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Total elastic-scattering cross sections have been calculated for low-energy electrons incident on lithium
and sodium. The effects of target distortion by the electric field of the incident particle and electron exchange
between incident and bound electrons have been included through the “adiabatic exchange” approximation.
In this method, the effect of the distortion induced in the target atom is computed through a polarization po-
tential which is obtained by the method of polarized orbitals. The phase shifts and the total elastic-scattering
cross sections are obtained through the solution of a set of integrodifferential equations. The calculated
polarization potential agrees asymptotically with experimental determinations of the dipole polarizability
of Li and Na, and the total elastic-scattering cross sections agree well with recent measurements over the
entire experimental range. Results for both alkalis exhibit a small resonance at the experimental peak around
1V and a second peak at lower energies outside the present experimental range.

I. INTRODUCTION

N treating the problem of low-energy elastic scat-
tering of electrons by an atomic system, there are
two major effects which complicate the problem a great
deal. These are the exchange interactions between the
incident electron and the atomic electrons, and the
distortion of the atomic system by the electric field of
the incident charged particle. In the case of the alkali
atoms, both of these effects are particularly important,
since the valence electron is very loosely bound. Earlier
calculations for the alkali atoms' have shown the
extreme sensitivity of the calculated cross sections to
the accuracy of the polarization potential in the total
scattering interaction and to the exchange effects.? In
this paper, the problem of low-energy elastic scattering
of electrons by atomic lithium and sodium is treated
in the energy range from 0.003 to 25.0 eV. The effects
of exchange and target distortion have been calculated
here through the use of the adiabatic exchange approxi-
mation wherein the target atom is distorted by the
static field of the incoming electron. The polarization
potential is calculated by a method of polarized orbitals
similar to that used by Temkin®5 and Callaway,® and
electron exchange between the incident and the valence
electron is included through explicit use of the adiabatic-
exchange approximation which leads to a set of integro-
differential equations for the free-electron wave
functions.®—5

II. POLARIZATION POTENTIAL

In this section, the distortion of an atomic system
by a slow incident electron and the resulting polari-
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zation potential is developed from the application of
first-order perturbation theory to Hartree-Fock electron
orbitals. We note that analogous perturbation calcu-
lations on Hartree and Hartree-Fock systems have
been carried out heretofore in order to determine
atomic dipole polarizabilities (Sternheimer?); core
polarization due to valence electrons in alkali atoms
(Callaway®) ; and the polarization potential for electron
scattering (Temkin?).

We consider the first-order perturbation by a free
electron of an atomic system whose unperturbed
Hartree-Fock (HF) self-consistent-field wave functions
have been determined. Under the influence of the
perturbation, the HF one-electron orbitals and the
HF energy depend on the coordinates of the free
electron. The perturbed orbitals ¥; of the HF determi-
nant for the atomic system then satisfy the following
equation (in rydberg units) which depends on the free-
electron coordinate 7, 8:
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In these equations, ry, rp are the coordinates of bound
electrons and r; is that of the free electron. In order to
simplify the above equations for the perturbed HF
orbitals, we write ¥;(r;,r;) in the form

Wi (r1,r7) = ®i(r) +x:(ro,1y), 4)
"R. M. Sternheimer, Phys. Rev. 96, 951 (1954); 115, 1198
(1959).
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where ®;(r;) is the unperturbed HF orbital which

satisfies

['— Ve+V (1'1) —4 (l'x)]‘l’i(fl) = €%P; (rl) (5)
with
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Our objective is to determine the first order pertur-
bations x; of the single-electron orbitals ¥; of the
Hartree-Fock determinant for the bound atomic
system. In this calculation, the term 2/rys is treated
as a perturbation on the atomic system, and the
perturbations x; are determined from first-order per-
turbation theory.*®7 The integrodifferential equations
for the first-order perturbation x;(ry,r;) of the HF
orbitals may be determined from Eq. (1). These have
been written down explicitly by Callaway® but are too
complicated to solve in any reasonable time. However,
if all the perturbed Coulomb and exchange integrals
are dropped from the equations for the first-order
perturbation of the HF orbitals, the resulting differ-
ential equations are more tractable. The effect of
omitting these integrals is discussed by Callaway® and
is shown to be reasonably small.

The presence of the unperturbed exchange integrals
A(r1) which are retained in the equations for the
perturbed Hartree-Fock orbitals still leave the equations
in a very complicated form. However, these terms can
be replaced very conveniently and with reasonable
accuracy by an average exchange potential by the
method given by Slater.8 In the simplest form of Slater’s
method, the exchange term of Eq. (7) is replaced by
the function

3 1/3
As(rl)g(r1)=6[8—2‘Pf*(n)@j(rx)] ). (®

T oJ

The summation in this expression is carried over all
occupied orbitals of both spins. With this substitution
and with the omission of the perturbation terms in the
Coulomb and exchange integrals, the resulting equation
for the perturbation x; of a HF orbital becomes

[=V24+V(r)—4, (r)— Ez‘o:]Xi(l'lyl'f)

