
ULTRAVIOLET REFLECTION SPECTRUM OF CUBIC CdS

The energy-loss function" —Im(1/e) of our cubic
CdS is also seen in Fig. 4. The peaks of this function
correspond to plasma resonances. The peak at 16.4 eV
correspond to the plasma resonance of the valence
electrons, somewhat modihed by the presence of
interband transitions originating at the d electrons of the
cation. A strong secondary resonance is seen at 11.8 eV.
Similar effects have been reports' for hexagonal CdS.

The reQection spectrum of the hexagonal CdS
deposited on the gallium side of the GaAs substrate
shown in Fig. 2 agrees reasonably well with that of bulk
hexagonal CdS. In particular, the splitting of E1 into
the A —8 doublet and the appearance of the E1 peak

"H. R. Philipp and H. Ehrenreich, Phys. Rev. 129, 1550
{1963).

'~ M. Balkanski and Y. Petrol, Proceedings of the Intereational
Cunfe'erne oe the Physics 0f Semkmsdlctors, Paris JP64 (Dunod
Cie, Paris, 1964).

is clearly seen. However, small shifts towards lower

energies by about 0.05 eV are seen for the peaks Eo, E&,

Eo', and Ii~. These shifts could. be due to strains or
imperfections. The E& peaks seem to have shifted by
a larger amount ( 0.2 eV) towards lower energies with

respect to those of bulk hexagonal CdS.
Figure 5 shows a section of the reQection spectrum of

partially cubic CdS, deposited on the (111) "P face"
of GaP, and that of pure hexagonal CdS deposited on

the opposite "Ga face."It is seen that the intensity of
the A and F1 peaks is lower for the partially cubic
material. Hence a clear indication of the mixed structure
of this CdS layer, which is difBcult to obtain from x-ray
data, is readily obtained from reQectivity measurements.

By using the epitaxial deposition technique one should,

therefore, be able to obtain optical data for the meta-

stable phases of many III-V, II-VI, and. I-VII materials.
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%e calculate the phonon-assisted tunneling current for a model p-I junction (as opposed to the homo-
geneous-electric-field model) due to two mech~r11sms. A first-order mechanism in which an electron on,
say, the p side scatters to a state on the n, side with the emission of a phonon yields results similar to those
calculated by other workers for the homogeneous-electric-field model and is about three orders of magnitude
too small to account for the experimentally observed current. A second-order process in which an electron
on the p side tunnels to an intermediate state in a higher band on the e side via the interband term in the
Hamilton~~ and then scatters with the emission of a phonon to a final state on the e side yields a current
equal in magnitude to the experimentally observed current. This mechanism also succeeds, where the first
one fails, in accounting for the m agnitude of an differences between the experimentally measured pressure
coeKcients ~~+, ~~, ~&A+, ~&A where ~=J 'dJ/N', the superscripts identify the direction of current
Bow, and the subscripts, the branch of the phonon involved in the tunneling process (LA=longitudinal
acoustic, TA =transverse acoustic).

X. INTRODUCTION

'HK theory of direct and phonon-assisted indirect
tunneling in semiconductors has been developed

for the homogeneous-electric-Geld case by Keldysh' and
Kane' and applied to the heavily doped Esah. ' p-n
junction by Kane. ' Fredkin and Wannier' (hereafter
FW) have developed the theory of direct tunneling for
a model p-e junction with a constant electric field in the
intermediate region and zero field on both the p and tc

sides. Price and Radcli8e have discussed the p-e junc-

*A large portion of this research was accomplished while the
author was at the University of Pennsylvania and was there sup-
ported by the Advanced Research Projects Agency.

t This work was supported in part by the Joint Services Elec-
tronics Programs {U.S. Army, U. S.Navy, and U. S. Air Force)
under Contract No. AF-AFOSR-496-64.

'L. V. Keldysh, Zh. Eksperim. i Teor. Fix. 33, 994 (29M');

tion with position-dependent electric Geld. F%'s work
essentially con6rms Rane's result. The success of the
homogeneous-Geld model in explaining direct tunneling
in p njunctions is-at first sight surprising since in a
constant electric Geld each electron wave function con-
sists of a superposition of all the Bloch functions in the
band with a Gxed h~, the component of wave vector
perpendicular to the electric Geld. However, it may be
understood for the following reasons: (1) Because the
tunneling matrix element LEq. (7) of Ref. 2] depends

34, 962 (1958) fKn lish transls. : Soviet Phys. —JETP 6, 763
(1958);7, 665 (1958) .

