HALL EFFECTS IN Fe AND SOME Fe-Ni

a wide range of both impurity and thermal scattering
in various proportions and magnitudes, it appears that
an expression of the form p”, where #>2, is not too
significant, since it breaks down over a wide range of
data. The slope of 1.4 in Fig. 5 may be due to a mixture
of Luttinger and Karplus-Luttinger-type terms.

An interesting correlation occurs between the
quantity R,/p? at room temperature over the whole
Fe-Ni composition range, as reported by Jellinghaus
and de Andres,” and the first magnetic anisotropy con-
stant K,.% Both are positive from iron to about 809, Ni

5, ”SV;I (J’elhngha.us and M. P. de Andres, Ann. Phys. (Leipzig),
187 (1960

% R. M. Bozorth, Ferromagnetism (D. Van Nostrand Company,
Inc., Princeton, New Jersey, 1951), p. 571.
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where both change sign, and their behaviors are very
similar over the whole range of compositions. This may
be due to the fact that, in the Karplus-Luttinger treat-
ment, which probably gives the dominant contribution
at room temperature, R,/p? should be proportional to
the strength of the spin-orbit coupling and the aniso-
tropy energy should have the same dependence.
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The general integral equations for describing the multiple Bragg reflections in a mosaic crystal are given.
The solutions of the general problem are in the form of infinite series. For the particular problem of a delta-
function beam striking a semi-infinite crystal, these series are summed to give modified Bessel functions as
the appropriate solutions. The modified Bessel-function solution serves as a Green’s function for the genera-
tion of solutions of a general beam striking a semi-infinite crystal. Discussed in some detail are the effects of
absorption and of crystal-cutting angle on the efficiency of monochromating crystals. The concept of the
asymptotic value of neutron current density is stressed to show the importance of not collimating the beam
between the neutron source and the monochromating crystal.

1. INTRODUCTION

HE approach taken by this paper in analyzing the
multiple-Bragg-scattering problem in mosaic crys-

tals is similar to that taken by Hamilton.! However, the
differential equations given by Hamilton describing the
conservation of neutrons are recast in integral form.
Consequently, the starting point of the analysis here
closely parallels that given by Vineyard.? While the
historic interest in the multiple-Bragg-scattering prob-
lem (or secondary-extinction problem) has been the
need to make corrections for it in comparing intensities
in determining crystallographic structure, our primary
interest has been in the design of diffraction experiments

* Present address: Scientific Laboratory, Ford Motor Company,
Dearborn, Michigan.

1W. C. Hamilton, Acta Cryst. 10, 629 (1957)

2 G. Vineyard, Phys Rev. 96, 93 (1

to make greater use of the neutron source available at
low- to medium-flux reactors.

For example, in order to obtain an acceptable resolu-
tion in doing single-crystal experiments the divergence
of the “monoenergetic’ beam from a monochromator
must be less than of the order of 1° in the horizontal
plane and perhaps 3° in the vertical plane (owing to
crystal size). This implies that only those neutrons inci-
dent on the monochromator in a small solid angle of
the order of 0.0006 sr are useful. This solid angle sub-
tends only about 15 sq in. at a reactor face 12 ft away.
Thus, for these small angles the reactor face looks like
a plane source, and consequently, the inverse-square
law does not apply. If it were possible to reflect all the
neutrons in this small solid angle AQ having energies in
the small spread AE immediately at the surface of the
monochromator, we would have a plane source of
“monoenergetic” neutrons which could then be colli-
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mated between the monochromator and the target
sample to produce the desired resolution at the maxi-
mum possible intensity.

In view of the fact that the absorption and incoherent
scattering cross sections are small for many common
monochromators, the penetration depth of the beam
into the crystal is determined primarily by the proba-
bility per unit path for Bragg scattering (which is quite
often 0.5 to 1 cm™). Because of this large penetration
of the beam into the crystal, it is necessary to “look”
inside the crystal to obtain the spatial profile of the dif-
fracted beam at the surface of the monochromator and
to find out how closely one can approximate the above
idealized situation.

Itisapparent that in order to “bring” the plane source
of neutrons at the reactor face out a distance of 12 ft,
the collimation which determines the resolution of the
system must be placed between the monochromator and
the target sample. Although this may seem like a simple
conclusion, it is nevertheless contrary to standard
practice. Since it is also desirable to use a thick mono-
chromating crystal (when used in the Bragg position),
we treat only the semi-infinite-crystal case in this paper.
Problems involving crystals of finite dimensions have
been solved and will be presented in a subsequent paper.
It is essential here to discuss the thick-monochromator
problem for the case where the incident beam is of
finite size.

