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a wide range of both impurity and thermal scattering
in various proportions and magnitudes, it appears that
an expression of the form p", where eQ2, is not too
significant, since it breaks down over a wide range of
data. The slope of 1.4 in Fig. 5 may be due to a mixture
of Luttinger and Karplus-Luttinger-type terms.

An interesting correlation occurs between the
quantity E,/p at room temperature over the whole
Fe-Ni composition range, as reported by Jellinghaus
and de Andres, "and the first magnetic anisotropy con-
stant Eq.so Both are positive from iron to about go% Ni

'9%'. Jellinghaus and M. P. de Andres, Ann. Phys. (Leipzig),
5, 187 (1960).

~ R. M. Bozorth, FerromegeeÃsm (D. Van Nostrand Company,
Inc., Princeton, New Jersey, 1951),p. 571.

where both change sign, and their behaviors are very
similar over the whole range of compositions. This may
be due to the fact that, in the Karplus-Luttinger treat-
ment, which probably gives the dominant contribution
at room temperature, R,/p' should be proportional to
the strength of the spin-orbit coupling and the aniso-

tropy energy should have the same dependence.
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The general integral equations for describing the multiple Sragg reQections in a mosaic crystal are given.
The solutions of the general problem are in the form of infinite series. For the particular problem of a delta-
function beam striking a semi-irdinite crystal, these series are summed to give modified Sessel functions as
the appropriate solutions. The modified Bessel-function solution serves as a Green s function for the genera-
tion of solutions of a general beam striking a semi-iriFmte crystal. Discussed in some detail are the effects of
absorption and of crystal-cutting angle on the efBciency of monochromating crystals. The concept of the
asymptotic value of neutron current density is stressed to show the importance of not collimating the beam
between the neutron source and the monochromating crystal.

I. INTRODUCTION

HE approach taken by this paper in analyzing the
multiple-Bragg-scattering problem in mosaic crys-

tals is similar to that taken by Hamilton. ' However, the
difkrential equations given by Hamilton describing the
conservation of neutrons are recast in integral form.
Consequently, the starting point of the analysis here
closely parallels that given by Vineyard. ~ While the
historic interest in the multiple-Bragg-scattering prob-
lem (or secondary-extinction problem) has been the
need to make corrections for it in comparing intensities
in determining crystallographic structure, our primary
interest has been in the design of di8raction experiments

*Present address: Scientific Laboratory, Ford Motor Company,
Dearborn, Michigan.

'%'. C. Hamilton, Acta Cryst. 10, 629 (1957).' G. Vineyard, Phys. Rev. 96, 93 (1954).

to make greater use of the neutron source available at
low- to medium-Qux reactors.

I"or example, in order to obtain an acceptable resolu-
tion in doing single-crystal experiments the divergence
of the "monoenergetic" beam from a monochromator
must be less than of the order of 1' in the horizontal
plane and perhaps 3' in the vertical plane (owing to
crystal size). This implies that only those neutrons inci-
dent on the monochromator in a small solid angle of
the order of 0.0006 sr are useful. This solid angle sub-
tends only about 15 sq in. at a reactor face 12 ft away.
Thus, for these small angles the reactor face looks like
a plane source, and consequently, the inverse-square
law does not apply. If it were possible to reQect all the
neutrons in this small solid angle 60 having energies in
the small spread ~ immediately at the surface of the
monochromator, we would have a plane source of
"monoenergetic" neutrons which could then be colli-
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mated between the monochromator and the target
sample to produce the desired resolution at the maxi-
mum possible intensity.

In view of the fact that the absorption and incoherent
scattering cross sections are small for many common
monochromators, the penetration depth of the beam
into the crystal is determined primarily by the proba-
bility per unit path for Bragg scattering (which is quite
often 0.5 to 1 cm '). Because of this large penetration
of the beam into the crystal, it is necessary to "look"
inside the crystal to obtain the spatial profile of the dif-
fracted beam at the surface of the monochromator and
to find out how closely one can approximate the above
idealized situation.

