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Interaction between Co~&gurations with Several Open Shells

U. Fmo
Nationa/ Bureau of Standards, Washington, D. C.
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Antisymmetrized product wave functions are written for atomic configurations with an arbitrary number
of partially or entirely filled shells. Interaction matrix elements between such wave functions are calculated
and a numerical evaluation is given for the autoionization of an inner excitation level of neon. A suitable
notation keeps the analytical complexities within reasonable bounds.

1. INTRODUCTION

HE calculation of energy matrix elements between
states of atoms with many electrons is compli-

cated by the requirements of antisymmetry of wave
functions and of the addition of electron angular mo-
menta. Calculation techniques introduced by Racah'
and widely utilized thereafter include the following
four transformations of X-electron wave functions listed
by Rosenzweig':

(A) Explicit antisymmetrization with respect to a
particular inequivalent electron (Ref. 1, III 26);

%(P 'uSLl'SL)
=X-'I g ( 1)~ ~P(P—'aSL-l'PL) (1)

where the subscript q on the right specifies that the
electron q occupies the orbital /' whereas the remaining
ones, 1, 2 . .

q
—1, q+1, S belong to P '.

(8) Addition of two or more angular momenta.
(C) Expansion of an antisymmetric wave function of

S equivalent electrons in terms of fractional parentage
(Ref. 1, III 10);

4(PuSL) =P~~s z~ P(P 'a'S'L'l~SL)

X (P 'n'S'L'/LS IPaSL), (2)

where again the subscript &V specifies that the electron
cV has been removed from the antisymmetrized part of
the wave function.

(D) Recoupling of angular momenta.
Most of the applications of Racah's techniques have

been concerned with states having one group of equiva-
lent electrons plus singly occupied outer orbitals, in
addition to 61led shells that require no attention. More
complex situations have been handled as the need arose
by suitable extensions of existing techniques. A pro-
cedure of complete generality has been outlined by
Innes and U6'ord but developed only in an unpublished
report. ' This procedure handles the antisymmetrization
between electrons of diferent shells by a formal ex-
tension of the fractional parentage expansion (C).4 It

also involves a sequence of recoupling transformations
(D) designed to separate out completely the electrons
that do and do not interact explicitly. Summations over
products of recoupling coefFicients can generally be
carried out analytically in this procedure. This possi-
bility implies that the procedure is redundant and could
be replaced by a more direct one.

Recently, attention has been drawn to a particular
type of application by the discovery of numerous
autoionizing levels in the far ultraviolet, which decay by
processes akin to the Auger efFect. For example, Ne
levels of the internally excited con6gurations 1s'2s2p'np
decay into the continuum con6gurations 1s'2s'2p'Ed
(or Es).' The theoretical analysis of decay' depends on
energy matrix elements between these con6gurations,
which involve transitions in or out of four different
subshells. It also depends on the sign of these matrix
elements as related to the signs of the dipole elements
between either of these con6gurations and the ground
state is'2s'2p'.

Under these circumstances it seemed worthwhile to
develop and to present here a somewhat diGerent pro-
cedure for the calculation of energy matrix elements.
The 6rst step of this procedure consists of generalizing
the antisymmetrization rule A so as to construct ex-
plicitly antisymmetrized wave functions for states of
con6gurations of arbitrary complexity, with a standard-
ized sign comention (Sec. 2). Energy matrix elements be-
tween such states are reduced to simpler form in the
following section utilizing the parentage expansion (C)
for equivalent electrons m'ithout any recoup/ing of angular
momenta (D). Recouplings are avoided even in the last
stage of the calculation by means of a recently sug-
gested procedure. ' This procedure reduces the inter-
action matrix element to a transformation matrix ele-
ment which is the inner product of two unsymmetrized
angular-momentum wave functions, that is, a recoupling
coe%cient. The calculation is carried out for I5
coupling wave functions —a restriction that appears in-

S. Meshkov, Phys. Rev. 91,871 (1953).Since the antisymmetriza-' G. Racah, Phys. Rev. 62, 438 (1942); and 63, 367 (1943); tion with respect to inequivalent electrons is independent of the
referred to in the following as II and III. addition of angular momenta, it does not actually require the con-' N. Rosenzweig, Phys. Rev. 88, 580 (1952). cept of fractional parentage.' F. R. Innes and C. W. UBord, Phys. Rev. 111, 194 (1958); 'R. P. Madden and K. Codling, Phys. Rev. Letters 10, 516P. S. Kelly, Physics Department, University of California at (1963).
Los Angeles, Technical Report No. 3, OOR Contract No. Da-04- ' U. Fano and J. W. Cooper, Phys. Rev. 137, A1364 (1965).495-0RD-913, 1959 (unpublished). 7 U. Fano, F. Prats, and Z. Goldschmidt, Phys. Rev. 129, 2643

This extension originates from a particular application by (1963)—referred to as FPG.
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essential; in this case the recoupling coeKcient resolves
further into two factors pertaining to spin and orbital
momenta, respectively.