The inherent assumption that the extinction problem
can be separated into two parts, namely, primary and
secondary extinction, is present in this paper. We also
assume, as has consistently been done previously, that
the mosaic distribution function W depends only on
orientation of the mosaics and not on the position of
interest in the crystal. As has been done in the papers
by Bacon and Lowde? (1948) and Hamilton! (1957), it is
assumed that the displacements and distortions in the
crystal which give rise to the mosaic structure are ran-
dom and large compared to the wavelength of the inci-
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F16. 1. Geometry of incident and diffraction directions. The wave
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dent neutrons, so that there are no definite phase rela-
tionships between mneutrons scattered from various
mosaic blocks. Consequently, we talk about current
densities rather than wave functions.

We define =,(6y,k) to be the probability per unit path
for small paths that a neutron incident on the crystal
at an angle 6, having wave vector k is Bragg-reflected
(Fig. 1). We also define 2,(60,k) to be the probability
per unit path for small paths that a neutron incident on
the crystal at an angle 6, having wave vector k suffers
any interaction which changes its course (including
absorption). In order to obtain analytical expressions
for Z, and 2, we must specify the mosaic distribution
function and solve the primary extinction problem (for
a small block in an infinite beam). Appendix A gives the
expressions for 2, and 2, that are generally used in cal-
culations for neutron diffraction in mosaic crystals. In
the analysis which follows, it is necessary only to use the
fact that if a neutron is Bragg-reflected, its course is
changed by an angle 265 (to within a few seconds of
arc). The wave vector k, Bragg angle 65, and reciprocal
lattice vector of interest G are related by

|k|sinfz=r| G| . )

Neutrons which are Bragg-reflected have penetrated
down into the crystal until they have reached a mosaic
which is oriented at an angle such that the Bragg-Laue
condition is satisfied. The incident angle 6,, the wave-
vector k, the exit angle 6, and the mosaic angle A (see
Appendix A and Fig. 1) are related by the equations

A=0+Ak tanfp°, (2a)
0=0,— 2Ak tanfz°, (2b)

where Ak=(|k|/|ks’|)—1, 05°=sin"'x|G|/| k|, and

g is a wave vector which lies parallel to the central ray
of a collimator and satisfies the Bragg-Laue condition
for mosaics lying at the center of the mosaic distribution.

II. SEMI-INFINITE CRYSTAL
A. The Multiple-Reflection Process

In order to describe the multiple reflection of neutrons
in a semi-infinite crystal we first set up a pair of general
integral equations which will apply to a crystal of any
geometry. Consider the region R of a crystal as shown in
Fig. 2. The boundary ADBCA of R may be determined
by the finite extent of either the beam or the crystal.
The boundary is assumed to be convex with respect to
x and s, where the set (x,s) describes a point in a non-
orthogonal coordinate system (see Fig. 2). Jp(x,s) and
Ji(x,s) are defined as the current densities in the dif-
fracted- and incident-beam directions, respectively.

We assume that the incident current density on the
boundary curve ADB is known, and also that the dif-
fracted current density on the boundary curve DBC is
known (for example, it could be zero). Jp at any arbi-
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trary point (x,s) in R is

Jp(x,5)=Jp(a)eZtls—ta(@)
+ Ji(x,s)e 2te=e"2ds’ | (3)

34(z)

where s,(x) is the value of s at the point a, s=s4(x)
is the equation of the boundary, and Jp(a) is the current
density in the diffraction direction at the point ¢ on the
boundary. J(x,s) is given by

J,'(x,s) = J;(b)e—ztlr—xb(a)]

+ | Tp(d,s)e Bz dy, (4)

zp(s)

where J;(b) is the incident current density at the point
b on the boundary and x;(s) is the value of x at the point
b. The substitution of Eq. (4) into Eq. (3) yields

Jp(x,5)=Jp(a)e s ()]

8

+ ]i(b’>e—21[z—zbr(a')+s—:’]zsds’+/

sa(z) sa(z)

8

Z.ds’
Xf ]D(x”s/)e—xz(a—s’+z—z')zsdx’_ (5)
zp(s”)

We define the functions fp(x,s) and fi(x,s) as

fo(x,s)=e>=+) Jp(x,s),
and (6)
filx,s)=eZt=ta) I (x)5) .

We then express Eq. (5) as

Fo(x,5)=Jp(a)eZtlz+sa (@]

]
+ES/ ]i(b’)ezt[zb(a’)+3’]d5’
sa(z)

+22 f ds’f & fo('s"), (1)
3q(z) zp(s’)
and similarly

f;(x,s) = ]{(b)eztlzb(a)-#a]

+ ]D(a’)elz[aa(z’)+z’]E‘?dx’

zp(s)
z 8
+Esz—/‘ dx’/ ds'fi(x',s"). (8)
zp(s) sg(z’)

We write Eq. (7) in the form

fp=up+2Z:gp+Z::L 1, )
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F16. 2. Diagram of an arbitrary convex region R used in the
derivation of the integral equations.

where
pp(x,5)=Jp(a)eZl=tea()],
! 10
o= Tp)emerngy 00

8a ()

(having specified J; on the boundary ADB and Jp on
the boundary DBC, gp and up are known functions)
and L is a linear operator defined by

