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In the harmonic approximation, the molecular model has been used to study the vibrations of U centers
in NaC1 and KCl where we have considered an impurity ion and its nearest neighbors moving while the rest
of the crystal is at rest. For interactions we have used the rigid-ion model with short-range forces limited to
nearest neighbors only. The 21+21 matrix obtained in this way has been diagonalized to get the eigen-
frequencies and eigenvectors. If the U' center is treated as an isotopic impurity, the resulting vibration fre-
quencies are almost the same as those obtained from the Green's-function method using the rigid-ion model.
Thus within the framework of the rigid-ion approximation, the molecular model is a good representation of
the system. The maximum amplitude of the neighboring ions corresponding to the local-mode frequency
is very sm&U compared to that of the impurity. This lends further support to the molecular m~lel. Using
the experimental infrared absorption frequency due to U centers in NaC1 and KCl, we have estimated the
weakening of overlap forces between the impurity and its nearest neighbors.

INTRODUCTION
' FOLLOWING the observation of local modes due to

U centers in alkali halides by Schaefer, ' a number
of attempts have been made to predict their frequencies
theoretically. Earlier calculations" based on some
simple models gave reasonable agreement between
theory and experiment when the U center was treated
as a substitutional isotopic impurity. However, later
calculations, " treating the U center as an isotopic
impurity, and using the Green's-function method,
showed disagreement of about 50% with experiment.
In Ref. 5 an attempt has been made, on the basis of
the rigid-ion model (RI) and the shell model, to estimate
the change in force constants associated with the
impurity.

In this note we wish to consider a molecular model
(MM) for the study of U centers in NaCl and KCl in
the harmonic approximation. In this model, we consider
the impurity ion and its six nearest neighbors taking
part in the motion while the rest of the crystal is at
rest. We consider both H- and D as substitutional
impurities. The interaction potential is based on the
RI model with central overlap forces limited to nearest
neighbors only. The 21/21 matrix obtained in this
way is diagonalized to get the eigenfrequencies and
eigenvectors. The eigenvectors are used to compute the
relative amplitude of the impurity and its nearest
neighbors. The eigenfrequencies obtained by considering
the U centers as isotopic impurities are compared with
results of more sophisticated calculations' based on the
Green's-function method. Experimental local-mode

frequencies due to U centers in NaCl and KCl" are
used to estimate the change in overlap forces around
the impurity ion.

THEORY

Considering the impurity ion and its nearest neigh-
bors in NaCl structure, the usual equations of motion
can be written as

MiU (l)= —g 4..(ll')U (l'),

where M~ is the mass of the lth particle; U (l) is the
nth component of the displacement from equilibrium
of the lth particle (a=x, y, z; l runs from 0 to 6), and
where

4 (ll') = 38'4/BU (l)BU ~ (l') jo,
with 4 being the potential energy of the whole crystal.

Kith solutions of the form e'"' and substituting
(M~)'"U (l)= W (l) we get

co'H (l) = Q L4 (ll')/(M+1'p)'i'jIW (l'). (2)

For the RI model the potential energy is the sum of
Coulomb and repulsive parts, i.e.,

~'= ELe(1)e(2)/lr&2I+ V(lr» 1)j, (~)

where the summation extends over all the possible
pairs of ions in the crystal, each pair being counted once
only. Splitting 4 (ll') into Coulomb and repulsive
parts, respectively, we get

D ..'(ll') —= (M(Mp) "'4..'(ll')
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e(1)e(2)= (M~r) "' B' Q

BU.(l)BU (i'), (4)
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Tmz.E II. Born-Mayer parameters for the impurity

and the perfect crystals.

p (10 ' cm}
H or D Cl

(10~ ergs)
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FIG. 1.Local-mode
frequency w versus
A' for H and D in
Nacl.

(/) (/=/'),

D'- (E»=M~ 'f~'0 V(l» I)}/~U-(/)~U- (/) jo (/)

The summation extends over the nearest neighbors only.
Using Kellermann's notation, ' we define A and 8 for
nearest-neighbor interaction in the perfect crystal by

P I I I I I I

(A S) (A 4) (A 5) (A 2) tA I) A

A

2 V'—= 2Ld V/dr7p ——(e'/(2rp') }rp&,

2V"—=2ld'V/dr'jp= (e'/(2rp') }A,

(8a)

(8b)

D.„s(E/')= (MPS] )—'f'4.."(E/') = (M]M«) "'
where r0 is the nearest-neighbor separation. If we use
Vz for the overlap energy of the impurity with each of
its nearest neighbors, we define in the same way

Xl 8'(p V( «l12 l) }/8 U(/)BU. (E')$p. (5)

We consider the two cases: (i) /=l' and (ii) /N/' and
separately.

2Vz'= 2(dVz/dr —jp (e'/(2«pP) ——}rpB',

2Vz =2)d V—z/dr jp= (e /(2rp )}A',

(9a)

(9b)

(i) (/ = l')

e(1)e(2)
D '(//)=M( ' O' Q EEU, (E)BU (l)

—0

Here the summation involves the interaction of the ion
under consideration with the rest of the crystal. This
term is zero due to the symmetry of the crystal.

(ii) (l~ /'),

we assume no relaxation around the impurity. In this
case,

8'= 8= —1.16S.