The results obtained in this paper on the calculation
of matrix elements are assembled in Sec. 6, and a
numerical application to the interaction of an inner
excited and an ionized configuration of Ne is given in
Sec. 7. These results are intended to apply to all cal-
culations with antisymmetrized product wave functions,
but earlier methods may remain preferable for familiar
special cases. A glossary of symbols is collected in Sec. 8.

Note added in proof. Other recent formulations of
matrix elements, which overlap the present one exten-
sively, have come to my attention. A concise develop-
ment, in the Appendix of a paper by D. Layzer, Z.
Borak, M. N. I,ewis, and D. P. Thompson, Ann. Phys.
(N. Y.) 29, 101 (1964), is equivalent to the book-
keeping procedure of Secs. 2 and 3 below. The same
results are obtained by B. W. Shore, Phys. Rev. 139,
A1042 (1965).I thank Dr. Shore for a copy of his paper
and for helpful correspondence.

IsNQsÃ22p¹. . . —Q„n„i„Ni. (3)

To construct wave functions of the spins and positions
of the X electrons (siri, ,s;r;, ,s~rN) we start from
antisymmetrized wave functions of the various sub-
shells. The variables of a subshell wave function con-
stitute a set qi={s;r,} (or qi ——{i}for brevity) of 1lt'&,

elements, which we prescribe to be ordered in the se-
quence of increasing i. We indicate one such wave
function, constructed by LS coupling in accordance with
IIIi [i.e., of the type indicated on the left of (2)], by
(qitn&, lPM&,SiLiMeiMzi) and the set of wave func-
tions with alternative M quantum numbers by

(q), ~
n), li,¹ai,SiLi) . (4)

Take one wave function (4) for each subshell of the
configuration (3), with mutually exclusive sets of vari-
ables qq. The aggregate q= {qi) of these sets represents
one distribution of the X electrons in groups of Xq
elements. An Nnsymmetrised wave function of the
whole atom is constructed by multiplying these wave
functions and adding their angular momenta S~Lg
(Rosenzweig's transformation 3) according to some
prescription indicated by o. with resultants S and L.

2. ANTISYMMETMZED WAVE FUNCTIONS

We shall indicate the successive atomic subshells

1s, 2s, 2p, 3s, by successive values of an index
X= j., 2, 3, 4, . and their pairs of quantum numbers by
n) lq, e.g., ng= 2 and l2 ——0. The con6guration of an atom
with Ã electrons, of which E~ lie in the Xth shell

(Pi A'i= Ã), can be represented by

We indicate this wave function by

P„(q,aSLM eMz)

= [(qi~nili 'aiSiLi)
X (q2 ~

n2l2 a2S'iL2) ]'"'nr, iI
=[g),(qi, ~

ni, lP&a),SgLi)]&

A permutation of electrons between two subshells
changes the distribution q into another one. Therefore
we can antisymrnetrize the wave function (5) by taking
a linear combination of iP„ for all possible q. In the
example of %=4, S~=E~=2, there are 6 distributions
q= {qi,q2), namely

{qi={1») q~={34)} {qi={13) q~={24))
{qi={»4} q2=(»3}} {qi={»3) q~={14))
(qi={2,4) qm=(13)) {qi=(3,4) q2=(12)).

We assign even parity to the 6rst q, with its S indices i
in natural order, and a parity I', to any q according to
the number of permutations by which it differs from the
first one. Thus, the second and fifth distribution (6)
are odd, the others even. In general, the number of dis-
tributions is

m(X, ) = X!/g„ lq„!.

The desired E-electron antisymmetric function with
the coupling eSL is then

e(aSLMzMs)=X(N)) 't'Q (—1)p~

Xy.(q,aSLM, M, ) . (S)

This equation is presented here as the generalization
(A') of Rosenzweig's transformation A; indeed it re-
duces to (1) when 1V„=Ã—1, 1q„=1 and A"i=0 for
XW(ti, i).

Rosenzweig's transformation C, represented by (2)
in the usual notation of spectroscopy, becomes in the
notation of this paper

(q~ ~
n),4""aiS)L),)=P [(q~ ~

ndP" 'a~s~Li)
X(i . (qi) (n),4)]isa "'

X (li"" 'a),S),L),lgSiLp, )l), "agSi,Li), (9)

where the summation is over the barred quantum
numbers. Here i, (qq) is the largest of the indices in
the set qz, while gz indicates the set that results by re-
mov~g imax from g )t.

3. UNSYMMETRIZED FORM OF THE
MATMX ELEMENTS

The nonrelativistic expression of the energy of X
atomic electrons includes, besides one-particle terms
that do not concern us, the two-particle interaction

N

V=+V;, ,
i)j



INTERACTION BETWEEN CONF I GU RATIONS

(a) Configuration of Spectator Electrons

The con6guration of the spectator electrons, which we
indicate by

(13)

must be included in the configurations of 4" and 4'
which are represented by the sets of numbers {¹},{¹'}.This condition is represented by

¹

& min(iV)„N'), ') . (13a)