It is apparent that in order to "bring" the plane source
of neutrons at the reactor face out a distance of 12 ft,
the collimation which determines the resolution of the
system must be placed between the monochromator and
the target sample. Although this may seem like a simple
conclusion, it is nevertheless contrary to standard
practice. Since it is also desirable to use a thick mono-
chromating crystal (when used in the Bragg position),
we treat only the semi-infinite-crystal case in this paper.
Problems involving crystals of finite dimensions have
been solved and will be presented in a subsequent paper.
It is essential here to discuss the thick-monochromator
problem for the case where the incident beam is of
finite size.

The inherent assumption that the extinction problem
can be separated into two parts, namely, primary and
secondary extinction, is present in this paper. Ke also
assume, as has consistently been done previously, that
the mosaic distribution function 8' depends only on
orientation of the mosaics and not on the position of
interest in the crystal. As has been done in the papers
by Bacon and Lowde' (1948) and Hamilton' (1957), it is
assumed that the displacements and distortions in the
crystal which give rise to the mosaic structure are ran-
dom and large compared to the wavelength of the inci-
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Fro. i.Geometry of incident and diGraction directions. The wave
vectors satisfy the equations: (hI sinss=s IGI; Iks I

sinss=s.IG'I. The angles, a, 8, ss, and Ak satisfy Eqs. (2a) and (2b).
P is the angle at which the surface is cut relative to the reflecting
planes.

' G. E. Bacon and R. D. Lowde, Acta Cryst. j., 303 (1948).

dent neutrons, so that there are no definite phase rela-
tionships between neutrons scattered from various
mosaic blocks. Consequently, we talk about current
densities rather than wave functions.

We define Z, (8s,k) to be the probability per unit path
for small paths that a neutron incident on the crystal
at an angle HI) having wave vector k is Bragg-reflected
(Fig. 1). We also define Zg(8s 0) to be the probability
per unit path for small paths that a neutron incident on
the crystal at an angle Hp having wave vector k suRers
any interaction which changes its course (including
absorption). In order to obtain analytical expressions
for Z, and Z~ we must specify the mosaic distribution
function and solve the primary extinction problem (for
a small block in an infinite beam). Appendix A gives the
expressions for Z, and Z& that are generally used in cal-
culations for neutron difPraction in mosaic crystals. In
the analysis which follows, it is necessary only to use the
fact that if a neutron is Bragg-reflected, its course is
changed by an angle 28& (to within a few seconds of
arc). The wave vector k, Bragg angle 8n, and reciprocal
lattice vector of interest 6 are related by

Neutrons which are Bragg-reflected have penetrated
down into the crystal until they have reached a mosaic
which is oriented at an angle such that the Bragg-Laue
condition is satisfied. The incident angle Hp, the wave-
vector k, the exit angle 8, and the mosaic angle 6 (see
Appendix A and Fig. 1) are related by the equations

6= H+hk tanHgP,

H= Hp
—26k tanH~P,

(2a)

(2b)

where cM=()k)/(kn'[) —1, 8s' ——sin 'n. )G)/[ks" j, and
k& is a wave vector which lies parallel to the central ray
of a collimator and satisfies the Bragg-Laue condition
for mosaics lying at the center of the mosaic distribution.

II. SEMI-INFINITE CRYSTAL

A. The Multiple-Re6ection Process

In order to describe the multiple reflection of neutrons
in a semi-infinite crystal we first set up a pair of general
integral equations which will apply to a crystal of any
geometry. Consider the region R of a crystal as shown in
Fig. 2. The boundary ABBE of R may be determined
by the finite extent of either the beam or the crystal.
The boundary is assumed to be convex with respect to
x and s, where the set (x,s) describes a point in a non-
orthogonal coordinate system (see Fig. 2). JD(x,s) and
J;(x,s) are defined as the current densities in the dif-
fracted- and incident-beam directions, respectively.

