
JOHN F. BA RN ES

are bound in crystals only by the very weak van der
Waals forces; if we were to ascribe a finite radius to the
isolated atom, it would be for the rare gases that such a
radius would most nearly equal the crystal radius. Since
the corrected statistical model predicts close to these
values for the rare-gas atomic radii, it would appear
that the correct interpretation of minimum-energy, or

zero boundary pressure, solutions is as representing
isolated atoms.
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The diffusion cross section for electrons in a gas of polar molecules is calculated. The improvement over
a previous calculation is the use of the exact scattering cross section of a charged particle by a point dipole
rather than the 6rst Born approximation. For H& the correction amounts to about 20/& and worsens the
agreement with experiment.

I. INTRODUCTION
' 'N a paper' having a title identical with this one,
~ - Altshuler calculated the diGusion cross section for
free electrons in a gas of polar molecules. He shows that
the coupling among the rotational states of the molecule
may be neglected, provided the electron energy is low
enough and the dipole strength is not too large. In all
practical situations the approximation is a good one and
the scattering may then be calculated from a molecule
with fixed orientation. The cross section is then averaged
over the orientation of the molecule. Altshuler treats the
molecule as a point dipole and uses the first Born
approximation to obtain his cross section. He then
averages quantum-mechanically over the orientation
of the dipole. He notes that the result in the first Born
approximation is identical with the classical averaging
procedure. We should like to point out that this is the
case for any dependence of the cross section upon the
dipole direction. We have obtained the exact diGerential
cross section for the scattering of a charged particle by
a point dipole for a variety of dipole strengths and
orientations, and we then obtain the diffusion cross
section. In general, the results are higher than the Born
approximation. Finally, we estimate the corrections re-
sulting from the short-range potential of the molecule,
with results which di6er from Altshuler's.

II. QUANTUM MECHANICAL SCATTERING
FROM A POINT DIPOLE

Our starting point is the wave equation
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*Work performed under the auspices of the U. S. Atomic
Energy Commission.

' S. Altshuler, Phys. Rev. 10?, ii4 (1957).

where the dimensionless dipole moment e is related to
the actual dipole moment 9 by

n= 2D/eap. (2)

Eq. (1) separates into
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where the condition that g be single-valued requires
that m be an integer. The separation constant is denoted
by L„m(L„"+1).The condition that 8„(&1)be Rnite is
a restriction upon I.„ to certain allowed values. The
integer e will denumerate these eigenvalues. A solution
of Eq. (3) may be obtained by expanding in the com-
plete set I'~ .
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where the coef5.eients and eigenvalues are determined

The geometry is illustrated in Fig. 1 where k is the
incident wave vector and the scattered particle has a
unit negative charge. Equation (1) is separable in the
usual spherical coordinates r, p, and p, (p= cos8). With
the assumption
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from the three-term recurrence relation,
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FIG. 1. The geometry of
the problem.

The method of solution is described in the Appendix.
We merely note here that the normalization can be
chosen so that for each m the 8„ form a complete
orthonormal set.

The solution of the radial Eq. (4) which is finite at
the origin is the spherical Bessel function j z„(kr). The.
condition that this function be finite at the origin places
a bound upon the eigenvalue,

and yields
0
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In this form it is not dificult to show that

f(u,4; n,o)=f( n, 4; --~, ~). (14a)which results in an upper bound on the magnitude of the
dipole moment

7a The differential scatterin~ cross section is, of course,
given by

0.(1.279.

Otherwise, the potential is too attractive (in some
directions) and. no solutions exist. 2

Having obtained a general solution of Eq. (1) in the
form

do
() A—;n,~)= Ifl'.

dQ
(15)

=Pj.„-(kr)g„-(&)e*-~A„„, The energy dependence k ', which is exact, wa, s noted
by Altshuler in first and second Born approximations.
It is simply a consequence of the scaling of Eq. (1).The

the coefficients A„are determined from the boundary first Born approximation to Eq. (15) yields
condition

lim f=e'"'+ (e'"'/r) f()i it))