[/I‘I’ (1’1)[2:,41’1—7_1/

In this equation, we expand the perturbation term
2/r17 which appears in the two terms on the right-hand

i(r). (9)

8 J. C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill Book Company, Inc., New York, 1960), Vol. II, p. 14.
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side by the multipole expansion

2 2 27’/
—_—=—t— 0050+——(3 cos?0—1)+--- (ri>7ry),
riy rnori 2r (10)
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where 0 is the angle between 7, and 7;. Substituting
(10) into the two terms in the brackets on the right of
(9), we note that all but the spherically symmetric
term in the integral will vanish. Dropping the quad-
rupole and higher order terms, the bracket expression
then becomes

27< 2 21’<
[d),‘(n) I2'——dl'1——"-—“" cosf y
1'>2 r<

f>2

where 7. is the lesser and 7 the greater of r,, r;. We
note that for large values of r, the first and second
terms in this expression will cancel each other, leaving
only the dipole term 27./r5? cosf. Also noting that for
smaller values of 7, the spherically symmetric term of
the potential will be small as compared to the Coulomb
term, we make the dipole approximation and retain
only the dipole term in the bracketed expression.

To obtain the first-order perturbation of each of the
atomic electron orbitals &;, we thus have the following
pair of differential equations to solve:

[— V24V (r)—A,(r)— e Ix: (r1,xy)

27’1
=——cos6®;(r;), for r;>r;; (11a)
r#
[V V (r)—A,(r1)— e’ Ixi(rs,1y)
21’;
=——cosb®;(r;), for r>r;. (11b)
7y

These equations must be solved in the “inner” region
where 7;<r; and in the “outer” region where ry>7,
and the solutions matched at the boundary r;=7r,.

With the solutions for the perturbations x; of the
Hartree-Fock orbitals, the dipole polarization potential
is then determined from the expression®?

21’(
Vo) = [0 cosdrs(rurins, (12
J 7>

where the sum extends over all occupied orbitals ®;.
The reduction of Egs. (11) into radial equations and

(12) into integrals over radial coordinates is accom-

plished easily by expansion of the functions ®; and x;

9 L. C. Allen, Quarterly Progress Report, Massachusetts Insti-
tute of Technology, 1955 (unpublished).
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in the form
(1)) =[Pni(ry)/r ]V ™ (0,0) (13)
and
xi(tpt)= X [Unior(rirs)/r1]
Vom
XCnl—»l’m—nn' Yl'm, (0;¢) . (14)

With these substitutions, the differential equations (9)
separate into the radial equations

[:zz__z'(z'ﬂ)

dr 12 r 12

= V(r)+A4,(r)+ €1°:| Unisv (riry)

21’1
=—Pu(r), ri>r1, (15a)
¢
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dr? 1

-_ V(71)+A 8 (71)+ G].o] Unl—»l’ (rlyrf)

2r !
=—P,.z(fl), 1’1>ff, (].Sb)

r 12
which must be solved and matched at the boundary
ri=ry. The constants Cpnip™™ in Eq. (14) are deter-
mined from the Clebsch-Gordan coefficients which
occur from the angular integrals. These are tabulated
by Sternheimer and are zero unless [/=/-1, where
only the upper sign holds for /=0. With the solutions
to (15), the polarization potential becomes

Vor)=2 Varsr(rs),
all’
where

2 r
Vatsr (fl)=KnL-»l'|:—_2‘/ Po(r)riUnisw (r1yry)dry
ryf 0

0

+"ff Pri(r) Unisr (fx,ff)fl‘2df1] . (16)
vy

The constants K ;- are numbers which depend on I’
and on the number of electrons in an #! shell and have
been given by Sternheimer. In the limit as r;— oo,
the polarization potential calculated here should ap-
proach —a/r*, where a is the dipole polarizability, thus
providing a convenient check on the accuracy of the
solutions V.

III. SCATTERING EQUATION

As mentioned in Sec. I, both target distortion and
electron exchange are extremely important in electron
scattering by the alkali atoms and must be dealt with
accordingly in the scattering equation. On the other
hand, if one wishes to obtain cross sections over a
fairly wide energy range as in the present investigation,
the scattering equation must be written in a reasonably
tractable form, since many partial waves are required
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in the calculation. In order to achieve these objectives,
the scattering equation is written as essentially a two-
electron equation for the free electron and the single
valence electron in the field of the perturbed core
orbitals with exchange between the incident and
valence electrons included explicitly. Exchange with
core electrons is accounted for implicitly through the
exchange term A4,(r) of Eq. (7), and core polarization
is included directly through V,,(r), which is the polari-
zation of the core electrons. The Schrédinger equation
may then be written in the form

|:v12+ Vi BV (r)— V(ra)+As (r0)+4, ()

2
+Vp,<n)+Vp,(r2>——~]\1'(n,r2>=o, 7
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where r; and r; are position vectors for the two electrons,
and the terms V(r), 4,(r) are given by Egs. (6) and
(8). Vp,(r) is the polarization potential for the core
electron calculated by the method of Sec. II.