We assume that the incident current density on the
boundary curve ADB is known, and also that the dif-
fracted current density on the boundary curve DBC is
known (for example, it could be zero). JD at any arbi-
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Jl

J; «4)
in Fig. 7, we use Eq. (17).We have then to carry out the
integration. As G(rp —p r) is a function of (r—rp), we
have a convolution integral and can write Eq. (17) in
the form

Jn(p) =&(p)J'(p) (35)

i-w, (e, ) w r
0 4

FIG. 7. Beam from a rectangular collimator as projected onto
the surface of the crystal. m„(8&)= effective width of the incident
beam striking the crystal at an angle g0.

the order of multiple reaction increases, the maximum
for pJn""+"(s) occurs at larger values of s according to

(Z,/Z, )(1+Pi/Pp)
(32)

Multiply reQected neutrons become more important
at points far out on the crystal surface away from the
incident beam. A considerable fraction of the total dif-
fracted power occurs under the tail of qJ~. For large s,
qJD varies as s '" which is not the rapidly decreasing
type of function generally associated with a coherent
peak.

Equation (28), written as a distribution function in
r"= r rp (as shown in—Fig. 4), is the Green's function we

have sought, that is,
fir.B(»—«o)&

GL» —rp)= a.-«-"p'X
(r—rp)

(33)

where

aIld
(p,/p, )&jp B=2Z,(pipp/sin'24)'" (34)

C=g,((p,+pp/sin2Ha)) .

B. Integration of the Green's Function

To 6nd the diffracted beam due to an incident beam
of given k and 80 from a rectangular collimator as shown

J (r) =No(r) -
0 r -w„)p, ,

0

p. , (W )

+, (e.)

alp. fw )

(b)

w, (e, )

FrG. 8. (a} A sketch of J~(r) as a function made up of two
parts: ÃD(r) and X~(r—zo„}y 1(m„). {b) The unit step function
II. 1(e„}.

The bar indicates that a Laplace transformation has
been performed (p is the Laplace variable). 6(p) is
given by

(p+ B+C)'" (p —B+C—)"'
C(p) =3 (36a)

(p+B+C)»"'+(p B+C—)"

J'(p) =Pi/p (36b)

To obtain the diGracted current density we perform the
inversion

Jn(r) = VD(r) i'(r W-„)ii —i(W„)— (38)

p i(W,) is the unit step function shown in Fig. 8 (b) This
result is easily understood physically: The current
density builds up from the origin; its vajue at a po~t
r &5'„is due to a contribution from all incident neutrons
which enter the crystal between zero and r and reach
the surface at the point r via single or multiple rejec-
tions; the larger the value of r, the greater the source of
neutrons which contributes to Jn(r); the curve con-
tinues to rise. At the point r=W„(Hp) (which is the
effective width of the collimator for neutrons enterinn ering
the crystal at an angle Hp) the additional contribution to
the incident source of neutrons ends, and Jn(r) falls,
ultimately to zero. (If W, ~~, the "build-up" curve
iV&(r) would tend to an asymptotic value. )

XVe give here the inversion of J~ without the details
of proof. Since a distribution function in terms of the
variable y (measured perpendicular to the diffracted
beam) is probably more meaningful than a distribution

-pig (p+B+C)»' (p B+C)'~'
JD(r)=& '

- p (p+B+C)"'+(p B+C) ~-

piA (p+B+C)'~' (p B+C)i&-'—
g—1 e—Wry

p (p+B+C)'~'+(p ByC)'&p—

(37)

The inversion of the first term gives a function which is
zero at r=0 and rises as sketched in Fig. 8(a). Since
t,
—~"& is the shift operator, the inversion of the second

term gives the same function as the first term only
shifted to the right by an amount 8"„as shown in Fig.
8(a). YVe call the inversion of the first term .VD(r). Xn(r)
corresponds to the di6racted current density that would
be observed for a semi-infinite beam (i.e., for W„~pp).
Thus, the current density due to a collimator of finite
width is
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o~ A
A

here in the limit as T goes to infinity. For this it is an
easy matter to show that