In order to proceed, we expand the plane wave

haik r P Q B (kr)g m()i)mimi
l~ m=oo

(10)

We can invert this equation for BE and use the expan-
sion of the plane wave in spherical Bessel functions
to get

(11)lim B) (x)= (1/2ix)[a) e'* P) e '*]—,
where
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where ))= cos(. The condition Eq. (9) then fixes A „
A =e '& )')~ )g (13)

'N. F. Mott and H. S. W. Massey, in The Theory of Atomic
Collisions (Oxford University Press, London, 1950), 2nd ed. , p. 40
describe a similar situation for the 1/r' central potential.
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In the forward direction Eq. (16) is indeterminate. The limit
we refer to here is &=0, p —+ g. The divergence comes from scatter-
ing at large distances where the Born approximation becomes
correct so that Eqs. (15) and (16) must coincide. Similarly, the
total cross section diverges.

It diverges in the forward direction where it becomes
the correct result. ' The result, Eq. (15), is much too
complicated to present here; we content ourselves with
some general remarks.

For small n(=0.2) the exact result is significantly
different from Eq. (16). There is more structure in the
cross section, but it averages out about Eq. (16). For
higher values of n, up to the critical value of 1.279, the
results are completely different from the Born result,
and in general are higher. There is a more pronounced
tendency to peak near the forward direction than for
low n.

The momentum transfer, or diffusion cross section, is
obtained from Eq. (15) by
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FIG. 2. (kl/oP}oz(y, a) versus dipole orientation.

In Fig. 2 we have plotted k'/a'pro versus g for various
values of the dipole strength, from +=0 to the critical
value. They may be averaged over the orientation of the
dipole, ' dg

a(a) = —an(q, a),
-1

vectors For. low energies (kro« 1) the change in the
diGusion cross section has an energy dependence
given by

bo —(U/k') (kro)'~++' (21)

where I.o is the lowest eigenvalue of the m= Q, Eq. (3).
For H20, ~0.73 and Lo'~0.14 so that bo. k '.".
Altshuler quotes a correction which is energy-independ-
ent, in contradiction to this.

It is clear that such a perturbation treatment is not
valid for o.&1.279 since in that case there is no zero-
order solution since the approximation of the molecule
by a point dipole is invalid.

to give the effective diffusion cross section. In Fig. 3 we
have plotted the ratio o (a)/o s versus n. Here 0 s is the
Born result

h/ = —— d'nP g. (r) U'(r)fi(r),
4x

(2Q)

where k and k' are the initial and anal scattering

We have indicated the results for several polar molecules
on the 6gure. The Born approximation for NH3 is
about 12% low, for H~O it is about 2Q% low, and for
HCN more than a factor of 2 too low.

Altshuler presents a comparison with experimental
results for NHS and H20. The chief disagreement with
his Born approximation theory is the energy depend-
ence. Our calculation cannot change this. The tendency
of our correction is to reduce the agreement with
experiment.

Our calculations describe the molecule as a point
dipole. We can estimate the correction to this at low
energies. Suppose that there is an additional short-range
(=ro) potential k'/2mU and that its effects are small
enough to be treated as a perturbation. Then the change
in the scattering amplitude is

P i(x)=Q, Po(*)—= 1

As pointed out by Givens, 4 for nonzero b„'s the roots
of P„(x) separate the roots of P~i(x). In our case, b„/a
for successive e tends to zero with increasing e, and the
least roots become computationally equal. Thus, the
6rst ten roots of P~g and P20 were identical to eight
significant figures. Using the first ten roots of P20(x) as
trial eigenvalues of M~0, corresponding trial eigenvectors
were obtained from Eq. (7) as follows:

' VV. Givens, Natl. Bur. Std. (U. S.) Applied Math. Series No. 29,
pp. 117-122.

b, ,x; i+(a;—X)x;+ b~~, =Q, (i=1, 2, .).
Thus, x is an eigenvector of an inanite triple-diagonal
symmetric matrix A, and X is the corresponding
eigenvalue.