Lf= f v’ f ds'f(«/,s"). (11)
zp(8) sa(z’)
Equation (9) may be rewritten as
(1—Z22L) fp=up+Z.gp, (12)
or
fo=(1/1=22L)(up+Z.gp). (13)

The same operator will appear in the corresponding
expressions for f;. In order to interpret the operator
1/(1—2,2L) we expand it and find for the solution of
Eq. (11)

fo=wpp+Z>2Lup+24L%up+- - -

+2:gp+2Z Lgp+2 L%p- -+, (14)

from which

JD(x,S) = pg—Zt(z+8)

X[Z 252"14"#1)"*‘2 232"+1Lng1)]. (15)

n=0 n=0

L"f means n successive applications of the operator L
to the function f. The interpretation of this solution is
straightforward: The first term of the first series gives
the number of neutrons which have entered R by cross-
ing the boundary DBC in the diffraction direction s, and
reach the point (x,s) without being reflected. The second
term of the first series gives the number of neutrons
which have been reflected twice and arrive at the point
(,5). The other terms in the first series are interpreted



A 678 S. A. WERNER
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FiG. 3. Diagram showing the incident beam of effective width
w,(6o) impinging on a semi-infinite crystal. 7o and 7 are the co-
ordinates of the incident and diffracted beams on the surface of
the crystal.

in a similar manner. The first term in the second series
gives the number of neutrons which entered region R
crossing the boundary 4 DB in the incident direction X,
and get to the point (x,s) via one reflection. The rest of
the terms in the second series have similar meanings.
Quite often up is zero, so that the entire first series
vanishes. This will be the case when the boundary of
region R is simply the crystal surface.

The above symbolic solution to the integral equation
is now applied to the special problem of a semi-infinite
crystal. We describe the beam incident on a semi-
infinite crystal by the distribution function J;(r,00,%),
so that J,(ro,00,k)drod6odk is the number of neutrons
incident on the crystal at the point 7, in dr, at an angle
6o in df, and having a wave vector k in dk.

Similarly the diffracted beam at the surface of the
crystalis given by Jp(r,0,k), where Jp(r,0,k)drd0dF is the
number of neutrons in the diffracted beam at the point
r in dr going at an angle 6 in d, and having a wave vec-
tor k in dk. The coordinates r and 7, are measured along
the surface of the crystal as shown in Fig. 3. We will not
change symbols for a distribution function when we
change coordinates, even though the form of a function
such as Jp(r,0,k) will change if we rotate or translate
the coordinate system. We think of the crystal as an
operator such that

Jp=TJ;. (16)

The problem here is to find the unknown operator 7.
We define G(8o,k,r0 — r)dr to be the probability that a
neutron entering the crystal at an angle 6, at r, with
wave vector k will leave the crystal surface at 7 in dr
(after having been coherently scattered). Thus

Jp(r,0,k)= / droG(0o,kyro — 1) i(00,k,r0), (172)
0

where §=0(0,,%) is given by Eq. (2b). The wave vector

L]

a]l)=€'-z‘(’+') Z 2‘2n+angD

ne==0
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F16. 4. Example path for a neutron entering the crystal at point ¢
and crossing the line ¢-¢ at point ¢ having made 3 reflections.

and angular dependence of J; and Jp is entirely in the
dependence of Z, and Z; on these quantities. For
simplicity in notation we will suppress this dependence
in most of the analysis. Thus, we write

To()= / (G, (A7)

and will consider the problem for given % and 6,.

To find G we let a delta-function incident beam
strike the crystal at point a as shown in Fig. 4. That is,
we imagine that 1 neutron/sec of a given energy and
angle enters the semi-infinite crystal at point a. The
region R for this problem is simply the infinite quarter-
space to the right of the line s=0 and below the line
defined by x=(85/81)s, where

B1=sina;= Sin(030+ﬁ) ’ (18)
B2=sinas~sin(0z°—0). (19)
The equations of the boundaries are
xy(s)=(B2/B1)s, (20a)
and
sa(2)=0. (20b)
The functions up and gp are
up=0, (21a)
', B2
go=| &(s")| expZ, —s’+s’):lds’= 1, (21b)
0 B1
and the operator L takes the form
Lf= dx’/ ds'f(«',s"). (22)
(Bz2/B1)e 0

Thus applying the rule given by Eq. (15) we have the
diffracted current density due to an incident delta-
function beam:

62 sntlpn—1

© xns"
— —Eg(ﬁt)[z 2'2n+l<
n=1 nin!

1?1 (n+1)!(n—1) !)+E'] ) (23)
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This sum represents the contribution from neutrons reflected once, three times,- - -, (2z4-1) times,- - -. The spatial

distribution of once-reflected neutrons is

Jp® =3, Tt

For (2n-+1)-times-reflected neutrons we have

xns® fe

Sn+lxn—-l

(24)

a]D(2n+1)_—_E‘2n+l(

nin! —3—1 (n+1)(n—1)!