~ E. Q. Kane, J. Phys. Chem. Solids 12, 181 (1959).
s L. Esaki, Phys. Rev. 109, 603 (2958).
4 E.0. Kane, J. Appl. Phys. 32, 83 (1961).
'D. R. Fre&» and G. H. %annier, Phys. Rev. 128, 2054

(1962).' P. J. Price and J. M. RadcMe, IBM J. Research Develop. 3,
364 (1959).
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FIG. 1. Energy bands of a model p-n junction with a constant
electric field E in the rey.on 0 &p &l.

exponentially on the energy difference between the two
bands at wave number k, and for si mp/e bands this
energy difference is stationary only for i& I

——0, tunneling
occurs only at k„=0 as it does in the FW model. (2) The
distance between the turning points of two electrons
of the same energy in an electric Geld E, but in bands
separated by a gap 5, is 6/eE just as it is in FW's model
Esaki diode.

In this paper we develop the theory of phonon-
assisted tunneling in the FW model p-e junction; we
find there are two distinct processes contributing to the
phonon-assisted current only one of which has been
calculated by Kane' for the homogeneous-electric-6eld
case. However, this process yields a current over three
orders of magnitude too small to account for the experi-
mentally observed phonon-assisted tunneling current.

Fritzsche and Tiemann~' (hereafter FT' and TF')
have measured (in Ge) the pressure coeScient of the
tunneling current m =J 'dJ/dP and found ~~++s Lg
to be 50/e larger than s T~++s T~, and s ~ —s ~+ to
be four times xT~-—xT~+, where the superscripts refer
to the direction of the current and the subscripts refer
to the branch (longitudinal acoustical, transverse
acoustical) of the phonon emitted in the tunneling
process. ' They point out that an electron at I"&5 in the
valence band of the p-type semiconductor may emit a
TA phonon (symmetry Lq) and tunnel to the Lq state
in the conduction band of the e-type semiconductor but
that the same process involving an LA phonon (sym-
metry L2 ) is forbidden on group-theoretical grounds.
They quite correctly argue that the LA phonon-assisted

' H. Fritzsche and J.J.Tiemann (unpublished).
J. J. Tiemann and H. Fritzsche, in Proceebngs of the INter-

national Conference on the Physk s of Seek osductors, Paris, &64
(Academic Press Inc. , New York, 1965).

'FATA is measured in the region of applied voltage AcoTg&eu
&MI.A and wI, A in the region eQ&Acoj.g after subtracting oG the
extrapolated TA-assisted current.

tunneling must occur through the intermediate state I'"
(see Fig. 1) (L2 X I'2 contains Li whereas L2 X I'2~ does

not) and that this accounts for the differences between

~~ and s Tg. In TF they argue that in the p-type semi-

conductor the F~. level is mixed into the F~~ level

through the k y perturbation and then the LA assisted
tunneling takes place from I'2. in the p-type semicon-

ductor to I & in the e type. They have calculated the TA
and LA phonon-assisted currents due to this mechanism
and found no substantial forward-reverse asymmetry
for either. "Furthermore, the magnitude of the current
is very close to that obtained by Kane4 and thus is
about three orders of magnitude too small to account
for the experimentally observed currents. In FT they
describe a completely different mechanism in which a
I's5. electron in the p-type semiconductor tunnels to the
intermediate F~ level in the n type through the direct-
tunneling interband matrix element and then emits a
phonon on scattering to the I.~ state in the n-type semi-
conductor" (see Fig. 1). Their calculation is open to
criticism on two counts: (1) Only one intermediate I', ,

state is considered rather than a sum over the entire
I'2. band. (2) The interband-tunneling matrix element
is evaluated by substituting hT (the I'~5.—I'~ energy

gap) for Az (the I'~~ —L& energy gap) in the tunneling
matrix element calculated by F%.~ As we shall show,
the FK matrix element has a rather more complicated
dependence involving both hr and A~ which reduces to
the simple F% form only when the electron tunnels
directly from the valence band of the p-type semicon-
ductor to the conduction band of the e-type (either
with or without the emission of a phonon).