Equation (13a), together with

Q), ¹=S=X—2, (13b)

determines the ¹ uniquely in the case of maximum oG-
diagonality of (p

~
V~ 'p'), i.e., when 4' and +' differ by

the shift of two electrons. Otherwise, alternative solu-
tions P'i} to (13a) and (13b) must be listed at the out-
set, their contributions calculated separately and added
at the end. Henceforth a single set {E&,} will be con-
sidered explicitly. The relationships among {E&,},{¹},
and {¹'}consistent with (13a) and (13b) are repre-

g Magnetic quantum numbers M8 and Nl, are omitted hence-
forth for brevity.

where, disregarding a factor e',

V'; =1!I
r' r,—I =Z~ P.(" ';)r&'Ir&"+'. («')

Here, PI, is a Legendre polynomial and r& and r& repre-
sent the smaller and the larger of r; and r;, respectively.
Owing to the symmetry of V and of the wave functions
0' with respect to electron permutations, it is well

known that all terms of (10) contribute equally to the
matrix elements of V, so that, e.g. ,

(4
~
V~% ) = g1V(X 1)(%~ V~,~ i[%"). (11)

Two of the electrons, namely, E—1 and Ã, are
designated on the right of (11) as interacting electrons;
the remaining ones 1 ~ S—2, may be called "spectator
electrons. "The drastic reduction in the number of terms
of (4

~
V

~

+'), achieved in (11)through a loss of manifest
symmetry, will be carried much further in this section
with respect to the multiple summations that are intro-
duced by substituting the explicit form (8) of the wave
functions on the right of (11),'

(e~ V[+ ) =-,Xy —1)PX(¹)X(¹)j-»2

XP...(—1)p~&'(P„(qnSL)
I VN, ~,I4 „'(q',a'S'I')).

(12)

Additional summations will be introduced by the use of
the expansion (9).

To achieve the desired reduction in the number of
terms, we consider explicitly the con6guration, the dis-
tribution among shells and the quantum numbers of the
spectator electrons. Only those terms of (12) which are
diagonal in these characteristics yield a nonzero con-
tribution and many such contributions are identical.

sented by

¹X=&)—~),p
—~X. P &~0,

¹~=%'—~) p
—&}" P'~&0'.

(14)

(14')

(b) Electron Distributions among Subshells

Each of the electron distributions q and q' on the
right of (12) includes a distribution, g or g', of the specta-
tor electrons. The orthogonality of one-electron wave
functions of diferent subshells causes each spectator
electron to remain in its subshell, that is, only terms of
(12) with g= q' yield a nonzero contribution.

This contribution is independent of g. Therefore we

shall consider only one 6xed g, which may remain un-

specified, and replace the summation over g—implicit
in P« —by multiplication by the number X(¹)of
alternative g.

Once q is fixed, the distributions q and q' are almost
completely determined, in view of (14) and (14'). We
indicate each of the two possible distributions q by
q"= {qi"},with &=0, 1 and define them as follows:

q) "=q},
C."={In 1l'—1+~}
v."={0.&—}

for XW(p, o); (15)

for p/o-, (16)

(c) Calculation of P,+P,
The distributions q&') and q'&"' have the parities

P,"=P-,+ Q &)+ Q %+~,
X p+1 X~a+1

=Pq+ Z %+~,
X p+1

(20)

Pq" P,+ P E), +o'——, -
p'+1

(2o')

where the equalities are modulo 2. Hence we can substi-
tute in (12)

P,+Pq. hP+e e', hP= Q ——
¹

—Q—¹.(21)
X p+1

g, &'&= {q„X—1, X}b,o, for p=o.

The two corresponding distributions q'(") are defined

by equations identical to (15), (16), (17) among primed
quantities.

These circumstances enable us to perform in (12) the
substitution

z, ,, ~(%)z„. Oi(1- 6,.)(1-.'6, .). (lg)

Notice that

1V(E—1)LX(¹)X(¹')j-'I'X(E),)
=pi L¹i'"»'!'l2/¹ij
= C&n(&. ~n.)&''P"" ~n ")j'" (19)
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Owing to (18), (19), and (21), (12) reduces to

(e i
v [e')=-', (—1)»LN, (N.—a,.)N, .(N.,—a, .)]«2

XP,„=&&,&(1—«8«.)(1—«'i&« .)(—1)

X(&l (q",nSL)
~

V»& y, »~&&l~'(q"', nS'L')). (22)

The factor (—1)» establishes a standard normalization
of the sign of matrix elements. The factor L
makes the squared matrix element proportional to the
number of electrons available for transfer out of each
relevant subshell.

(d) Quantum Numbers of Spectator Electrons

The matrix element in (22) vanishes unless it is
diagonal in the set of quantum numbers n&,8&,L&, which
identifies the state of the X~ spectator electrons in each
subshell. The states of spectator electrons do not appear
explicitly in the representation (5) of f„orP„', therefore
a modified representation of these wave functions will
be sought. For subshells that contain only spectator
electrons the modification is provided trivially by the
identities

{uglP"ngSgL&, jq"&,)= (»,&1&~" u&8, &L& ~q&),

&& W (p,&r), (23)

(q'&"&g~ &«&1&~' ,n' &S,
' &L')&=(q&, ~&«~l&,"~a&8&L&),

& w (p', 0') . (23')