)e—Et(z+n) , (”2 1). (25)

A typical path taken by a 3-times-reflected neutron is shown in Fig. 4. Equation (23) can be written in terms of

modified Bessel functions as

o= 2B [T(22 x5} — (Ba/B1) s/ D22 (a5} 1D)].

A similar calculation shows that the current in the incident direction is

i e 2O, [ (/5 T2, xs) 1) (Ba/ B 5/ ) T2 (s} 1) T 8(s)e .

On the surface of the crystal we can write 3/p as an
expression in terms of a single variable. Figure 5 shows
a coordinate y measured perpendicular to the diffracted
beam, and the coordinate y, perpendicular to the
incident beam. We express the distribution function
on the surface of the crystal in terms of the variable
z=2,y/sin20p="13,x.

Ba\'"2 Zy B
=2l H(2)]
Bl za 52

X[h[Z(ﬁx/ﬂz)“?Z]]’ 28)

2

32

where we have used Eq. (26) and the relation
[I1(22)/2]=10(22)—I(22).

This function is plotted in Fig. 6 for the special case of
no absorption (Z,/Z,=1.0) and reflecting planes parallel
to the crystal surface (81/82=1.0). The area under ;Jp
is 1 which means that all neutrons that enter the
crystal at point ¢ again reach the surface via single
or multiple reflections in a crystal where coherent
scattering is the only important interaction. (We will see
that /®sJp(2)dz=1 only when Z,/Z,=1.0 and 82> :.)

The current density sJp due to once-reflected neu-

(29)

\DOF FRACTION DIRECTION

CRYSTAL _/

SURFACE

y
/
>

INCIDENT DIRECTION

_Fic. 5. Coordinate systems used in the analysis. x and s are
directions of the incident and diffracted beams, respectively.
Yo is perpendicular to x, y is perpendicular to s.

(26)
@7
trons at the surface is a simple exponential,
Z, B2
spv@=en] (14 ] G0
El ﬂl

For the case under consideration (Z./Z,=p1/82=1.0),
the area under ;JpV is § which shows that 509} of the
total diffracted beam is accounted for by multiple
reflections.

The current density due to neutrons which have been
reflected three times is given by

2 B
Jp®(z)=1 exp[—-—( 1+_l)z]z2(_ﬁ_l) . (31)
ZA BZ 62

This function has a maximum at

zZ= 2/[:(2!/23)(1+ﬁ1/ﬁ2):| ’

which equals one for the case under consideration. As

10

o8-

-
AN
(5)

00
0o 1.0 20 30 4.0

I, y/sin 28 —»

F16. 6. Plots of the diffracted current density at the surface of
a semi-infinite crystal due to an incident pencil beam. 3Jp@n+1)
is the number of neutrons reaching the surface at the point cor-
responding to Z,y/sin20p (see Fig. 5) after having made (2n+1)
reflections.
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Fi6. 7. Beam from a rectangular collimator as projected onto
the surface of the crystal. w,(6) = effective width of the incident
beam striking the crystal at an angle 6.

the order of multiple reflection increases, the maximum
for 3Jp®*t1)(z) occurs at larger values of z according to

—[ 2n ] 32)
ey A

Multiply reflected neutrons become more important
at points far out on the crystal surface away from the
incident beam. A considerable fraction of the total dif-
fracted power occurs under the tail of ;/p. For large z,
sJp varies as 7%/ which is not the rapidly decreasing
type of function generally associated with a coherent
peak.

Equation (28), written as a distribution function in
r"’=r—r, (as shown in Fig. 4), is the Green’s function we
have sought, that is,

I 1[3 (1’ -7 o)]
Glr—r]J=A4e O X —r—,

(7—70

(33)

where

A=(B2/B1)?, B=2Z,(8:18:/sin?20p)'?, (34)

C=Z((B1+B2/sin265)) .

and

B. Integration of the Green’s Function

To find the diffracted beam due to an incident beam
of given & and 6, from a rectangular collimator as shown

"n(')=Nn(')'Nn(’"’r)"».(‘"r)

Np(r)
R PP @
P ~~ Nplr=wp) (W)

’
e
7z

o w,(6,) r
"-l('r)
1+ —_— (b)
° w,(65) r—

F1c. 8. (a) A sketch of Jp(r) as a function made up of two
parzs:)N p(r) and Np(r—w,)u—1(w.). (b) The unit step function
p—-1{Wr).
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in Fig. 7, we use Eq. (17). We have then to carry out the
integration. As G(ro— 7) is a function of (r—7,), we
have a convolution integral and can write Eq. (17) in
the form

In(p)=G(p)Jp).