In this paper we calculate the 6rst-order TA phonon-
assisted current and the second-order LA phonon-
assisted current for a model p-n junction. By invoking
the k y mixing of I'2~ symmetry into the intermediate
l ~ states we are also able to estimate the second-order
TA phonon-assisted current which would otherwise be
forbidden by syrxonetry. %e Gnd that the second-order
process of FT accounts well for both the magnitudes
and pressure coeKcients of the TA and LA currents.
Although we have not done it, we think it might be
interesting to calculate the second-order phonon-assisted
tunneling current for the homogeneous-electric-Geld
case. Because in that case the energy of the intermediate
F2 state is a function of position, there will occur
singularities in the energy denominator which Fig. 1
shows cannot occur in the P-e junction. This could
conceivably lead to qual. itative differences between the
two models.

It should be pointed out that our use of the Fredkin-
%annier' extended wave functions is quite controversial.
There is a school which holds that the electron can be
thought of as localized in the semiclassical limit and

'o The agreement daimed i.n Ref. 8 is not correct. H. Fritzsche
(private communication).

"%'e will refer to these two processes (TF and FT) as first-
and second-order phonon-assisted tunnehng.



THEORY OF PHONON-ASSISTED TUN N EL I NG I N SE M ICON'DUCTORS A639

that WEB considerations are physically meaningful.
They picture the electron with a complex h vector which
is a function of the electron's position. At that point in
the junction corresponding to a kif which is a branch
point in the complex E(k„) plane, the electron (in their
picture of our second-order process) tunnels into the
intermediate (but not virtual) state. A little while later
at a position corresponding to a kif which is a point of
stationary phase in the electron-phonon matrix element,
they picture the electron as tunneling into the 6nal
state with the emission of a phonon. In this picture
nothing that happens to the electron in the region out-
side the junction is of consequence; in fact, the calcula-
tion is independent of the Fermi levels on the e and p
sides. This is to be contrasted with our picture where the
scattering of the electron into its 6nal state with the
emission of a phonon is not a tunneling process and takes
place near but not necessarily in the junction.

We would argue with the semiclassical picture on two
points. In the Grst place, in order to get localized elec-
trons it is necessary for the electric field to extend over
distances such that Ed= 10 eV so that a wave packet
can be made up of states mixed in from the entire band„.
this situation does not exist in the p-I junction although
it does in the constant-electric-6eld case. Secondly,
even in the constant-field case the semiclassical picture
is dangerous to use. Kane in an appendix to his paper'
has written @ (which is made up of a superposition of
Bloch states, all from a single band and with real k
vectors) as 4'(r,k) where k is itself a function of r
However, he did not use his semiclassical 4'(r, k) to
calculate anything in the body of his paper. Note that
if one starts with 0' a sum of Bloch states in one band,
makes the semiclassical approximation but does not
allow the interband term in the Hamiltonian to perturb
4', and then looks at 4 at a point k(r) beyond the branch
point, 0 describes an electron in another bandI This
surprising result appears to be due to the rapidly vary-
ing crystal 6eld violating the condition for the validity
of the WXB approximation.

II. TUNNELING WAVE FUNCTIONS

and the interband operator X operates on eigenfunc-
tions of Ho as follows:

X„p„=gX„„( i—V,)P ~,

where I g is the periodic part of the 4th Bloch function
in the nth band.

We make the effective-mass approximation for co (k):

~.(k) = —ar, —k'k'/2m = —ar, —8 '(k.),
ruI..(k) =-', k'k. (mr„-') k= 81,,'(kr, .),

~„(l)=a,—a,+k k /2~„= ~r—~,+8,.'(k, .),
where h~ and d L, are the direct and indirect energy gaps
shown in Fig. 1, and the subscript e signifies the light-
mass F2g valence band and Fc and Lc the F2 and Li
conduction bands. The light-mass valence band is
approximated with an isotropic mass, while m~, is a
tensor. Note that we use &u (k) for the energy as meas-
ured from the bottom of the L~ band in the semicon-
ductor of interest, 8'(k) for the energy as measured
from the extremum of the band of interest and later
8(k) for the energy as measured from the bottom of the
Lj band in the n-type semiconductor.

In the region 0&p&l, the Schrodinger equations for
Pr. and PL,.are

PAr —61,+ (k /2tnr )(k —d /dp )jPr
+eEpPr. = br. , (6)

—,'O'Lk, (mI, -') k —(mr, , ')„(d'/dp')-jpL, ,
+«pPI. .= &I..Pr'(7).