For subshells with interacting electrons, the wave
function is resolved into factors pertaining to spectator
and interacting electrons by means of the fractional
parentage expansion (9). In general (pW&r), &1 „contains
the two subshell factors X=p and X=o. which include
interacting electrons and are to be expanded separately.
The expansion represents P in terms of wave functions
P» which are analogs of f for the spectator electrons
augmented by interacting electrons coupled onto (but
no longer antisymmetrized with) the subshell factors p
and o-. Thus we have

tl (q",nSL) =P(l, nP,L,P, upS g«l PAL«)
X(lP n S L [l ~'u, S L,l S,L g' «, (q&'&,nSL), (24)

where the summation is over the barred quantum
numbers, and

&t-,.(q&'&,~L)= [II~&, .&(ud~""a~St~
~ q~)

X${n,l,~"u«8«L,
~ q, )X {n, l,

~

N 1+«)j& ~~~&—

X [(n,l,~'u, S,L,
~
q,)X (&«,1,

~
N —«)]& z'] & & (25)

For p=a, the wave function f„co tnianassingle sub-
shell factor with both interacting electrons. This fac-
tor is to be expanded twice in succession, separating
6rst the interacting electron cV and then Ã—1. Addi-
tional quantum numbers n,5,L, are required to identify

4. SEPAIULTION OF VARIABLES

This section contains straightforward or well-known
operations designed to bring (28) to an explicit and
tractable form.

ln L,S coupling, spin and orbital variables are tied
together in the matrix element only by the connection
between antisymmetrization and addition of angular
momenta within each subshell. Having completed the
parentage expansion in Sec. 3d, we can now separate
these variables. We set in (28)

P~,.(q",nSL) =4 (p&r«)nS)X(po «)nL) (29)

and proceed to obtain expressions for C and X from (25)
Since the distributions of the spectator electron varia-

bles q&, are identical for the wave functions p and f' of
(28), these variables need no longer be carried along
explicitly. Moreover, the group of spectator electrons of
each subshell affects (28) merely as a carrier of spin and
orbital angular momentum; therefore the indices n),lq~"cT),
are also redundant. Ke shall then simplify and factor
out the wave function of each group of equivalent
spectator electrons by the change of symbols

(»&,1&, 'u&, 8&,L&,
i q&,) ~ (8&,

~
(L&, i

. (3o)

the state that results from the 6rst expansion. Ke And

P„(q",nSL) =Q(lp 'npSpLp[lp ' 'apS«LI, lp, SpL«)

X(1«« 'n«S«L, (l, ~a«Sg«1„$&L«)rj «,(q&', nSL)b.o,

(26)

where the summation is over the quantum numbers
with bars and tildes, and

y.„(q&'&,nSL) = [g~,{n&lP"u&8&L&,
I q& )

+(({&««l,N~u, S+,~q,)X{I,l, ~N —1)]& ~~~&

X(n,l, ~

N)1&s~ &]& s~&. (27)

Each of the summations over aSI in (24) and (26)
reduces to a single term owing to (23'), except for
coincidences between (p,a) and (p', &r'). Formulas analo-
gous to (24)—(27) apply to the expansion of P '.

Substitution of these expansions of f and P
' into

(22) reduces the calculation of (4'~ V
~

4') to a sum of
comparatively few terms containing matrix elements

g...(q& &,nSL)
I V„,„,ly „..., (q'& ~

&,n S'I. )), (28)

where the p and o may coincide.
The process of taking advantage of symmetries under

electron permutations is now completed. Henceforth,
we shall deal primarily with the further calculation of
matrix elements (28) with pro, p'&&r' The e.xtension
to variants with indices pp or p'p' is straightforward be-
cause (27) differs from (25) only by certain quantum
numbers and by the coupling of angular momenta; some
indications on these variants will be given.
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An analogous notation will be used for the wave func-
tions of the interacting electrons, through substitutions
of the type

(31){n l, lA)&{s
l fn l,

Here it has been necessary to preserve an indication of

the identity of electron X by appropriate subscripts, to
introduce the symbol s to denote the wave function of a
single spin, and to preserve the indication of the shell
quantum number n .

Application of (30) and (31) to (25) reduces this equa-
tion to the form (29) with

4'(, s)={II",.{8 I Cfs. lxf -+ I]'"'Cfs lxf —I]"'1'"
= {8& .s~&(S,s&r &+,)s, . (s.sN, )s. ,asl,

X(p«aL)={II~«,,.&{L~I CV"IX{»4~-~+ I]""C{L.IX{nl.,~, l]«&]&-»
= {L& I, &(Lplp, &r &+,)Lp (L,l, ,~,)L, ')aL I.

(32)

(33)

The matrix element (28) now factors out, upon substitution of (29) and of an analogous expression for f'„, ,".

