so that T,&&co„as required for our analysis
to be valid. The Fermi momenta for the two spin levels
are pp/2222 =0.09cu, =0.6'K and P22/2222 =0.42&a, =2.7'K.
(Thus, although at this low density the electron gas is
not degenerate at I4 millidegrees in the absence of a
magnetic 6eld, the presence of the field restores
degeneracy. )

It is necessary to verify that the term dropped in going
from (5.13) to (5.14) does not drastically reduce T,. To
establish this in detail requires a lengthy numerical cal-
culation which we have not yet performed. Considering
how far we have already pushed and doctored the
Hartree-Fock approximation, the value of such a cal-

culation is somewhat questionable. One can see that the
second exponential in (5.13) should have an effect very
much less than the erst by the following extremely
crude argument. We know that

g»(p)'/g«(0)' (5.27)

vanishes with p as p-+ 0, and is bounded above by 1.
If we therefore replace it by

ap, 0&p& I/a, 1, 1/u& p, (5.28)

we should get some rough idea of the kind of eGect it
might have. Now (5.28) gives

2yt dp—(1—g«(p)'/g«(0)') = I+»(2ap2) (5 29)
0 p

and since the dependence on a is logarithmic, the cor-
rection to (5.14) will at worst affect its order of magni-
tude Lrather than affecting the order of magnitude of its
order of magnitude, as does the first integral in (5.13)j.
We therefore conjecture that the better formula (5.14)
will lead to a T.lower than the one given by (5.13) by at
worst an order of magnitude. However this conclusion
has by no means been rigorously established.

Finally, we re-emphasize that the burden of this sec-
tion has been to show that for appropriate materials the
transition temperature might occur in the millidegree
range, and not to give a precise prediction of the tem-
perature. We feel that we have pushed the Hartree-
Fock approximation about as far as it can fruitfully go;
it might be instructive to try another approach with
some suitably simpli6ed model Hamiltonian that en-
abled one to treat the screening dynamically, but this is
a rather ambitious project.
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APPEND1X A

We derive below some useful forms for the matrix element

(ay I
w

I Pb) = drdr'P *(r)iP ~(r')Ps(r)$2(r')2|(r —r'), (A1)

where the tp are the normalized Landau states (1.1). Inserting (1.1) and (1.2) into (A1), one can easily reduce the
matrix element to

(~v I
~ I») = ~,.+.,—.,—.b. ..—.,—.—2 ~(k*2+(v-—v~)2+(P- —Pp)') dx4-. *+

22NÃg I
t'

)(4,
I

x ei2»*

2m(,
dx'y. , x'+ y.,I

x' — e *"**e *'«~—22-'2 -«»'"- (-A2).
2m~. k 2m~.

"Data were taken from C. Hilsum and A. C. Rose-Innes, Semiconducting III-V Compounds (Pergamon Press, New York,1961),p. 18.
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Equation (A2) can be simpli6ed considerably by using the identity"

ku ) ( kp
~sk x ~ asks ~ ~i{ps'—n) qp

2m~, i & 2~,i
where

k~=k cos+, ky=k sing,

(A3)

(A4)

Thus if we define

(A2) reduces to

(I
~

p*'*~I')= dip'"y. (x)y. (x).

k'=k '+(q —qp)', q =tan '[(q —qp)/k, g

(A5)

(A6)

( vl I& )=4m» jp »eo—+eq—ep as —Z—"( +(P~ Pp) )
1.3 it

X(e ~e'~*~mp&(n„~e '"*~np)e ""~"& "P ""~e ""~'P '~"'~' ' (A. 7)

For the exchange term in the Hartree-Fock equations one needs the summation of (A7) over qp with q„set equal to
qp. Replacing the sums over k, and qp by integrals and going to the polar coordinates k and p, we have

"kdk
Z(m'I IP &l~p-~, = p~» ~p-»5~ mb„~„„»» —w( '+(p~ —pp)')(nile*"*Inp)(nile "*Imp&
Cp I. o 2m

(AS)