With this scattering equation, the adiabatic exchange
model is again utilized to express the wave function
W (ry,re) for the free and the bound electron. In this
approximation, ¥ is written in the form

v (rl,l'z) = ‘I/, (rl,r2)F (l‘z):‘:‘l’o (!'2)F (1'1) , (18)

where ¥, is the ground-state wave function for the
valence electron, ¥’ is the perturbed ground-state
function which is perturbed adiabatically by the free
electron whose wave function is F, and the perturbation
term is 2/71s.

The plus sign in (16) refers to the symmetric (singlet)
state of the two electrons, and the minus sign to the
antisymmetric (triplet) state. In the adiabatic exchange
approximation adopted here, the symmetry of the wave
function ¥ is partially destroyed, since the unperturbed
bound state function ¥, appears in the second term of
(18) rather than the first-order perturbed function ¥,
The omission of the first-order perturbed term in the
exchange wave function means that the function
W (11,r2) is not completely antisymmetric except in the
limit of large 7, where the perturbation becomes zero.
This approximation is consistent with the perturbation
calculation of HF functions in Sec. IT and should have
an equally small effect on the accuracy of the scattering
equation.’1°

The perturbed ground-state function ¥’ is written,
as in Sec. II, in the form

v’ (1'1,1'2) =‘Ifo(r1)+x(r1,r2) ) (19)

and the perturbation x is determined from Eq. (9).
Equation (18), with ¥’ written as in (19), may be

substituted into Eq. (17) in order to obtain an equation

for the free-electron function F. With this substitution,

(1190612).. W. LaBahn and J. Callaway, Phys. Rev. 135, A1539
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Eq. (17) may be multiplied on the left by ¥¢*(r1) and
the result integrated over r;. With the use of Egs. (5),
(9), and (12), the Schrédinger equation becomes

[VeHki— Vo(ra)+Au(re)+ Vo, (ra)+ Vo, (r2) IF (r3)

- dn\Iro*(rl)(koz—Eo——Z—)F(n)‘I’o(l’z), (20)
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where the upper and lower signs refer to the singlet and
triplet states, respectively. Here the term k¢=E—E,
is the kinetic energy of the free electron and E, is the
ground-state energy of the bound electron. Vo(re) is

defined as
w),

which is the screened Hartree-Fock potential for the
neutral atom. The term V,,(r;) is the polarization
potential due to the perturbed valence electron and is
given by

Vu(ra)= / ¥o*(r1)

Volrs)= <\po

2
—+ V(fz)
712

x(r,r2)dry,

2
712

which is, in the dipole approximation, just that of Eq.
(12), where x is to be determined from Eq. (11). Thus
the sum of the two terms V,,+ Vs, is the polarization
potential for the core plus the valence electron and is
just the polarization potential of Eq. (12) for the com-
plete atom. This will be denoted by V.

By the use of a partial wave expansion of the free-
electron wave function F(r), Eq. (20) can be reduced
to a radial equation for each partial wave f;. Thus we

write
F (!'2) = Z f_lf; (f)Pl (cos@z) . (21)
l

With this expansion, the equation for the partial wave
f1 becomes

1+ 1):|fz

r

a?
'—'fl+[k02_ V0+A |+ Vp'—
dr?

) foUodr+ l—l——}

==+ Uo[ (Eo—k*b10
0 2141

X { / P U =D dp = @D / fauor'dr
0 0

_,t/OT f,¢0r*<l+1>dr]] , (22)

where uo=7r"1, is the radial part of the normalized

ground-state wave function for the valence electron.
The integrodifferential equation (22) may be solved

in a noniterative fashion by a procedure used by
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Marriott,! or in an iterative self-consistent calculation
as was used in the present work.

IV. APPLICATION TO Li AND Na
A. Calculated Polarization Potential

In the calculation of the polarization potential, the
unperturbed wave functions for the atomic system were
taken as the Hartree-Fock-Slater (HFS) wave functions
obtained from a slightly modified program originally
written by Herman and Skillmann.’? The output of the
program furnished the functions V (r), 4,(r), &° and
Pni(r) in Egs. (15), which could then be solved for the
perturbations Uni of a given orbital whose radial
function is P,;. For a given value of 77, Egs. (15) were
integrated by the Numerov process for inhomogeneous
equations as described by Hartree,"* over the same 7,
mesh as that of the HFS program which furnished the
unperturbed functions. The integration in the inner
region was started by noting, as did Sternheimer,® that
for r;,~0 the inhomogeneous term on the right-hand
side of (11) is negligible as compared to the potential
terms on the left. The solution may thus be started by
a series expansion® near the origin and continued by
numerical integration. With this procedure there is an
arbitrary constant in the starting values, this being the
value of (Unisr/rV+)o. For the inhomogeneous set of
equations (11), this parameter in the starting conditions
must be determined in order to satisfy the boundary
conditions; that the solutions to (15a) and (15b) and
their derivatives match at ;=7 and that the solution
be exponentially decreasing at infinity. The value of
(U nisr/rV+)o was varied automatically in the coded
program until two values were found which enclosed
the correct one. The choice was then narrowed by
successive solutions until an accuracy of five to six
significant figures in the starting value was achieved.
The calculations were performed on a Univac 1107
computer at the University of Alabama Research
Institute.