(0' ~.(V" aSL)
l V&r, N ~IS' '"(V" 'a'8'L'))

=(C'(p«)aS)
l
C"(p'a'~', a'S'))(X(p«aL) l V~,N &l X'(p'&-'~'~a'L')). (34)

Since the interaction V is spin independent, the first factor on the right of (34) is simply the inner product of two
di6erent functions of the same spin variables, that is, a spin recoupling coeScient. This coefFicient is represented
explicitly by

(4(poe, as) lC"(p'a'e', a'5'))=(8&. . S, &(S,s~ &+,)s~ . .(S,s»r, )s,
Xal8& 8, &(S, s~ &+, )5', . (8. s&r, )S'.. .a') bss, (35)

and can be evaluated numerically by established procedures and tables' once the quantum numbers 8$ Sp S,
p S and S are given, together with the coupling-scheme data indicated by e and n'. There are four possible

pairs (e,e'), but (35) has only two distinct values, for
l

e—e'
l
=0, 1. Any of the 8& that vanishes, as e.g. , the spin of

spectator closed shells, can of course be ignored in (35). When p=a, set &=0 and perform the substitution

(S,sw &)sp(S.s&r)S.~ C(S,s» &)Sps»]sp (35a)
on the right of (35).

The last factor on the right of (34) can be further resolved into contributions arising from the radial and azi-
muthal factors of one-particle wave functions. The radial factors of the groups of spectator electrons are irrelevant
here and those of electrons iV—1 and S contribute standard Slater integrals. " Introduction of the form (10')
of U&r, »r & into the last factor of (34) yields

(X(pa~,aL)
l V~, &r &l X'(p'a'e', a'L')) =Q& Cb- R (n, l,n l„n, l;n;l;)

+(1—b„.)R~(n„l,n,l„n, l;nr lr )](L& L &(L,l, ~ &+,)L, (I,l, »r,)L, ,aLl
XlI'a(rN r&r &)lLg Lp. &(L, lp. ,&r ~~;)L; . (L,./;, N, )L.',a'L)brl. .. (36)

where an explicit notation similar to that of (35)
has been used in the last matrix element. The two
Slater integrals in the brackets correspond, respec-
tively, to the alternative double jumps (p' —+ p, 0' —+ a)
and (p'-+ 0, a' —+ p). When p=o, set a=0 and perform
the substitution

(j,l, &r,)L,(L,l,N)L, & $(I,l, , N &)L,l,»r]L, (36a)

Qn the right of (36) ' the two Slater integrals R coincide
in th&s case. The matrix element on the right of (36) is
independent of the dynamics of the atom under con-

9 U. Pano and G. Racah, Irreducible Terfsorial Sets (Academic
Press Inc., New York, 1959)—referred to as FR; M. Rotenberg,
R. Bivins, N. Metropolis, and J. K. Wooten, Jr., The 3j aed 6j
Symbols (Technology Press, Cambridge, Massachusetts, 1959).

» See, e.g.„K. U. Condon and G. H. Shortley, The Theory of
Atomic CollisiorIs (Cambridge University Press, Cambridge,
England, 1963), p. 175.

sideration and is only a function of the various orbital
angular momenta, of their coupling, and of k. This
function can be calculated by alternative paths, as dis-
cussed in the next section.

S. ORBITAL COUPLING

Calculations of matrix elements of the I.egendre
polynomial I'I, utilize the well known expansion in
terms of one-particle spherical wave functions"

I'&(r~ r&r &)=P, C&",(rN)C~"&,*(rN,). (37)

When (37) is substituted in (36), one may regard the
C&'&,*(r~ &) as 2~-pole operators that absorb k units of
angular momentum from the orbital motion of the elec-

» The norma1ization introduced by Racah, Ref. 1 II, is used
here.
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tron E—1 in the many-electron wave function X',
whereas the C&+,(rN) return the same angular mo-
mentum to the electron E in the state X. Racah (Ref.
1 II) has given a basic formula for matrix elements of
(36) between two-particle states. He factors out single-
particle reduced matrix elements (l~~C'~'~~t') which are
characteristic of the C,(~) as distinguished from other
2~-pole operators. The residual operation of angular-
momentum transfer he identides, in eGect, as a single
standard recoupling transformation (see Ref. 9, FR,
Chaps. 15 and 16c) whose result depends on the resultant
angular momentum X, of the two electrons. To utilize
this result for many-electron wave functions, the orbital
momenta within the two wave functions have first to be
recoupled (Rosenzweig's transformation D) so that the
electrons S—1 and E have a definite resultant angular
momentum X,. Then the matrix element of I'

&, is evalu-
ated for this value of X, and finally a summation is
carried out over all possible values of f . This procedure
is further complicated, in Kelly's general treatment, '
by the simultaneous role of recoupling in the process of
antisymmetrization.