The bar indicates that a Laplace transformation has
been performed (p is the Laplace variable). G(p) is
given by
- (p+B+CO)2—(p—B+C)12
G(P)=11 Py
(p+B+CO)'2+(p— B+C)1/2

(35)

(36a)

and )

Jip)=B1/p. (36b)
To obtain the diffracted current density we perform the
inversion

A B+O)12—(p— B+C)1/2
JD(7)=£_1[ﬁ—l—(P+ +C)'2—(p—B+C) :|

P (p+B+C) 2+ (p— BHO)2
o

The inversion of the first term gives a function which is
zero at #=0 and rises as sketched in Fig. 8(a). Since
e""r» is the shift operator, the inversion of the second
term gives the same function as the first term only
shifted to the right by an amount W, as shown in Fig.
8(a). We call the inversion of the first term Np(r). Np(r)
corresponds to the diffracted current density that would
be observed for a semi-infinite beam (i.e., for W, —co ).
Thus, the current density due to a collimator of finite
width is

e <1’+B+C)”2~(p~B+C)‘/2]

p (p+B+C) 2+ (p— B4-C)2
37)

Jo(r)=Np(r)—Np(r— Wou(W,). (38)
u—1(W,) is the unit step function shown in Fig.8(b). This
result is easily understood physically: The current
density builds up from the origin; its value at a point
r<W.is due to a contribution from all incident neutrons
which enter the crystal between zero and 7 and reach
the surface at the point 7 via single or multiple reflec-
tions; the larger the value of 7, the greater the source of
neutrons which contributes to Jp(r); the curve con-
tinues to rise. At the point r=W,(6,) (which is the
effective width of the collimator for neutrons entering
the crystal at an angle 6,) the additional contribution to
the incident source of neutrons ends, and Jp(r) falls,
ultimately to zero. (If W, —w, the “build-up” curve
Np(r) would tend to an asymptotic value.)

We give here the inversion of Jj without the detajls
of proof. Since a distribution function in terms of the
variable y (measured perpendicular to the diffracted
beam) is probably more meaningful than a distribution
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function in 7, the result is given in terms of Npn(y),

Vo) = fo(») [ E‘(i#") 2 I
R = —— — , a
i fD ) exp Eg 62 sin203
where
61 1/2 ﬂl 1/2 zsy ] ® <61>1/2
==Y 14 2[— + _
o) (B) l[ (ﬂg) sin20p “7‘:2 B2
61 1/2 an
X4 1L 2{ — , (3%
L+ s : [ <Bg) sin203] (39b)
f=AF2=1)12,
and
1E¢ ﬁl 1/2 ,32 1/2
O e
2Z,L\B: B1

We note that when 2:/Z,=1.0 (no absorption) and
B1/B2=1.0 (symmetric case), this expression reduces to

Np(y)=1—e2[1o(22)+1:(22)], (40)

where as before z=2,y/sin205p.

C. The Effect of the Angle 3 at which the Crystal
is Cut Relative to the Reflecting Planes

It has been known for quite some time that when re-
flection takes place in the first few millimeters of the
crystal (asis the case for x-ray diffraction), an apparent
intensification of the diffracted beam occurs when the
crystal surface is cut at an angle § relative to the re-
flecting plane.* The reason for this is apparent from Fig.
9, where the effective widths of the diffracted and inci-
dent beams stand in the approximate ratio

(W/Wo)[86]=PB2/B1- (41)

For most crystals used for monochromators in neutron-
diffraction work, the coefficient of absorption is small
and the beam penetrates quite deeply into the crystal.
In this case it is necessary to examine the problem in
more detail to determine the effect of various choices for

Incident Beam

Diffracted
W /§ Beam

Reflectin
Planes

F16. 9. The effect of cutting the crystal at an angle 8 relative to
the reflecting planes in the event that the beam does not penetrate
deeply into the crystal. There is a condensation of the effective
width wg to w givinf the apparent result that the diffracted current
density is increased.

41. Fankuchen, Nature 139, 193 (1937).

NEUTRONS

10 -~

0.8

06
JD(y)

04

02

Iy y/sin28g —=

Fi16. 10. “Build-up” curves for various values of 81/8:. The point
at which the discontinuity in Jp(y) occurs corresponds to the
“effective” right edge of a collimator of width w.

cutting the crystal. We consider first the effect on Np(y)
from which one can deduce Jp(y) for various collimator
parameters.

Plots of Np(y) for the case Z,/Z,=1.0 are given in
Fig. 10. The striking increase in the rate at which the
curves rise toward their asymptotic values as 8;/8:
is increased leads one to believe that it is quite advan-
tageous to cut the crystal at an angle such that the dif-
fracted beam leaves the crystal in a direction almost
parallel to the crystal surface. Note, however, that for a
given collimator the total number of neutrons diffracted
from the crystal decreases with increasing (8:1/8: be-
cause of the narrowing of the beam. Consequently, the
optimum angle at which to cut the crystalis not a simple
question.

Cutting the crystal at an angle 8 does not intensify
the incident beam. It simply makes Jp(y) reach its
asymptotic values at smaller y. The current density
Jp(y) is always less than the incident current density
Ji(yo) which we have set equal to one. (All this is in
accord with the second law of thermodynamics.)