1Zg 1Zg Pg
+

2Z, 2Z, Po

RAqy&0

FIG. 12. Geometry of a beam from a rectangular colliInator
impinging on a semi-in6nite crystal.

of the peak height as P is increased is quite pronounced.
These integrated current densities show the expected
skewing toward the right past the peak which occurs
near the "e6'ective" right edge of the collimator.

D. Asymytotic Values of the Current
Density, ND (y)

In this paragraph we wish to calculate lim„„ iVo(y)
on the surface of the crystal. Rather than evaluate Eq.
(39a) directly, we consider the total power equations
used by Darwin, ' Zachariasen, ' and Bacon and Lowde'
fOr an inCident beam impinging On a CryStal Of irI~nite
surface, namely

dI'; Zg
— =—P +—Eg)

dh Pg Po

If the point of observation r on the crystal surface is
far from the origin, Xo(r) will be independent of whether
the incident beam is semi-infinite or infinite. For large
r, the quantity 1V&"(r) will be a constant independent
of r. .V o(r) is proportional to the diffracted power for
the infinite-beam case:

Po(0) 1"Xg&"(r)dr Xo"(r)
lim—

Po J'Ã;"(ro)dro N;"(ro)

Changing variables from r to y and ro to yo (Fig. 5) gives

Sn"(y) P~ Pn(0)=—llm--
-~'"(yo) Po r " Po

Normalizing the incoming current density to unity
when measured perpendicular to the incoming beam,
we have

Pg 1Zg 1ZgPg
Eo(asymptotic) =———+-

$2 2Z, 2Zp2

+ — 1+——4— 47

where

Ã&(asymptotic) = lim Ãz&(y) =Xo"(y) .

This function is plotted in Fig. 14 versus Z~/Z, for vari-
ous values of Pq/P&. These values are verified in the
curves of Fig. 11(a)—(e). It is instructive to consider the
case of no absorption (Zg/Z. = 1.0) for which

-I D(asymptotic) = 1 for P&/Po& 1,
(48)

=P~/Po «» Pi/Po&1

while the total diffracted power is
(43)

dPg) Zg
— =—I'g)+—I'.

dh Po Pi Pn(0) =Po for Pg/Po&1.

=Po/PxPo f» Pi/Po&1
(49)

where h is a perpendicular distance into the crystal.
P;(h) = total power in the incident beam at a depth h,
and Po(h)=total power in the diffracted beam at a
depth h. These equations are solved for PD(h) subject
to the boundary conditions P;(h=0) =Po, Pn(h= T) =0,
where T is the thickness of the crystal. %e are interested

g G. G. Da~in, PM. Mag. 43, 800 (~922).
g W. H. Zachariason, X-Buy Diffraction i' Crystals (John

Wiley R Sons, Inc., Near York, j.944).

Therefore, when the diGracted beam becomes more and
more nearly parallel to the crystal surface, fewer and
fewer neutrons again reach the surface to appear in the
diGracted beam, even though the current density reaches
1 at small values of y Lsee Figs. 15(a), 15(b)]. In the
case when Po&Pq, many of the incident neutrons do not
appear in the diGracted beam at the surface of the
crystal. Since they cannot disappear in a nonabsorbing
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FIG. 13. (a) Spatial distribution of the integrated currentJ'J~ for various values of P (system parameters given in the
text). (b) Spatial distribution of the integrated current J'JDdk
for various values of P. (c} Spatial distribution of the integrated
current J'J'J~kde for various values of P.
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crystal, there must be a current at infinity in the inci-
dent direction. Careful calculation shows this to be the
case in evaluating limp „P;(T).We get

lim P,(T)=Pp(1 Py/Pi) for —Pz(Pi,
p ~oo

for P2&Pg.
(50)