An alternative procedure~ carries the factorization of
the coupling further. It bypasses the recoupling and
summation by representing the orbit-orbit coupl. ing
with transfer of k units of momentum as proceeding by
the emission and reabsorption of a mock-particle 0,
which might be called an "orbiton, " with angular mo-
mentum k. To this end one rewrites (37) in the form

&.(r~ r~-i) =LE.C'"&a(rN)(koqI]

XLZ, lk.q')«'&„(',)], (38)

whose equivalence to (37) follows from the ortho-
normality of the orbiton wave functions, (koq~ ~koq')

=(koq~koq')=g«. On the right of (38) we have two
independent scalar operators, each of which acts on a
single electron. One of them takes 0 units of momentum
from electron iV—1 and transfers them to the emitted
orbiton, the other absorbs the orbiton and transfers its
momentum to electron X. These two operators can be
applied separately to the states I' and X without inter-

fering with their respective couplings of angular momenta
The operator represented in each bracket of (38)

transforms the orbital wave function with angular mo-
mentum / of one electron into the product of another

wave function of that electron and of the orbiton wave
function, the electron and orbiton momenta adding up to
the initial value l. As shown in FPG' or directly by use
of the general formulas (14.4, FR') or (29, II'), one has

(tm ~tV)g, C&"&,(r~)(kq~0)
=P, P "(tm

~
C& "&,

~

l"m —q)(t"m —
q ~

E)(kq [0)
=Pp (t[iC&"&iit")(2t+1) '"

XP (t"ktm
~
t "rn q—, kq)(t"m —

q I.V) (kq I 0)
= (2t+1) '"P&-(tllC'"'lit")

&&P{l"]&V)X{k[0)]'" . (39)

Here (l[(C&~')Jl") is a standard reduced matrix element,
well known in theoretical spectroscopy and given as a
function of k, t, and t" by (FR, 14.12).' The sum over
t" reduces to a single term t"= /' when (39) is applied to
the calculation of a matrix element, owing to ortho-
normality of {l"

~
iV) and (iV

~

t'}.In the notation of (36),
Eq. (39) becomes

{t I I:Z.C"'.(» )(koql]
= (2t+1)-&'2 Z,-(tllc&" & lit")Dt„"

I X {k,I
]«&, (40)

and similarly we have

LZ'lkoq')C""*('N-&)] lt'~, }=Z~- Llko}
x lt"N &}]«'(t"IIC&"lit)(2t+1)- I . (40)

Notice the permutation of factors in the addition of
momenta in (40') with respect to (40) $(40') and (40)
are Hermitian conjugates].

Substitution of (38), (40), and (40') into the orbital
coupling matrix element of (36) reduces it to a trans-
formation matrix element, the inner product of two
difI'erent many-particle states constructed from the
same set of one-particle orbital wave functions, that is,
to a recoupling coe%cient. The orbiton is included here
among the particles and, as noted in Sec. 4, each group
of equivalent spectator electrons is also regarded as a
single particle. Two diAerent matrix elements occur for
&'= & and e'= 1—e, respectively, but the result is seen to
be otherwise independent of e, owing to the permuta-
bility of X and E—1 in (38).Indeed, particle-identifying
labels such as S—e can be dropped after the appropriate
values of l" in (40) and (40') have been substituted as
required by orthogonality (see above). Thereby (36)
becomes

(X(po e,nL) i V»&', N & i X (p a' ae'L'))
=2 {b-R"(n.t.n.t.,n't, n"t")L(2t.+1)(2t'+1)] '&2(t, INC'"& IIV )(t.l)C "&~)t. )

&&(Lg .L~&(Lplp)Lp LL,(t, k)t, ]L, ,n~Lg Lp gttLp (klan)t, ,)L;. . (L, t, )L, . . .,a')& &

+(1—8„.)R (n„l, ln, nl n;l, )P(2l 11)(2l +1)]'"(t,)(C&~&)(l, )(t,()C&"&)(l, )
X(Lr" L.-~(L~4)L. Ã.(4 k)t-]L. ia lL~ L.-i(L, 4 )L," LL. (kt p)t. ]L.',a') jr„.. (41)

The recoupling coeS.cients in this orbital formula can
be calculated like the one in the spin formula. ' In fact,
(41) results by direct application of (FPG, 10) to (36);

the treatment in this section was intended as further
illustration of the procedure. When p=o, perform the
substitutions
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(L./. )L.[L.(/"k)/. ]L ~ [(L.4)L.(/"k)4]L.
41a

(L,/, )L,[L,(/p k)/, ]L,~ [(Lp/p)Lp(/p k)/p]Lp,

respectively, in the first and second recoupling coefFi-

cient of (41).

6. PRESCRIPTION FOR THE CALCULATION
OF A MATKK ELEMENT

A single but lengthy expression for (4 I
V

I
4"), suitable

for numerical evaluation, can be obtained by combining

(41), (35), (34), (24), and (22). Instead, we give here a
procedure for a step-by-step calculation of the final
result.

(1) List, for each subshell X, the number Ã&, of specta-
tor electrons and their quantum numbers (~&.i8iLi),
as, e.g. , in the table of Sec. 7. If alternative values of
these numbers are consistent with (13a), (13b), (23),
and (23'), alternative lists should be made and separate
calculations carried out for each of them. Comparison
of the sets {¹),{¹),and {1V&,') identifies the subshells
) that are to be labelled p, 0., p' and 0' in accordance with
(14) and (14'). If p=a and/or p'=o', the possible sets
(a,Sg,,) and/or (a.;S,I.;) should also be listed and
separate calculations carried out for each of them.

(2) Evaluate the right hand side of (41) for the
relevant values of the various quantum numbers and
for the coupling schemes specified by a and n'. The
evaluation of the Slater integrals R" is often conven-
iently delayed. The remaining coefficients often reduce to
simple algebraic combinations of small integers.