In the present calculation, the total polarization
potential was taken to be that contributed by electrons
in the two outermost shells of the alkali atom. For Li,
both the core and valence electrons are in s states. In
Sternheimer’s notation, these undergo s — p perturba-
tions, and the radial equations must be solved for the
perturbation Uj,¢s1 and Us,es1. In the case of Na, the
2s and 3s electrons experience s — p excitations similar
to Li. However, for the 2p electrons, two modes of
excitation 2p—d and 2p— s are possible, and the
perturbation Usz,1,2 and Uy, are required.

The solutions to the pair of differential equations
(15) for the perturbations U,y (r,r;) exhibit a be-

11 R, Marriott, Proc. Phys. Soc. (London) 72, 121 (1958).

2F. Herman and S. Skillmann, Atomic Structure Calculations
(Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1960).

3 D. R. Hartree, The Calculation of Atomic Structures (John
Wiley & Sons, Inc., New York, 1957).
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havior very similar to the simpler solutions obtained
by Sternheimer. Thus the nodes of the radial function
U iy correspond in number to the orbital next higher
in energy than sl having !/ angular momentum. Also
the contributions #ns — p and np— s are opposite in
sign as found in Sternheimer’s calculations and tend to
cancel each other in their contribution to V,. (Stern-
heimer supports this behavior with a reasonable physical
and mathematical argument.) The solutions to Egs.
(11) are, of course, more complicated than those of
Sternheimer, since his equations correspond to those
only in the asymptotic region of r; where only one of
Egs. (11) hold. As the free electron moves in toward
the nucleus, the pair of equations must be solved for
each value of 7;. In the actual solution, the equations
were solved over a 441-point mesh on r; and for 110
values of r;. As one would expect from physical argu-
ments, the amplitude, and to some extent the shape of
the perturbation Unpr (7,75) of an nl orbital, depends
on the position 7; of the free electron. The perturbation
is small for large ry, largest when 7;~r, where 7o is
the position of the largest maximum of the unperturbed
function, and small again for r;~0. This is clearly
shown in Fig. 1, where the unperturbed radial function
Py,(r) for sodium and the perturbation Us,g,:1(7,rs) for
three values of 7, are shown.

We have so far considered the core polarization as
being due only to the electric field of the incident
electron. However, since the valence electron is strongly
polarized by the field of the incident particle, there is
an induced field acting on the core due to the polarized

valence electron orbital.’* This field tends to induce a
moment of opposite sign in the core orbitals, thus de-
creasing the effective polarization of the core. An
estimate of the size of this effect can be obtained by
calculating the electric field at the nucleus AE.5(0)
due to the perturbation of the valence-electron wave
functions. The z component of this field is given by

00

pina? 2 cosbdv, (23)

AEq,:(0yrf)= e/

0

where ping is the electron density induced by the field
—e/ri of the charge —e at z=r;. For the valence
electron in an s state, this becomes

00

4
AEval,z(Oyrf) = eg / PnO(’) Un,os1 (7,7’f)f_2df . (24)

0

If the valence electron were completely external, the
total field acting on a core electron would be the sum
of that due to the free electron and that given by the
induced field of Eq. (24). However, since the valence
electron penetrates the core, the effective field due to
the valence electron is reduced from this value. But
more important for our purposes is the fact that in the
scattering problem the perturbing electron also pene-
trates the atomic system. Thus the induced field [Eq.
(24)] is a function of 7/, and since the core polarization
potential only becomes appreciable for small values of

14 R. M. Sternheimer, Phys. Rev. 127, 1220 (1962).
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7y, it is necessary to calculate the induced field of the
valence electron for several values of r; in order to
estimate the size of this effect on the core polarization
as compared to the direct field of the penetrating
electron. This has been done by evaluating Eq. (24)
for several values of ;. The results for Na are shown
in Table L

We note that the induced field of the valence electron
first increases as ry decreases from infinity, reaches a
maximum for 7;~r, (see Fig. 1), and then decreases
rapidly for smaller values of 7, approaching zero at
r;=0. This can easily be seen from Fig. 1 where the
amplitude of the perturbation of the valence electron is
seen to first increase and then decrease as 7, gets smaller.

In order to estimate the effect of this interaction on
the calculated polarization potential, we show sepa-
rately in Fig. 2 the polarization potential from the
valence electron and from the core electrons as calcu-
lated from Eq. (16). Then note that for values of r
greater than ~2a,, where the induced field of the
valence electron is appreciable, the polarization po-
tential due to the core electrons (whether due to the
direct terms from the incident particle or from the
induced field of the valence electron) is essentially
negligible as compared to the large valence electron
contribution. Furthermore, for small values of 7; where
the core polarization potential becomes appreciable,
the induced field due to the valence electron becomes
small as compared to the perturbing field of the inci-
dent electron [down by a factor of six from its maxi-
mum (Table I)] and thus can reasonably be neglected
in the calculation of Vp,, since this is the only region
where V,, is important. Thus, in the present treatment,
the core and valence contributions to V, are calculated
independently and added (Fig. 2), neglecting the in-

TasBLE 1. Electric field at the nucleus due to perturbed valence
electron of Na as a function of 7.