E. Various Orders of Multiple ReQections

In this section we again consider the contributions to
the diBracted current density X&(x,s) for a uniform flux
of neutrons P';(yp)=1, for yp&0; that is, for an
infmitely wide collimator whose left edge is at s= 0] im-

pinging on a semi-infinite crystal. Here, however, we

inquire as to the contribution from the neutrons classi-
fied according to the number (2k+1) of reflections they
undergo. That is,

where

yk+i(p /p )"(S—S')'"
&
JDiyk+1) —e

—A(s —sr) (52)
k!(k+1)!

Ke have

JT (y 4+1)(y)— g (2%+1)
)

We use Eq. (25) but replace x and s by x—x' and s—s',
where x' and s' are the coordinates of the point at which
a neutron enters the crystal. For the points (x,s) and
(x',s') on the crystal surface we have (x—x')=Pp/Pi
)& (s—s'). With this relation, tt

Jry"k+" becomes

-"'+'(x,s) = iYi&(z, s) . (51) wher~ ~= (pi/pp)y/sin28yy for points on the crystal sur-
face. Thus, the number of once-rejected neutrons as a
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FIG. 14. Asymptotic value of the diffracted current density,
lim(y ~~}XD(y) as a function of Zt/Z, . The parameter on the
curves is p1/pg= sin (eg+p)/sin (egg —p).

F&G. 15. (a) Asymptotic value of XD(y} when Z&/Z, = 1 showing
that the density goes to one when LI4&p1. (b) Total reflected power
from a semi-i~&»te crystal when Z~/Z, =1.0. This curve shows
that all of the neutrons do not return to the surface when P~&P~,
and consequently there must be a current in the incident direction
at an in6nite depth in the crystal.

face, M=P2/Pi (for Z&/Z, =1), so

function of y is

"&7&&&"(y) = (1—e "")/M, (53)

XD&'~+"(asymptotic)

=((2k)!/k!(k+1)!)(p2/pi) —'-' (58)

where M = (Z&/Z, )DP2/P&)+1) and q=Z, s.
The number of three-times rejected neutrons is

But since p2/p is large, the terms Xn&", Xg&&", are
small compared to Ã~('), so

1p2 2
IVD&3&(y) ———

2Pg M'

In general

V '"+"(y) =(k!(k+1)!) '(p2/pi)'f»,

where f» satisfies the recurrence relation

&Vi&(asymptotic) = iVn&'&(asymptotic) . (59)
2g 2

~
—M && + + (54) That is, only once-reflected neutrons contribute appreci-

M M' M' ably to the diGracted current density.
When Z&/Z, is large, M' is large, and the sequence

Sg(') S~(') . . $~('~+" in the asymptotic region

(55) decreases very rapidly. Therefore, when the absorption
cross section is very large (as is the case for x-ray dif-

f» (2k(2k —1)/——M') f» 2

(2k/M')q" 'e —~' M'q"e ~'. —(56)

&Vr&&'& (y), 1Vn&'& (y), iVr& &'&(y) are plotted in Fig. 16 for
the s~nmetric case with no absorption. We note that
for small values of y, 1'&&»(y) closely approximates
X»(y). However, for larger values of y, 1&&&'D(y) ~1,
as 1Vn&'&(y) -+ —,', and the higher orders of multiple re-
flection sum to give 50% of the intensity.

There are three cases in which once-rejected neutrons
dominate the asymptotic values of Xn(y). These are
when pi/pn~ 0, p2/pi~ 0, and for strong absorption.
We have asymptotically

Xn&'"+'&(asymptotic) = (k!(k+1)!) '
X (p2/pi)'(2k! /M &'"+"). (57)

When p2/p&)1, that is, when the beam impinges on the
crystal in a direction nearly parallel to the crystal sur-

o.s

0.6

0.4

0.2

0 f I & r i r

0 I 2 3 4 5 6 7 8 9 !0

X y/sin 28o

Fze. 16.Plots showing the contributions of the various orders of
multiple reflection as a function of position on the surface of a
crystal. At large values of y, E~ -+ 1, showing that once-reflected
neutrons contribute only 50% of the total diffracted power.