Since the effective width of the collimator W(6,) as
projected into a plane perpendicular to the direction of
the diffracted beam is related to the effective width of
the incoming beam by Eq. (41), we note that the point
[Z.W(80)/sin265] on the curves in Fig. 10 approaches
zero as 1/ increases. [ Z,W (6,)/sin26z ] gives the point
on the crystal surface at which the “break-point” in
Jo(y) occurs. At this point Jp(y) begins to fall off as
shown in Fig. 10, where we have taken (Z,WW,/sin265p)
=1.0 for purposes of illustration. It is apparent from
these curves that the area under Jp(y) decreases with
increasing 81/82 when 81/8:> 1.0 even though the maxi-
mum point of Jp(y) increases with 8;/8..

From Eq. (53) below it follows that as (81/8s) — 0,
the peak of Jp(y) goes to 1—exp[— 2Z.Wo/sin20z]
(=0.632 for the case treated here). The area under the
curve for Jp(y) will be the asymptotic value of Np(y)
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times the “effective” width of the diffracted beam,
W =W o(B2/B1). This is apparent from Fig.8(a) as the two
curves are displaced by W. Note that from Eq. (48)
below, Np(asymptotic)=p1/B2 for B2/81>1, hence the
area under the curve for Jp(y) (total number of dif-
fracted neutrons leaving the crystal) is constant and
equal to the total number of neutrons incident on
the crystal; whereas for 8:/81<1, the area gives only a
fraction of the total incident beam, namely 8,/3:.
Figures 11(a)-(e) indicate that a small amount of
absorption affects the total reflection in a marked man-
ner. 2./, may be very close to 1.0 for incident neutrons
which have a wave vector k that satisfies the Bragg
condition for the part of the mosaic distribution lying
at or near A=0, but (./Z,)(A) rapidly becomes greater
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Fic. 11. (a) Curves of Np(y) versus the dimensionless variable
Z,y/sin26p for the symmetric case showing the effect of absorption.
(b)-(e) “Build-up” curves for a semi-infinite crystal. The param-
eters on the curves are for various values of 8;/8;.

than one as |A| increases if there is any absorption
at all.

Figures 13(a)-(c) show the effect on the distribution
S Jpdb, S Jpdk, and S S Jpd6dk of cutting the crystal
at various angles for a particular set of system parame-
ters as shown in Fig. 12: Wy=actual collimator width=1
cm; L=collimator length=100 cm; D=distance from
source plane to crystal=150 cm; 0=0.01 cm (de-
fined in Appendix A); n=mosaic spread parameter
(see Appendix A)=15 minutes of arc; E,=primary
extinction coefficient=1.0; Z;/Z,=1.0 (no absorption);
6p=Bragg angle=20°.

The mosaic distribution function was assumed to be
Gaussian and the walls of the collimator to be nonre-
flecting. The narrowing of the beam and the increasing
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F16. 12. Geometry of a beam from a rectangular collimator
impinging on a semi-infinite crystal.

of the peak height as 8 is increased is quite pronounced.
These integrated current densities show the expected
skewing toward the right past the peak which occurs
near the “effective” right edge of the collimator.

D. Asymptotic Values of the Current
Density, Np(y)

In this paragraph we wish to calculate limy., Np(y)
on the surface of the crystal. Rather than evaluate Eq.
(39a) directly, we consider the total power equations
used by Darwin,® Zachariasen,® and Bacon and Lowde?
for an incident beam impinging on a crystal of infinite
surface, namely

dP; 2 Ze
—=—P;+—Pp, (42)
dh B B2
dPp Z, 2,

2 Zpptp,, 43)
dh B 1

where % is a perpendicular distance into the crystal.
P(h)=total power in the incident beam at a depth £,
and P(k)=total power in the diffracted beam at a
depth A. These equations are solved for Pp(k) subject
to the boundary conditions P{(k=0)= Py, Pp(h=T)=0,
where T is the thickness of the crystal. We are interested

5 G. G. Darwin, Phil. Mag. 43, 800 (1922).

$W. H. Zachariason, X-Ray Diffraction in Crysials (John
Wiley & Sons, Inc., New York, 1944).
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here in the limit as T goes to infinity. For this it is an
easy matter to show that

(PD(O))_ {1_2: 12,6

P, 23, 22,8

A B1\* B\ 7"
G ()G T w
za ,32 B2
If the point of observation » on the crystal surface is
far from the origin, N'p(r) will be independent of whether
the incident beam is semi-infinite or infinite. For large
7, the quantity Np=(r) will be a constant independent

of . Np®(r) is proportional to the diffracted power for
the infinite-beam case:

PO N5 Vo)
m = = .
T PO f]v,'w(f(])dfo N.~°°(fo)

im
T->%

(45)

Changing variables from r to ¥ and o to y, (Fig. 5) gives
Np>(y) B i Pp(0)

=—1i

N#(vo) BT Py

. (46)