0.597
0.0372

3.017
0.0949

0.211
0.0169

6.075
0.0501

r1(a0)
AEva),: (Ox'f)

duced effects of one upon the other. The core contri-
bution is almost entirely due to the 2p — d excitation,
since the 2p—s and 2s— p contributions canceled
each other almost exactly.

As a check on the accuracy of the calculations, one
can compare the asymptotic value of the calculated
dipole polarization potential with the value which one
knows should result, namely, V,(r;)~a/r* for r — =,
where o is the dipole polarizability whose value is
available from experiment. Thus, in Table II, we give
the calculated value of a from the present calculation
which is obtained from the equation a=V,(r)r/ at
r7=25a,. The results are converted to A3 in Table II
and compared with experimental values’® and with
other calculations.* The agreement with experiment is
very good.

B. Solutions to the Scattering Equation

The solutions of the scattering equation (22) for all
partial waves f; having /<7 were obtained by an
iterative self-consistent method of solution. In this
technique, the integration was started by expanding
fiin a power series near the origin and continued by
Numerov’s method.!? In addition, the required starting
values for the integrals on the right-hand side of (22)
were obtained by first solving (22) with the right-hand
side set equal to zero (no-exchange approximation).
The resulting wave functions were then used in the
integrals for the next iteration.

Having started the iteration, the entire integro-
differential equation was iterated through a seli-

TasLE II. Dipole polarizabilities from asymptotic value of V,
in present calculation and from experimenta (43%).

Li Na
Present 22.2 23.9
Measured 20-23 20-25
SternheimerP 24.9 22.9

a Reference 15. b Reference 14.

18 A, Dalgarno, Advan. Phys, 11, 281 (1962).
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TasLE III. Singlet and triplet phase shifts for Li.
E
(Ry) 50+ 51+ 52+ 53+ 84t 55+ 8¢t 80~ &~ 82~ &3 84~ 85~ 86~
0.00025 9.2756 6.2738 3.1426 0.000 9.3549 6.2850 3.1426 0.000
0.0050 9.2055 6.2548 3.1437 0.000 9.3140 6.2857 3.1438 0.000
0.00075 9.1501 6.2327 3.1446 0.000 9.2796 6.2832 3.1450 0.000
0.0010 9.1023 6.2058 3.1452 0.001 9.2486 6.2787 3.1461 0.001
0.0015 9.022 6.157 3.147 0.002 9.195 6.267 3.149 0.002
0.0020 8.954 6.111 3.148 0.003 9.148 6.253 3.152 0.003
0.0025 8.894 6.067 3.149 0.004 9.105 6.236 3.155 0.004
0.0030 8.840 6.026 3.149 0.006 0.002 9.066 6.219 3.158 0.005 0.002
0.0040 8.745 5952 3.148 0.006 0.003 8995 6.184 3.164 0.006 0.003
0.0050 8.662 5886 3.147 0.008 0.003 8932 6.148 3.170 0.008 0.003
0.0060 8.588 5.827 3.145 0.010 0.004 8.875 6.111 3.177 0.010 0.004
0.075 8.490 5.748 3.142 0.013 0.005 8.798 6.058 3.188 0.013 0.005
0.010 8.355 5.636 3.135 0.017 0.007 8.684 5975 3.209 0.018 0.007
0.020 7955 5321 3.109 0.049 0.016 0.008 8.345 5.704 3.300 0.049 0.016 0.008
0.030 7.683 5.113 3.089 0.100 0.027 0.012 0.007 8.095 5499 3.380 0.101 0.027 0.012 0.007
0.050 7.313 4.853 3.065 0.270 0.064 0.025 0.013 7.733  5.223 3.448 0.282 0.063 0.025 0.013
0.065 7.101 4.732 3.043 0.451 0.102 0.038 0.018 7.523 5.053 3.458 0.486 0.103 0.038 0.018
0.075 6984 4642 3.027 0.590 0.133 0.048 0.022 7.393 4963 3.451 0.650 0.134 0.048 0.022
0.085 6.879 4.562 3.011 0.734 0.167 0.061 0.027 7.293 4.873 3.436 0.827 0.168 0.061 0.027
0.100 6.741 4462 2989 0.922 0.223 0.081 0.036 7.148 4.763 3.402 1.060 0.224 0.081 0.036
0.125 6.546 4302 2946 1.210 0.325 0.121 0.054 6.939 4.622 3346 1.410 0.329 0.122 0.054
0.150 6.383 4.182 2902 1410 0.419 0.167 0.075 6.763 4.482 3285 1.640 0.426 0.167 0.075
0.250 5909 3.821 2746 1.662 0.776 0.353 0.174 6.241 4.064 3.061 1902 0.805 0.356 0.174
0.500 5.243 3328 2461 1.812 1.200 0.710 0.419 5482 3490 2.676 1982 1.270 0.726 0.422
0.750 4,837 3.047 2270 1767 1323 0.896 0.592 5.025 3.117 2431 1919 1.398 0.924 0.600
1.000 4511 2857 2127 1.727 1.357 0.993 0.704 4.704 2950 2.254 1.838 1428 1.028 0.718