If we label the impurity by /=0 and its nearest neigh-
bors by /=1 to 6, their coordinates are 0(0,0,0),
1(rp 0 0) 2(—rp 0 0) 3(0 r 0)p4(0 rp, 0) 5(0 0 rp)
and 6(0,0, —rp). Using the notation mentioned above,
the nonvanishing terms in Eq. 7 can be written as

D, .'(ll')
e (l)e (l')

= (M(M(.)-"' 8'
l
r(EE')

l

BU. (l)BU (l')

D ~(l/) =M& 'P$V" (or Vz")r~xP/rp'

+V'(or Vz') (1/ l
r p l

—r xp P/rpP)] ~ (10)

After summation

where r'(ll') is the equilibrium separation vector joining
i and 1',

and all other

3e (l)e (l')
l') '(//')+ (/) (/')~, /r"(//

»P&(//') D,,s(11)=D„e(22)=D„„"(33)=D„„"(44)
=D e(55)=D..s(66)

= (A+A'+48)Mg —'(e'/(2V, )}, (11)

TAsLE I. Local-mode frequencies (in 10" rad/sec) from the
molecular model (MM) and rigid-ion (RI) model and from the
experiment.

D e(EE) = (2A+48)M '((e /(2V, )},

Impu- Impu-
rity rity
ion mass

H 1.009
D- 2.015

Ratio

NaCl KCl
MM RI Expt. MM RI Expt.

15.44 15.9 10.52 14.16 14.2 9.36
10.97 11.2 10.05 10.1 6.73
1.41 1.42 1.41 1.41 1.39

where V,—=2r0'= volume of unit cell.
(ii) (lW l'),

D "(//')=+(M&Mr) '"
xL~'v(l«(«') l)/~U-(/)~U" (/') jo

~ E. %. Kellerman, Phil. Trans. Roy. Soc. (London) 238, 513
(1940).
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The nonvanishing terms from this expression are given

by

T

13l4- s l0

12-

Adding the Coulomb and repulsive parts, we get a
21X21 real and symmetric matrix. Diagonalization of
this matrix yields the eigenvalues and an orthonormal
set of eigenvectors. The eigenvectors corresponding to
a mode ~, satisfy the equation

coPR'. (f)= Q D..(ll')IV. (f'),

and the amplitude of an ion in this mode is

lO-
-FX

FIG. 2. Local-mode
frequency u versus A' -ExP

for H and D in KC1. 6-

2-

U (f) = W (l)/(Mi)'i'. (14)
o I

(A-S) t A-4)

A

RESULTS AND DISCUSSION

The crystal data required in these calculations are ro
and the compressibility which are given in Ref. 8.
The value of A obtained from ro and the compressibility
is 9.988 for NaCl and 11.304 for KCl.

With H and D as impurities in NaCl and KCl
the eigenvalues and eigenvectors for a given A' were
obtained by diagonalizing the 21&21 matrix. The
largest eigenvalue is triply degenerate and corresponds
to the local-mode frequency. The rest of the eigenfre-
quencies lie below the maximum frequency of the host
crystal, and the amplitude of the impurity ion in these
modes is either zero or negligible compared to that of its
nearest neighbors. The local-mode frequency was
computed as a function of A' and the results are shown
in Figs. 1 and 2. In the isotopic approximation for U
centers, present results are compared with those of the
Rl model using the Green's-function method' in Table
I. The two results are in agreement.

In order to estimate the change in overlap forces we
use the experimental values" of the local-mode fre-
quencies due to U centers in NaC1 and KCl to get
the appropriate values of A' from Figs. 1 and 2. The
value of A' for NaC1 is 5.64. Its value for KC1 is 6.2,
which is almost the same both for KCl(H) and KCl(D),
as it should be. The estimate of overlap forces between
the impurity and its nearest neighbors is obtained by
using the Eqs. (9a) and (9b) to fit the Born-Mayer
potential Vr=X+ exp( —r/p) to these values of A'.

TAsLE III. Ratio of the maximum amplitude of the nearest
neighbor to that of the impurity corresponding to the local-mode
frequency.

The results are compared with those of the perfect
crystals in Table II.

Using Eq. (14) we have computed the amplitude of
the nearest neighbors relative to that of the impurity.
The results corresponding to the experimental local-
mode frequencies are listed in Table III.

We see that the present results for the local-mode
frequencies are in agreement with the Green's-function
calculation in the isotopic approximation. Thus the
molecular model is very good so far as U centers are
concerned. The very small relative amplitude of the
nearest neighbors further supports this model.

Since we have used the RI model, any detailed
calculations of overlap forces would not mean much.
Still, a considerable softening of the overlap forces is
indicated by large decrease in the second derivative of
the overlap interactions. Thus we get a rough estimate
of the overlap interaction of the impurity with the
positive ion of the host crystal in terms of simple
Born-Mayer parameters.

It is clear from the present calculations that in order
to study the localized modes due to impurities which
are quite light as compared to host atoms, one doesn' t
need sophisticated techniques like the Green s-function
method. As we have seen, the molecular model is
equally good. But what is really important is the model
of the impurity itself and its surroundings. Any realistic
calculations should take into account, if possible,
relaxation around the impurity, anharmonicity, dipole-
dipole interactions, change in polarizability, and change
in overlap forces, and hence the change in short-range
deformations.

NaCl
KCl

0.019
0.011

0.045
0.022
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