Normalizing the incoming current density to unity
when measured perpendicular to the incoming beam,
we have

Bi(12Z, 128
Np(asymptotic)=— ’ —_——
2022, 2Z,B
)2 B1\? B!
(B 4TT. w
Zs B B2
where

Np(asymptotic)=lim Np(y)=Np=(y).
y—>0

This function is plotted in Fig. 14 versus Z,/Z, for vari-
ous values of 81/B8s. These values are verified in the
curves of Fig. 11(a)-(e). It is instructive to consider the
case of no absorption (Z,/Z,=1.0) for which

VN p(asymptotic)=1 for B1/8:>1,

(48)
=B1/B: for B1/B:<1
while the total diffracted power is
Pp(0)=P f 1.
p(0)= P, or f1/B:< (49)

=By/B1Po for Bi/B2>1

Therefore, when the diffracted beam becomes more and
more nearly parallel to the crystal surface, fewer and
fewer neutrons again reach the surface to appear in the
diffracted beam, even though the current density reaches
1 at small values of y [see Figs. 15(a), 15(b)]. In the
case when ;< f;1, many of the incident neutrons do not
appear in the diffracted beam at the surface of the
crystal. Since they cannot disappear in a nonabsorbing
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J3pd0 [arbitrary Units]

<10
(a)
S/ 3ptx.8,k)140 ak [Arbitrary Units]
140 B=15°
B=10°
B=5°
Il 1
-10 o 10 20

()

crystal, there must be a current at infinity in the inci-
dent direction. Careful calculation shows this to be the
case in evaluating limr.,., Pi(T). We get

;I-I’gp.(T)ZPo(l‘—,BZ/Bl) for B.<p,
=0 for 52>61.

(30)

E. Various Orders of Multiple Reflections

In this section we again consider the contributions to
the diffracted current density Np(x,s) for a uniform flux
of neutrons [Niyo)=1, for y,>0; that is, for an
infinitely wide collimator whose left edgeis at s=0]im-
pinging on a semi-infinite crystal. Here, however, we
inquire as to the contribution from the neutrons classi-
fied according to the number (2k+1) of reflections they
undergo. That is,

S Np¥H(x,5)=Np(x,s). (51)
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J Jpdk [Arbitrary units]
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Fic. 13. (a) Spatial distribution of the integrated current
S Jpdd for various values of B (system parameters given in the
text). (b) Spatial distribution of the integrated current /Jpdk
for various values of 8. (c) Spatial distribution of the integrated
current S S J pdkd6 for various values of S.

We use Eq. (25) but replace x and s by x—a’ and s—/,
where x” and s’ are the coordinates of the point at which
a neutron enters the crystal. For the points (x,s5) and
(«',s") on the crystal surface we have (x—x')=p8:/81
X (s—s"). With this relation, ;Jp ¥ becomes

B (B /Br)(s—5')
kl(k+1)!

8]])<2k+]) = e——A (8—

, (52)

where

A=24B:/B1+1).
We have

8
."\'YD@HI)(}’):/ 6]D(2k+1) ,
0

where s=(81/B2)y/sin26g for points on the crystal sur-
face. Thus, the number of once-reflected neutrons as a



PROPAGATION

[oX:]

o
o

o
>

Np (asymptotic) —=

0.2

1.0 2.0 30 40 50
2,/ I, —~

Fic. 14. Asymptotic value of the diffracted current density,
lim(y — )N p(y) as a function of Z,/=,. The parameter on the
curves is 81/B2=sin (8z+8)/sin(65—8).

function of y is
NpW(y)=(1=e0)/M,

where M = (2,/2,)[(82/81)+1] and ¢=Z,;s.
The number of three-times reflected neutrons is

(33)

189 2 ¢ 2 2
JVD“)(y):——[ e*M4< +—+ >J . (59)
2L M8 M M M
In general
NpCHD(y)=(RI(k+1) )7 (Bo/B1)* for,  (55)
where fa satisfies the recurrence relation
f2k= (2k(2k— 1)/,M2)f2k_2
— (2k/M*)g?* e Ma— M1g*e= e, (56)

NpD(y), Np®(y), Np®(y) are plotted in Fig. 16 for
the symmetric case with no absorption. We note that
for small values of y, Np®(y) closely approximates
Np(y). However, for larger values of y, Np(y)— 1,
as Np®(y) — 3, and the higher orders of multiple re-
flection sum to give 509 of the intensity.