consistent-field procedure. For this, the integrals on
the right-hand side were compared at some large value
of r (r=30, at which point the integrands vanish to a
good approximation because of the bound orbitals)
with the value from the preceding iteration. If the
value of the integrals from one iteration differed by
more than 0.19] from that of the preceding solution,

then the process was repeated until this criterion was
satisfied.

For values of I>7, it was found that the exchange
terms of Eq. (22) were completely negligible ; therefore
the solutions f; were found by simply solving the
homogeneous equation obtained by setting the right
side of (22) equal to zero.

TaBLE IV. Singlet and triplet phase shifts for Na.

E

Ry) 5t ot 5t P 8t &t 8o~ 81~ 82~ 83~ o4 85~ 8~
0.00025 12.4297 6.3070 3.1430 12.5002 9.4183 3.1430 0.000
0.00050 12.3625 6.3460 3.1444 0.000 12,4587 9.4017 3.1445 0.000
0.00075 12.3090 6.3995 3.1450 0.000 12.4237 9.3814 3.1459 0.000
0.0010 12.2609 6.4740 3.1451 0.000 12.3912  9.3528 3.1454 0.0003
0.0015 12,183 6.680 3.147 0.001 12.336 9.307 3.148 0.001
0.0020 12,116 6960 3.149 0.002 12,288 9.262 3.152 0.002
0.0025 12.060 7.283 3.152 0.003 12.240 9.219 3.156 0.003
0.0030 12.006 7.573 3.153 0.004 0.000 12.206 9.177 3.159 0.004 0.000
0.0040 11913  7.765 3.156 0.006 0.002 12.133  9.100 3.167 0.006 0.002
0.0050 11.832 8.113 3.157 0.008 0.003 12.069 9.031 3.175 0.008 0.003
0.0060 11,759 8.193 3.158 0.010 0.004 12.010 8.968 3.183 0.011 0.004
0.0075 11,663 8.035 3.158 0.014 0.006 11931 8.883 3.198 0.014 0.006
0.010 11.526  8.025 3.157 0.021 0.009 11.814 8.762 3.224 0.021 0.009
0.020 11,126 7.845 3.150 0.057 0.018 0.009 11466 8.415 3.348 0.057 0.018 0.009
0.030 10.855 7.753 3.144 0.121 0.031 0.014 0.008 11.216 8.185 3.461 0.124 0.031 0.014 0.008
0.050 10475 7.473 3.133 0.345 0.075 0.028 0.014 10.835 7.885 3.554 0.370 0.075 0.028 0.014
0.065 10.259 7.313  3.116 0.583 0.123 0.043 0.020 10.615 7.743 3.567 0.654 0.124 0.043 0.020
0.075 10.137 7.221  3.101  0.760 0.161 0.056 0.025 10495 7.633 3559 0.874 0.162 0.056 0.025
0.085 10.028 7.139 3.086 0.935 0.204 0.071 0.031 10.382  7.543  3.538 1.100 0.205 0.071 0.031
0.100 9.886 7.029 3.065 1.140 0.273 0.097 0.042 10.231  7.413 3.507 1.350 0.276 0.097 0.042
0.125 9.683 6.871 3.022 1420 0.397 0.146 0.064 10.016 7.232 3.445 1.610 0.403 0.147 0.06+
0.150 9.512 6.738 2979 1.590 0.567 0.201 0.089 9.833 7.079 3382 1712 0.519 0.202 0.090
0.250 9.016 6.349 2.833 1.752 0.986 0.420 0.208 9.292  6.626 3.159 2.002 0.939 0.424 0.209
0.500 8.305 5.790 2.597 1.842 1.270 0.797 0.483 8.506 5975 2.811 2012 1.360 0.819 0.488
0.750 7.840 5453 2464 1.792 1370 0.969 0.662 8.028 5.588 2.617 1928 1.451 1.003 0.673
1.000 7.568 5212 2383 1.761 1.380 1.049 0.766 7.683 5316 2497 1.843 1.456 1.088 0.783
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TaBLE V. Phase shifts for higher / values Li and Na §;*~8,"=4;.