(3) Evaluate similarly the right hand side of (35),
for the two alternative values of

I
~—e'i.

(4) Multiply the results of (2) and (3) to obtain the
matrix element (34).

(5) Obtain the coefficients of fractional parentage
relevant to the expansion (24), or (26), of &/„(qi'&, nSL)

and to the corresponding expansion of &/ '(q",n'SL).
The procedure for obtaining these coefTicients is defined

by III' and also in Sec. 13 of FR'; many of them are
found in the literature and in trivial cases are unity.
Multiply these coefficients by the matrix element (34).

(6) Carry out steps (2) through (5) for all the sets of
numbers (uSL) and, where relevant, (nSL) which are
included in the list (1) and add up the partial results.
Thereby are obtained the matrix elements to be entered
on the right of (22) for the alternative values of (e, r').

(7) Evaluate (22) using the matrix elements so ob-
tained and the value of AI' from (21).

(8) Repeat the whole procedure for all alternative
sets {¹),if any, and add up the partial results.

Subshell:
Symbol:

N
L
8

L, or L, '

5 or S'

1s 2$

P

2P
P

5
1
1

0
0

The situation is made rather simple by maximum oQ'-

diagonality and by the large number of zero entries in
the table. Xo quantum number a is required, the N,
8, and I are fixed and no quantum numbers (n,a') are
required to specify the addition of angular momenta for
the given character &I' (i.e., S=O, L=1) of the states
4 and%.

Step (2). Substitution of the zero values of L&„ I 2„
L~„, L3„, IE, and l2„ taking into account that only
k = l2„——1 yields a nonzero contribution owing to
triangular conditions, reduces (41) to

V. Ex/AMPLE: (1s22s2P'3/& 'I'
I Vi 1s'2s'2/&'El 'I')

Step (1). In this example, where /=0 or 2, the relevant
subshell parameters are

(x(2P3P.,L) I v~, ~ I~'(»«. ',L))= &- R'(2P3P, »R/)3-'"(/. .Ilc"'llo)(/. Ilc"'ll/)

X(00(j2pqs) 0[0(/k)/3„]L3„0 I
0[0(k/2„)0]OL2„0(0/)Li) '~&+ (1—t&„)R'(2p3p, E/2s) [3(2/+ 1)]—'t'

x(/m„lie&'&ll/)(/s. ll«»llo)(00(L2. /2. )0[0(/2.k)/a. ]L&.ol 0(0/2. )OL2.0[0(k/2, )/]L&) ' . (42)

From Chap. 14 of FR we find, for l2„——l3„——1,

(/2. lie&»llo) =(/„lie&»llo) =1,
(/„lie& &II/) =(/»lie&»ll/) =(I+-,'/)&&2. (44)

Deletion of irrelevant zeros in the recoupling coefficients of (42) (the spectator closed shell 1s2 drops out a,t th&s

point) and use of data from FR Chaps. 11 and 12 and of values of remaining quantum numbers reduce these
coefFicients to

((L~Pms)0(/k)1I (k/2n)«24)'» = ((L2A.)0(/k)1I (L2n/)I(/2. k)0)"'

1 1 0 0 1
3

0 1 1 1 0 l 1 1 1 1 Oj
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((Isp2„)0(/2, k)1 ~/s, Ls„(k/2„)/)"' = ((L2&/2, )0k
~
Lg„(/sp)/) "&

= (2/+1)'I'( 1
(1 1 0

= (2/+1)"'-'.

Substitution of (43)—(46) into (42) yields finally

(X(2p3pe, L)
~

Vii),~ i~ X'(2s2/e', L))=3 '"(1+', l)'"-[/)„R'(2p3p)2sE/)+(1 —8„)R'(2p3p,E/2s)].

Step (3). Stepwise substitution of the numerical values of the spin quantum numbers into (35) yields

(C(2p3pe)S) iC'(2sE/e')S))=8„. (082,(82~N i)0(0si)))S3,0iO(82)s~ i)082„0(Osis)Si)& '

+ (1—/)„)(082,(82~N i)0(0s~)S3~0
~
0(82,si)))082„0(0si) i)Si) &s&

= k„,((8„s„)0(8,„s~,)0
~
(8„s„,)0(8,~„)0) '

+(1—h,.)((8s,sii )0(82~i)) i)0
~
(8u, si)))0(82~~ i)0) '

=8„(—1)i 2 ~ +(1—h„.)1

/)))' g + (1 &em') ~

Step (4). Multiplication of (47) and (48) gives

($„2„3s(eSL)
~

V)v, i)) i~)p'~2, E/(e')SL))=3 "'(1+-',/)'I2[b„~R'(2p3p, 2sE/)+(1 —8„)R'(2p3p,E/2s)].

(46)

(47)

(48)

(49)

Step (5). The relevant fractional parentage coefFicients are trivially unity.
Step (6). No alternative parentage.
Step (7). Substitution of (48) and other data in (22) yields

(4
~
V„„,~%') =-,'(—1)~'(2X6)'i'3-'i'(1+2/)'i' Q„.[8„.2R'(2p3p, 2sE/)+(1 —8„)(—1)R'(2p3p, E/2s)] (50)

= -,'(1+-'l) 'i'[—R'(2p3p, 2sEl)+ 2R'(2p3p, El2s)] .