There are three cases in which once-reflected neutrons
dominate the asymptotic values of Np(y). These are
when 81/8:— 0, B2/81— 0, and for strong absorption.
We have asymptotically

Np @) (asymptotic) = (k!(k+1) )2
X (B2/B1)*(2k!/ M @*+D) . (57)

When 85/8:°>1, that is, when the beam impinges on the
crystal in a direction nearly parallel to the crystal sur-
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F16. 15. (a) Asymptotic value of N p(y) when Z,/Z,=1 showing
that the density goes to one when B, <p1. (b) Total reflected power
from a semi-infinite crystal when =;/Z,=1.0. This curve shows
that all of the neutrons do not return to the surface when 8:<g;,
and consequently there must be a current in the incident direction
at an infinite depth in the crystal.

face, M =B2/B1 (for Z,/Z,=1), so

N p@¥D(asymptotic)
~((2k)!/k!(k+1))(B2/B)7*.  (S8)

But since B2/8 1is large, the terms Np®, Np®, ... are
small compared to Np®, so

(59)

That is, only once-reflected neutrons contribute appreci-
ably to the diffracted current density.

When 2,/Z, is large, M is large, and the sequence
Np® Np® ... Np@+D ... in the asymptotic region
decreases very rapidly. Therefore, when the absorption
cross section is very large (as is the case for x-ray dif-

N p(asymptotic) =~ Np® (asymptotic).

o8| Np
(XY od
m
Np(y)
0.4
0.2 @
No
ND(S)
o % ! L € 1 1 s
o ] 2 3 4 5 6 7 8 9 10

}:‘y/sinzsa —_—

FiG. 16. Plots showing the contributions of the various orders of
multiple reflection as a function of position on the surface of a
crystal. At large values of y, Np — 1, showing that once-reflected
neutrons contribute only 509, of the total difiracted power.
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fraction), the contribution to the diffracted current
density by singly reflected particles is predominant.
We can write Eq. (57) in the form

2k)! 1
Ele+1)IM
Et 2k 62 1/2 ,81 1/2=2ky —1
GG G T
zs Bl .32
When (331, we see the sequence Np®, Np® ..,

Np@+D_ ... again decreases rapidly, and

Np(asymptotic) = Np®(asymptotic).

Np @D (asymptotic) =

(60)

Therefore, also in the case where the diffracted beam
emergesnearly parallel to the crystal surface (Fankuchen
cut), only once-reflected neutrons contribute appreci-
ably to the diffracted current density at the surface of
the crystal.

III. CONCLUSIONS

In this paper we have solved the multiple-Bragg-
reflection problem in a semi-infinite crystal, and as a
result of the analysis are able to state the following con-
clusions regarding the monochromation of neutrons:

1. The reflected monoenergetic beam peaks at the
“effective’” right edge of the primary collimator. Conse-
quently, the point on the monochromator surface at
which a collimator between the monochromator and the
target should “stare” is shifted to the right.

2. It is advantageous to utilize a wide primary collima-
tor so the area of the monochromator from which the
exit collimator (which determines the resolution of the
system) accepts neutrons is far up on the build-up
curves, and consequently, a plane source of “‘mono-
energetic’’ neutrons can be closely approximated.

3. Cutting the crystal at an angle 8 causes the diffracted
current density to reach its maximum value within a
smaller width measured perpendicular to the dif-
fracted beam. However, the total number of neutrons
reflected by the monochromator decreases with 8.
Consequently, if one, for some reason, is limited to a
given collimator, it might be advantageous to cut the
crystal at some angle 8 in order to obtain a narrow in-
tense beam. The quantitative connection between the
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angle 8 and the diffracted beam proiile is given ex-
plicitly in Sec. II.

A subsequent paper will discuss quantitatively the
multiple-Bragg-reflection problem in various crystals of
finite dimensions. Particular attention will be given to
“slab” crystals placed in both the reflection and trans-
mission positions. We have obtained general solutions
to the differential equations given by Hamilton! which
will be applied to the two problems above which are
pertinent to the theory of the monochromation of neu-
trons. Experimental work on the investigation of the
spatial distribution of the diffracted neutron beams from
various crystals is currently in progress and will be re-
ported in that paper.

APPENDIX A

We have based the analysis of this paper on the physi-
cal picture of a real crystal consisting of many small-
angle mosaic grains as originally proposed by Darwin
(1922). Assuming that absorption is small and that all
of the scattering centers in a given small mosaic grain
are bathed in the same incident-wave field (kinematical
theory), it is an easy matter to show that the probability
for coherent scattering per unit path (for small paths) in
a mosaic crystal is

Es(eoyk)zw(A)Q) (Al)
where
(2r)3|F|?
=, (A2)
V2k3 sin20p

| F | 2= structure factor squared times the Debye-Waller
factor, V=volume of a unit cell, A=60,— Ak tan6z°,
W(A)dA=number of mosaic grains oriented at angles
Ain dA.

The mosaic distribution function W(A) is commonly
taken to be Gaussian. A coefficient E, is generally in-
cluded in Eq. (A1) in order to correct for primary ex-
tinction. Under these assumptions Z, takes the form

Ea(ooyk) = EPQ((Z,,,-)IN.,])—I
Xexp[— (60— A% tanfg%)2/27], (A3)
where Ak= (k/kg’—1). Z4(¢,k) is the sum of Z, and the

linear absorption coefficient u. The effects of incoherent
scattering can be included in u.