A 686 S. A. WERNER AN D A. ARROTT

fraction), the contribution to the diffracted current
density by singly reQected particles is predominant.

We can write Eq. (57) in the form

(2k)! 1
lVn&' +'&(asymptotic) =

k!(k+1)!M

When pm((pi, we see the sequence En&", LY&&&'&,

-V~ "~+" - * again decreases rapidly, and

XD(asymptotic)=lVD&'&(asymptotic). (60)

Therefore, also in the case where the diGracted beam
emerges nearly parallel to the crystal surface (Fankuchen
cut), only once-reflected neutrons contribute appreci-
ably to the di6'racted current density at the surface of
the crystal.

II'I. CONCLUSlONS

In this paper we have solved the multiple-Bragg-
reQection problem in a semi-in6nite crystal, and as a
result of the analysis are able to state the following con-
clusions regarding the monochromation of neutrons:

1. The reflected monoenergetic beam peaks at the
"effective" right edge of the primary collimator. Conse-
quently, the point on the monochromator surface at
which a collimator between the monochromator and the
target should "stare" is shifted to the right.
2. It is advantageous to utilize a wide primary collima-
tor so the area of the monochromator from which the
exit collimator (which determines the resolution of the
system) accepts neutrons is far up on the build-up
curves, and consequently, a plane source of "mono-
energetic" neutrons can be closely approximated.
3. Cutting the crystal at an angle P causes the diffracted
current density to reach its maximum value within a
smaller width measured perpendicular to the dif-
fracted beam. However, the tote/ number of neutrons
reflected by the monochromator decreases with p.
Consequently, if one, for some reason, is limited to a
given collimator, it might be advantageous to cut the
crystal at some angle p in order to obtain a narrow in-
tense beam. The quantitative connection between the

APPENDIX A

We have based the analysis of this paper on the physi-
cal picture of a real crystal consisting of many small-
angle mosaic grains as originally proposed by Darwin
(1922). Assuming that absorption is small and that all
of the scattering centers in a given small mosaic grain
are bathed in the same incident-wave field (kinematical
theory), it is an easy matter to show that the probability
for coherent scattering per unit path (for small paths) in
a mosaic crystal is

where
Z, (8p,k) = W(h)Q, (A1)

(A2)

l
F

l

'= structure factor squared times the Debye-Wailer
factor, V=volume of a unit cell, b, =80—rM tan8g',
W(h)dh=number of mosaic grains oriented at angles
6 in dA.

The mosaic distribution function W(A) is commonly
taken to be Gaussian. A coeScient E„is generally in-
cluded in Eq. (A1) in order to correct for primary ex-
tinction. Under these assumptions Z, takes the form

Z, (8p,k) =F~Q((2s)'&'») '
&&expL —(80—hk tan8»')'/2»], (A3)

where hk—= (k/k~ —1).Z&(80,k) is the sum of Z, and the
linear absorption coeKcient p. The sects of incoherent
scattering can be included in p, .

angle P and the di8racted beam profile is given ex-

plicitly in Sec. II.
A subsequent paper will discuss quantitatively the

multiple-Bragg-reaction problem in various crystals of
finite dimensions. Particular attention will be given to
"slab" crystals placed in both the reQection and trans-
mission positions. We have obtained general solutions
to the differential equations given by Hamilton' which
will be applied to the two problems above which are
pertinent to the theory of the monochromation of neu-
trons. Experimental work on the investigation of the
spatial distribution of the diGracted neutron beams from
various crystals is currently in progress and will be re-
ported in that paper.