Li Na
E 87 3 89 d10 1% d12 813 814 815 &7 33 o9 810 d11 b12 813 O14 d15
0.050 0.008 0.008
0.065 0.011 0.007 0.012 0.008
0.075 0.013 0.008 0.014 0.009
0.085 0.015 0.009 0.016 0.010
0.100 0.019 0.012 0.021 0.013
0.125 0.028 0.016 0.010 0.031 0.018 0.011
0.150 0.038 0.021 0.013 0.045 0.025 0.015
0.250 0.095 0.054 0.032 0.114 0.064 0.037
0.500 0.256 0.159 0.103 0.066 0.301 0.188 0.123 0.080
0.750 0.392 0.263 0.178 0.123 0.086 0.061 0.044 0.032 0.448 0.306 0.209 0.146 0.101 0.072 0.052 0.038
1.000 0.496 0.349 0.247 0.176 0.128 0.092 0.069 0.051 0.038 0.556 0.396 0.286 0.206 0.152 0.110 0.081 0.062 0.044

The phase shifts §;* and 8, were obtained directly
from the solutions to Eq. (22) by integrating the
equation out to a distance which was large enough
that all terms in the differential equation were neg-
ligible as compared to k* (<10~*). The phase shifts
were obtained by comparison with the spherical Bessel
functions. The distance at which this criterion is satis-
fied depends, of course, on the value of %% For the
smallest values of % this distance was chosen as large
as 500a,, and for the highest values of % it was as small
as 35a,. The proper multiple of = to be added to the
phase was obtained directly by a node count on the
solutions f; and on the corresponding Bessel functions
71 The result was available directly from the additional
number of nodes in the function f;.

In Tables III and IV are listed the phase shifts
for singlet and triplet scattering for several energies,!®
and in Table V are the phase shifts for higher values
where the triplet and singlet partial waves were
indistinguishable.

V. TOTAL ELASTIC-SCATTERING CROSS
SECTIONS

With the phase shifts §;% and ;- determined, the
total elastic-scattering cross section for the singlet or
triplet may be determined (in units of 7a¢?) from the
expression

4
ai=<——) > (2041) sin*,
k/
where the (+4) refers to the singlet and the (—) to

the triplet states of the system. The total cross section
is then

TABLE VI. Scattering lengths for Li and Na.

Li Na

A+
7.554

a-
2.088

A+
6.511

4-
1.634

16 A more complete list of phase shifts is available through
W. R. Garrett, University of Alabama Research Institute Report
No. 19, 1965 (unpublished).

In Figs. 3 and 4, the total elastic-scattering cross
sections for Li and Na are shown compared to the
experimental results of Perel, Englander, and Bederson!?
and of Brode.!® [The results are plotted as a function
of (volts)!”2 in order to show the low-energy values more
clearly.] The agreement with experimental values over
the range of the experiments is quite good. In particular,
we note the double resonance exhibited by the total
cross section, one at about ¥ V and another smaller
peak at about 1.5 V, which corresponds exactly in
energy to the experimental peak in this region. Un-
fortunately, no experimental cross sections are available
for Na and Li in the very low-energy region as in the
case of Cs; thus the second peak in the calculated cross
section cannot be checked against experiment at
present. The calculated cross sections are about 5-159,
higher than the experimental values of Perel et al.;
however, their results were normalized to those of
Brode at 2 eV; thus the absolute values of the experi-
mental curve may be in error by this amount, par-
ticularly since Brode!® states that his values below 4
eV are uncertain to 4=159%,.

We note in Figs. 3 and 4 that the calculated cross
sections for both Li and Na decrease to relatively small
values at very low energies. The values at zero energy
were determined by calculating the scattering lengths
A=* for singlet and triplet states from the modified
effective-range theory expansion!?

tandpt= — A xk— (ma/3)k?
— (4ad*/3)k* In(1.232k)+- - - ,

where A= is the scattering length. The values of 4 were
obtained from the phase shifts at £=[0.00025 (Ry) ]2
and are shown in Table VI. It is worthwhile to compare
the scattering lengths of Table VI with those calculated
for electron-hydrogen scattering by various methods.
In the case of hydrogen the singlet scattering length is
A*=6a, and the triplet 4~=22a, (Rosenberg, Spruch,

17 ], Perel, P. Englander, and B. Bederson, Phys. Rev. 128,
1148 (1962).

18 R. B. Brode, Phys. Rev. 34, 673 (1929).

¥T. F. O'Malley, L. Rosenberg, and L. Spruch, Phys. Rev.
125, 1300 (1962).
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and O’Malley® give upper bounds of 6.23a, and 1.91a,,
respectively, for A+ and A~; other calculations agree
well with these results.?!) We note from the results of
Table VI that both the singlet and triplet scattering
lengths of Li and Na are very little different from those
of hydrogen. This is significant for two reasons. First,
though the alkali atoms are much more complicated
than hydrogen, they retain hydrogen-like character-
istics and polarization and exchange effects are similarly
important as in the hydrogen atom. Second, and per-
haps more important for comparison purposes, is the
fact that the negative ions of Li and Na are estimated
to have approximately the same binding energy as that
of the hydrogen atom (roughly 0.7-0.8 eV).?? Thus,
heuristically one would predict that the singlet and
triplet scattering lengths for these alkalis should re-
semble those for hydrogen, which is true in the present
calculation.