Recalling that 8L,, and 8&, are determined in the n-type
region, 81..=a&z.(k) and br. =cur. (k), defining the classi-
cal turning points,

pr. =k2kiirc/2mr. eE, pI.i=knk~, r,. (mr, . '), ~/2eE, (8)

and making the substitution

In this section we review Sec. V A of FW in order to
obtain the wave functions at I"zz in the p-type semi-
conductor and at L~ and F2 in the n-type, as well as
the direct F~s —F2 tunneling matrix element. We may
write the Hamiltonian for the p-n junction in the
Wannier representation as H= Hp+Hg wltll

where
5=~.(1 I/I.), —

a.= (p.k(,)'~',

we find that Eqs. (6) and P) both become

d'P. /dP+ g,=0.

(10)

&O=~n( zVp) ez—(p), P—g eEX. ,
-—

where z (p), the potential due to the electric field E(p),
is taken to be

v6)=0,

The solution of (11) which is oscillatory for p& p, and
decays exponentially for p&p. is

&h) =& ~(k) = ~ ~ L~ (1 I/n. )j, 0&—c «, (12)

A(x) = exp(-', z'+ xz}dz,
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We shall need the Fourier transform of A(z),
~
(X —iY)$/V2), and finds that the 8X8 matrix may

be written

J(s)= Ck e "~-A (x)= 22ri exp( —~oiso) . (14) H 0

0 H

In the region 0&p«p. , A(z) may be evaluated asymp-
totically yielding

By requiring continuity of amplitude, phase, and
derivative of phase, we match (15) to the standing wave
outside the junction to obtain

P.(p) =2iN.or'"a. 'I' sinL —k)ip+xa. "2+xoor],

p&0. (16)

Normalizing the incoming part of P.(p) to unity, we
obtain

(1/)N, = (V„or) '—I'a, 'I' exp/i)a, 212+xoor],

where t/'„ is the volume of the e side of the junction.
In the region 0&p&l, the Schrodinger equation for

so 1S

61. (h'—/2m, —)(k,' do/dpo)5—P,+eEpP. = B.P. . (18)

P,(p) 2iN.or I a, 'lo(1 p/p—,)
Xsin[oa. '"(1—pjp.)'"+)~] (15)

kI' 0

h'k' 0 —2~so/3 ~iso/3 0
P= + (26)

2m kP V2'iso/3 —A so/3 0

0 0

where iso is the spin-orbit splitting of the valence
band and

P= —i(h/m)(S~ P, (Z). (27)

h'k'
H= + (xo)'~okP

(x)'"kP (2)'"kP

0 . (28)

(xo)'I'kP 0

The heavy-hole band in this approximation is not con-
nected to any of the other bands and will henceforth
be neglected. If we diagonalize the spin-orbit part of
H we find

De6ning the classical turning point

p, = 1—h k»2/22meE,

noting that (see Fig. 1.)

The spin-orbit splitoG band does not mix with the light-
(19) hole band and we treat its admixture into the conduction

band by perturbation theory, reducing our four-band
model to a two-band model'.

B.=eE/+co. (k) =eEl hz h'k'—/2m. —, (20)

and substituting

{=a.D+(p &)/(~ p.)]— —
where

(21)
where

h'k' t' —',ho (-', )'I'kP
&=(~2+ +)

2m k(xo)"2kP
(29)

a.= L(—k~~)(f—p )]"',
we find that (18) becomes

(22) &2= &r+$(kP)2/(&r+&so) .

The solutions of (29) are

(30)

de./d{-'+{.~.=0, (23)

where, just as in the calculation of P,(p),

N, =(V or) "'a 'I'expL —i(- 22.a" +2')2]r. (25)

Ep = -', ho+ hoko/2m&-'og, (31)

P.(p) =N.A(i) =N, A {a,L1+(p—J)/(l —p,)]), s= (622+8koP2/3)'12, (32)

( ) where + refers to the conduction band I'c, and —to the
light-hole valence band e. Using the convention that
effective masses are positive quantities, we calculate

III. THE INTERSAND OPERATOR

In this section we derive X.,( iV,) of —Eq. (3) in the
four-band model. Kane" chooses the s direction to lie
along the k vector and considers the k p perturbation
matrix between F~ and the three fold degenerate
I'22. He takes as a basis" ~iS$), ~(X—iV)f/V2),
[zg), [(x+iv)1/v2), [;s1), [

—(x+iv)l/v2), [zl),

Defining a reduced e6'ective mass m„by

m =mr, '+m. ',
we express I' in terms of m„as follows:

(34)

ho P2 f 6r ) (1 P2 ho)
I
4+ I+I — +—

I (33)
m+ 3hr E dr+iso) E3 hr+hso ml

~ E.0. Kane, J. Phys. Chem. Solids 1, 249 (1957).~ For Ge arith a center of inversion make the substitutionX-+ YZ, Y —+ZX, Z~XY.
( g -1/2

P=h 3dr/2m,
~
4+

hr+&so-
(35)
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g = (hr'+ Arh'k'm„')'/'.

so that (32) becomes, dropping a negligible term in k', Substituting (37) into (4) we find

&h~r»2-
(36) X.,(k) =

4m, "' -kr+5s s' k kr+s4 )
The functions N„q which diagonalize 8 of Eq. (29)

are

( Qr -1/2 hg 1/2

6+6 4m'" 6+5 )
~r tt' 2hr

X 1- ~g+
~r+ ~so & ~r+ ~so

—1/2

Xi 4+ . (3g)
~r+ ~so

Substituting (30), (35), and (36) into (38) and making
a spectral expansion, we write X„( i V—,) as an integral
operator with kernel

[2h'm, '(Arm, h '+k, ')'/'j

XexpL —
~ p —p'~ (Arm h '+kg')'/'j —(hr+hso) '8(p —p') (39)

We could work with the kernel (39), but, for the price of an error considerably smaller than the uncertainties in
the four-band model, we greatly simplify (39).Integrating over p', we see that when X„,( iV,—) operates on slowly
varying functions the delta-function term is about 20% of the exponential term. For the rapidly decaying functions
in the tunneling region, however, it is easily shown that the delta function is completely negligible. VVe make a
2% error by setting hr/(dr+iso) equal to zero everywhere it appears, to obtain the following kernel:

i (~~ )~/~ expL —
( p —p'[(~~ h-2yk 2)»2j

E=—— (40)
(m„Ar+ h'k, ') '/'

This is just the kernel one would get from Kane's' two-band model; it divers from FW's Eq. (74) because their
Eq. (73) for X,.(k) differs from Kane's.

IV. THE INTERBLEND MATMX ELEMENT

In this section we calculate the matrix element of the interband part of the Hamiltonian II~ by integrating the
kernel (40) between the tunneling functions Pr. (p) and P,(p').

M(k) = ——,'ieEe Pr.(p')*(hrmr)'"(hrmr+ h'k/, ') '" expt —
( p

—p'( (Arm, h-'+k, ')' '7P.(p) dp' dp (41)

where 0', is the area of the junction. Because the integral is negligible outside the region 0(p(/ we have been able
to extend the region of p integration to &~. For the same reason we may use Eqs. (12) and (24) (which are valid
only in the region 0&p& l) for Pr. and P.. Expressing Pr, and P, as Fourier integrals we obtain

pr, (p, —l) (Arm )&/2

M(k) = ~ieESNrc*N, (2s) 2

ar. n. (Arm, +h'kg')'"

/'
d" d. dp'dpi'~

&a. k ar, i

XexpI i(ap z'p'+~'p—r p N) m~ p——p'~ (hrmrh 2+k&2)'/2$. (42)

On integration over the variables (p —p'), p', and ~', (42) becomes

pr. (p.—1)
M(k) =ieE(4xh) '2Nrs*N, — (Arm, )'/'

are a

d//3 a ~S*~ a (x'+Arm h '+k ') 'e'"rs "/' (43)
~. i t, a„
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Through substitution from Eq. (14) the integral in (43) becomes

00
p

3 pr
3-

I= —(2s')' d»(»'+Apm, k '+k, ') ' exp i(pr. —p, )»—&i » —ai »
Ay 0!i'c

= —(2x)' d»(»2++~ k—2+k 2)—1 expL~(eE)
—1{(1$2k 2~ —+ 1 k k 2~ — eEf)» Q2~ —1»3}] (44)

where we have used (8), (10), (19), and (22). Note that the term linear in» in the exponential cannot

be simplified to depend only on the energy gap as it can be for direct tunneling. '4 Ke may perform the integration

by the method of steepest descents if we deform the path of integration through the saddle point at
» = —iL2m k '(eEl 'k'k —'m— '—-'k'k 'm -')]'I' —i(2m, k 'hr)'I' However in deforming the path of inte-

gration we pick up a contribution from the pole at »~= i(—h~, k '+kg)'~' i(—h&m, k ')'~' As.long as 24r, is

suKciently greater than 0 r (as is the case for Ge) the contributon from the pole is exponentially larger than the
saddle-point contribution and is the only one we will consider. Thus, by the method of residues,