This is the result utilized in Eq. (7.9) of Ref. 6.
Step (g). Does not occur.

8. GLOSSARY OF SYMBOLS

Number of electrons in subshell ).
Number of electrons in atom.

v=(v~}
Ot(Xg)

JP q

(i
~

tE/m/m, )= (s;
~
m, )(r,

~
n/mi) }

(i(n/}= ~s;}~is/;}

[(/I »li}X(kl »/~}]'"'~s~.
= [(s;}X [s),}]'"sr

X[[ril/1)}X»/2)}]"'sr,
=

~
(s,s))SMs) (»/ipl2/2))LMz).

(q), ~
»/P~n)SxL), Ms) Mz~)

f„()/,uSLM sMz)

+(nSLMsMz)

A set of 1Vi, electrons drawn from (1,2, . i. N), and ordered by increasing
i, to be assigned to subshell ).

A distribution of E electrons in mutually exclusive sets q~.

Number of different q, Eq. (7).
Parity of distribution )7, relative to ordered set (1,2, i S), Eq. (20).
%ave function of ith electron in nl subshell.

Set of same wave functions with all diferent values of nszyn, .

Weave function of two electrons i and h with spin and orbital momenta adding
up to 5 and L, respectively.

Antisymmetrized X-subshell wave function of electron set q~, as in Ref. 1 III.
Quantum number that distinguishes different states of subshell li with

equal S)„I.),.
Unsymmetrized LS-coupled product of antisymmetrized subshell wave

functions.

Quantum number that distinguishes different ways of adding the S), and L),
vectorially to yield S and J.

Antisymmetrized and normalized superposition of all )p„with different I/

[Eq. (8)].
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(P 'nSL/SL lPnSL)

+Xp q) qX) X) ~X) ~X

a,S
&=0, 1

CoeKcient of fractional parentage as in Ref. 1 III.
Analogs of Ãz, q, q&, n&, Sz, I-& for spectator electrons.

Intermediate quantum numbers in two-step parentage expansion (26).
Index distinguishing alternative q that include a given g.

Unsymmetrized product of spectator electron antisymmetric subshell wave
functions coupled to wave functions of interacting electrons in subshells p
and 0 )Eqs. (25) and (27)j.

Spin factor of P„„.
Orbital factor of g „.
Slater integral as in Ref. 10.

Reduced matrix element as in Ref. 1 II or Ref. 9, FR, Chap. 14.

Transformation matrix element, i.e., inner product of two diferent products
of the same set of angular momentum eigenstates (j&j2 ) whose momenta
add up vectorially in different ways, distinguished by a and n, with the
same resultant J. Replacement of 0. and o.' by explicit description of vector
couplings is a prerequisite of numerical evaluation.
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Etluilibrium Charge-State Poyulations of Carbon Ions from 2 to
10 MeV/amu in H„N„Ar, and Ni*
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Measurements of the equilibrium fractions of C'+, C'+, and C'+ ions as a function of ion energy have been
made using a gas cell with diEerentially pumped exit slits and a magnet wbich spatially separates ions
emerging from the slits in different charge states. The separated ion beams are intercepted with different
thicknesses of foil and stopped in a junction counter, and charge-state populations are determined from the
relative number of counts in each peak of the resulting pulse-height spectrum. Estimated errors are as small
as ~0.002 in the population and ~0.05 MeV/amu in the energy. The rms charge of the ions is found to
be a function of the material through which they are passing. The rms charge in gaseous N2 and Ar is higher
than in solids of neighboring atomic number at ion energies of 3 MeV/amu, but is the same in these gases
and in the solids at 8 MeV/amu. At all energies measured, the charge in H2 is anomalously high. The in-
creased charge in solids is ascribed to a large electron-loss cross section at low energies, which shortens the
time between collisions to the extent that the loss cross section is affected by excitation of the electron of
the carbon ion. Estimates based on a crude model indicate that electron capture by the carbon ions takes
place predominantly from the E shell of N2 and the I shell of Ar. The anomalous charge in H2 is apparently
due to the absence of a shell from which capture is highly probable.

I. INTRODUCTION

A I.THOUGH considerable information has been
obtained in recent years regarding the stopping

of particles more massive than protons in the energy
*This work was supported by the U. S. Atomic Energy Com-

mission. A preliminary report was given in Bull. Am. Phys. Soc.
11,53 (1964).It was submitted together with Ref. 16 to the Faculty
of Vale University in partial ful61lment of the requirements for
the degree of Doctor of Philosophy.

range between 2 and 10 MeV/amu, ' less information is
available concerning the charge of these ions as they
are slowing down. '' The fraction in each state of
ionization has been measured for various ions in alumi-

' I.. C. NorthcliBe in Annual Revims of Nuclear Science (Annual
Reviews, Inc. , Palo Alto, 1963), Vol. 13, p. 67.

C. S. Zaidins, California Institute of Technology, 1962
(unpublished).