The present results for zero energy differ quite
drastically from those of other calculations for alkali
atoms. The results of Vinkalns, Karule, and Obedkov®
for Li are At=—4.8 and 4—=—104, and those of
Salmona and Seaton? for Na are A*¥=9 and 4—=—12.
Both these results are very much different from those
for hydrogen and from the present results, being
exactly opposite in relative magnitude and yielding
much larger values of ¢ for E=0. The present results
also differ greatly from those for Cs by Crown and
Russek,?® A+=—20 and 4—=360a, which yield very

2 1. Rosenberg, L. Spruch, and T. O’Malley, Phys. Rev. 119,
164 (1960).

2 See A. Temkin and J. C. Lamkin, Phys. Rev. 121, 788 (1961).

2 See Review of L. M. Branscomb Atomic and Molecular
Processes, edited by D. R. Bates (Academlc Press Inc., New York,
1962), pp. 100-138.

% 1. Z. Vinkalns, E. M. Karule, and V. D. Obedkov, Opt.
i Spektroskopiya 17 197 (1964) [English transl.: Opt. Spectry
(USSR) 17, 105 (19 ).

% A. Salmona and M. J. Seaton, Proc. Phys. Soc. (London)
A77, 619 (1961).

e _T C. Crown and A. Russek, Phys. Rev. 138, A669 (1965).

large cross sections at zero energy. Though no experi-
mental data is available for comparison at very low
energies, the present results seem more reasonable from
the above argument. Also the results at higher energies
are much better in the present calculation than in any
of the previous alkali atom calculations, which lends
some support to the present low-energy results.

VI. CONCLUSIONS

From the results obtained in the present calculations,
it seems that the method of polarized orbitals and the
adiabatic exchange approximation is capable of de-
scribing low-energy electron scattering from more
complicated atomic systems, these being represented
by HF-type wave functions. In the calculation of the
polarization potential for the alkali atoms, the approxi-
mation used in earlier calculations*61° that only the
outer region of the perturbation equations be included,
seems to be inadequate. Since the valence electron is
very weakly bound, the wave function of the valence
orbital has an appreciable amplitude over a rather large
distance, and the inclusion of the inner and outer regions
in the equations for the perturbed radial functions gives
a strong dependence of the amplitude and the shape of
the perturbation Uni.i’ on the free-electron position.
With the strong dependence of the scattering cross
sections on the shape of the polarization potential in
the region near the atomic radius, this behavior should
not be ignored in the calculation of V.

There are two points which should be mentioned in
comparing the present interaction potential for electron-
alkali atom scattering with other calculations on the
same problem. The first, which was pointed out by
Temkin,* is that the perturbed orbitals X; contain, at
least partially, the effects of both the continuum and
configuration interactions. The perturbed wave function
contains terms of higher angular asymmetry than the
original function and corresponds roughly to a per-
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turbation of some closely lying configuration. Further-
more, the radial dependence, which arrives from the
solution of an inhomogeneous set of equations, reflects
the effects of all higher states even of the states of the
continuum.* The methods employed in other calcu-
lations for the alkalis include the contributions from
only a limited number of higher states to the polari-
zation potential, usually only one®? or at most two or
three®? excited states. This has been shown to be
adequate for very large r; where the results may be
compared to that yielded by the dipole polarizability,*
but for values of 7, comparable to the atomic radius
where the perturbation is considerably stronger this
approximation may be inadmissible.

Another significant difference in this comparison is
the treatment of the core electrons. Here, both the
effects of core polarization and exchange are included,
at least approximately; core polarization by direct
calculation and exchange in the core through the use
of the Slater exchange approximation for the exchange
potential in Eq. (17). Sample calculations for Na,
neglecting these effects, indicate that both contributions
are important for some values of E. The method of
Bauer and Browne? yields a convenient approximation

26 E. Bauer and H. N. Browne, Atomic Collision Processes,
edited by M. R. C. McDowell (North-Holland Publishing
Company, Amsterdam, 1964), p. 16.

to both effects, though adjustable parameters are in-
volved in the calculation. Their calculated cross sections
for Li are well below experimental values in the region
just below the first excitation threshold.

In the present treatment, the Slater approximation
for the exchange terms in the Hartree-Fock equations
was utilized in calculating the bound state as well as
the free wave functions. There are, of course, more
accurate wave functions available for Li and Na, but
the magnitude of the problem begins to be unmanagable
in the complete HF perturbation calculation. The HFS
wave functions are, in fact, very close approxima-
tions to the HF solutions; since exchange polarization
terms are neglected in the polarization-potential
calculations, it seems that little would be gained by
using more exact HF ground-state wave functions in the
equations derived here. In fact, the present investi-
gation indicates that a useful criterion for a “good” set of
bound-state wave functions, in a low-energy scattering
problem where the polarization potential is so im-
portant, is that set which gives a good value of the polar-
izability in the polarization-potential calculation. The
HFS wave functions used here satisfy this require-
ment very well.