APPENDIX 3

(81)~p~j= k pap&(~a, t~agh+ bs;Sheet) ~

This reduces the stability condition to

To test the stability of the normal state against formation of a spin-density wave we evaluate (3.2) for b p which
are o6 diagonal in spin

&et &W —2 ~v-~'(oV lvlP»~v pv&~o
np fgg —f~t ap, yb

lt is convenient to make the change of variables

(82)

and to write

P-=P+k» Pb=p

q-=q+kQ q~=q —lQ,

Pp=p'+2I" Ps= P' 2I"—
qp=q'+2Q', q»=q' 2Q', — (83)

d gp„„&05

~q p~= d ~qn~~ p & "
(84)

If one insets (84) in (82) and uses (A7) one Ands that the term in s reduces to

"kdk
dh 2 ~(k'+(p —p')')&v ..-~"'(p)*&v. .,'p(po')

nu' o 2x

X exp[ik()sing —Q cosy/mes. ) ~(n, +n„—np n~) y—j(n—
~

e'~*~ ep&(e, (e '*~ np&. (85)

The integral over p gives a phase factor times a Bessel function

g+~Q/~ np+aI —na—n„
~.~.,—.p--~([&'+(Q/~ )'j"')I

~[V+(Q/~. )'j'"
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If we combine (85) with the expression for the first term in (82) the resulting stability condition is

A 853

0&~'~=1-' d&Z 2 —I~~. .~«(p)I'[.-.t(p+!&) "-,~(P-kI') j/Lf. ,~( kf-')-f -t(P+ '»&-
PQ nang

dpdp "kdk
&~. - ~"(p)*~~. "'(p') ~(k'+(p p—')')&n-I"*Inc&(n. le "*In~&

(2w)' 0 2X

~+&Q/~ ~
ee+ng n —n~

x~. .„, ,(LP+(Q/~ )'3'")I (86)
ALP+(Q/mes. )'j'"I

For stability the quantity in curly brackets must be positive for all values of I', Q, and $.
VVe have carried things to this rather gruesome stage for general bq because we can now make the point that the

instability first appears at Q= )=0, i e. , for Be b which is diagonal in q and q&, and independent of q&. Such a Se cor-
responds to the onset of a spin-density wave directed along the magnetic 6eld. To see this consider bp of the form

f.~~(p H') —f..t (—p+x2~)
& e -..s"'(p) = g„„,Qr(p)

e-.t (p+V') "~~(—p 2f')—

If &=p~t+p„z then at T=O the p integral of 8e will diverge logarithmically at p=~(p„t —p„.&). For arbitrarily
weak coupling 8'F will be negative because the exchange term in (86) is dominated by the term with n =ne= n,
n~= e&=e', which is the product of two logarithmically divergent integrals. At nonzero but very low temperatures,
the contribution to the first term of (86) with n =n, nq= n, will diverge like lnP, whereas the dominant contribu-
tion to the second will go like (1nP)'. (This can be shown in detail by using arguments almost identical to those of
Sec. III.) To get an instability at the highest possible temperature we must maximize the coeflicient of this term,
which is proportional to Jo(LP+ (Q/mrs, )'j'1~); therefore the best choices of $ and Q are ]=Q= 0, as asserted above.

Kith this choice the remaining Bessel functions reduce to b .+ ~ „and the stability condition becomesdp, e-t(p+9') e.+-i(p—kf')—
0&2 —

Isa�.

.. -(p)I'
f-+-i(p kI') f-t—(p+2I—')

dpdp'
be. ,-+ (p)*be -,-+-(p')

aa' (2s)~

"kdk
u(k'+ (p —p')')(n

I

e'" In'&&n'+tn
I

e-'" In+~& i (87)
0 2Ã

for each value of ns. Now the argument of Sec. II when applied to this more general case indicates (at least in the
weak-coupling limit) that the transition temperature will be highest when w t+s„+„g is as small as possible. Thus
(87) will first be violated when tn=0, and I'= p t+p &, where n is the quantum number of the highest occupied
Landau cylinder.