Let M„be the matrix obtained from A by deleting
all but the first n rows and columns, and let P„(x) be
the determinant of (3f xI), then—
P„(x)= (a x)P i(x) b i2P— g(x), —

(ri= 1, 2, 3, ),
with
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Let the trial roots be ordered such that

For X=X~, assume values for x1 and @~0. Generate two
sequences, using Eq. (7),

cation of the inverse power method, that is, choose

X/Xk, but X much closer to XI, than to any other trial
eigenvalue and replace the trial eigenvector x by the
solution of

(A —Xl)z= x.

The Grst ten eigenvectors of %20 were normalized to
unit length. The trial eigenvalues were replaced by

~20) +19) '
) &k ) X= (x.dx).

then scale one of the sequences such that the two values
of xk are identical. As a Gnal check, the largest observed dot product of two

Each trial eigenvector is improved by repeated appli- distinct eigenvectors was less than 10
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Measurements of electron-capture cross sections of 12.9- and 21.0-MeV deuterons in He, ¹)and Ar

are reported and compared with published theoretical estimates and experimental results for protons with

energies ~& 1 MeV.

I. INTRODUCTION
'
ANY calculations of cross sections for electron

capture by fast protons in gases, especially in
atomic hydrogen, have been published, .The philosophies
of the several approaches are discussed in Refs.
through 4 and, in the review paper by Bates and.

McCarroll. ' There is substantial disagreement as to both
the magnitudes and the energy dependence of the
published cross sections for energies )1 MeV.

We have measured the capture cross sections for
12.9- and 21.0-MeV deuterons in He, Ng, and. Ar. ' Al-

though these few measurements represent only a
beginning, their magnitudes can be checked against the
published calculations, and from a comparison with the
experimental results of Barnett and Reynolds at proton
energies & 1 MeV, ' inferences can be drawn about the
average energy dependence for protons in the energy
range 1 to 10 MeV.

*%'ork performed under the auspices of the U. S. Atomic
Energy Commission.

[Present address: Aerospace Corporation, El Segundo, Cali-
fornia.' B.H. Bransden and I.M. Cheshire, Proc. Phys. Soc. (London}
81, 820 (1963}.

s R. A. Mapleton, Phys. Rev. 130, 1839 (1963).
I M. H. Mittleman, Proc. Phys. Soc. (London) 81, 633 (1963}.
~ R. A. Mapleton, Phys. Rev. 130, 1829 (1963).' D. R. Bates and R. McCarroll, Advan. Phys. 11, 39 (1962).
s Measurements were also made in Hs but are not reported be-

cause of a 0.08 j& ¹ contamination of the target gas, which
necessitated large corrections to the data.' C. F.Barnett and H. K. Reynolds, Phys. Rev. 109,355 (1958).

II. APPARATUS AND PROCEDURE

Deuterons from the Berkeley Hilac were deflected
15 deg, collimated to a diameter of 5 mm, and passed
through a differentially pumped gas cell 24 cm long.
The neutral particles produced in the gas were detected
with a 20-mm-diam solid-state detector, pulse-height
analyzed, and counted. Charged particles emerging from
the gas cell were defIected into a wide-aperture Faraday
cup placed in the analyzing magnetic Geld to eliminate
secondary-electron losses. The currents were recorded
with a calibrated integrating electrometer.

At full Hilac beam current it was possible for us to
locate the charge-exchange-produced neutral beam by
observing it on a phosphor-coated Lucite plate. The
Hilac intensity was then reduced and. the phosphor re-
placed by the solid-state detector, which easily con-
tained the entire beam. The energies of the deuterons
were determined by the deQection in the bending
magnet and by pulse-height analysis with a Li-drifted
counter and. Al foil degraders. The detector was cali-
brated with an Am"' o. source. The uncertainty in the
energies is &1.5%.

The pressures in the target were measured with a
Schulz-Phelps-type ionization gauge, which was cali-
brated against a liquid-nitrogen-trapped McLeod gauge.
We used, the results of Meinke and Reich' to correct
for the pumping effect of the mercury streaming to the
cold trap. The maximum correction was 12%, for the

Ch. Meinke and G. Reich, Vacuum 13, 579 (1963).