I=4r'(Arm k '+k ') '"
expL

—(eE) '(Apm k '+k ')'"
X {(eEl—-'k'k 'm -'—-'k'k 'm ') —-', (&r+ k'k. ,'~, ')}], (4&)

so that
k[tr ( k[] ) 1I Eppes

3f(k) = k' — expLgik'(eE) '(k(i, 'm. ' —ki(r. '~r. ')]
m.mi, 2L hpm, „+h'ki, '

XexpL —(eE) '(Arm, k '+ki. ')'I'(Eel 2k'kiter~—'~—re ' -'&2' kii. '—~~ ' —e&r—6k'4. "&&. ')], (46)
where

I.= (V„V„)'l2/8.

At this point some justification of the use of the effective mass p's instead of the exact p's obtained by substituting
(31) in (1) should be made. One might worry that because the pole in (44) is also a branch point of (31), the use
of the exact p s in (41) would yield a result different in structure from (46). In the direct-tunneling problem Fredkin
and Wannier' made exactly the same approximation and obtained a result difkring from Kane's' by only the
numerical factor 1.06. The effect of using the exact p's on the integrand of (44) would be to make mrs and m. '

functions of ~. Remembering that f{: is real and that. most of the integral comes from the region of small ~, we see
that the effective-mass approximation (constant mr, and m, ) is quite good. That we choose to evaluate (44) by
integrating in the complex» plane can have no effect on the validity of the approximation we made to obtain (44).
The same comment will apply to Eqs. (SO) and (60) where integrals over real wave numbers are again evaluated
by saddle-point methods.

V. PIRST-ORDER TA PHONON-ASSISTED TUNNELING

The wave functions for the I'» light mass and I.j bands in the tunneling region may be written in the form

p(k, r)=e' i»' p(p) I( kr),

where p(p) is the apporpriate solution of the Wannier equation of Sec. II and N(kr) is, the periodic part of the
Block function whose k vector is given by its value outside the tunneling region.

We calculate the first-order TA phonon-assisted tunneling current (assuming a temperature suthciently low
that only phonon-emission processes are important) by applying the golden rule:

(48)
LIy k~ PhOnOn

where the —(+) sign holds for positive (negative) applied voltage, i.e., for tunneling from the m (p) side to the
p (m) side, and the f. .are Fermi fu. nctions. Although both pz„and p„decay quite rapidly in the tunneling region,
their product is much more nearly constant so that

9i.(kr,.) ~
&T~ a p~ ~ 4.(k.))=3f'r~ Vp~ "'(Pr,.(ki ~.) I P.(ki ~.)), (49)

where ~T+Vph 'I' is the TA phonon matrix element between Fqq and I i Bloch functions and Vph is the normaliza-

"In that case A'k~1, '/2m, =co,—A%//2m, = g,—A'kI'/2m, and A~kff, '/2m, = —b, —m, —A'hj'/2m, = —6+ef:I—g —A'kj'/2m, . Adding
these tw««ms to —ed/, using conservation of energy, i.e., p, = „and conservation of k&, we obtain —i(eL:) '(~+A%&'/2m, ) for the
coeKcient of a.
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tion volume, We proceed to calculate

I, p —l
(p..~ p.&= ax,.*x.

l—p. -

pz, p. l —" da' l—p, pz. )
az. iz, (2s)' a, nz, )

PL. P.—I
g ~i (~r )p&s(r' pI o

—rp~) —IX *X 2m. diiei(pz~-p~)ce-io&d/oeemz~ (5Q)

where Ct is the area of the junction and mz, „'——m, '+(mz„'), i. A straightforward saddle-point integration yields

.Z~„-»4PLc Pe
(P..~ P.)= (2~)»'e

izz e zze 2A (ps-pLo)
exp( —noh '[2eE(p, —pz,.)'mz, ]'I'}

2ho( eEm„
[s'k& ~z,.(—k&&,) (mz,. ')«/2m ]'I' exp( —xoh-'[2eE(p. —pz, )omz„]'&'}, (5l)

I.eE (2A'(p, —pz, )3

where we have dropped unimportant phase factors from E,oE„and (see Ref. 14)

pz —p =(eE) z(—8 o—Biz o+Bz —8 —5z) (52)

Substituting (49), (51), and (52) into (48), we may drop the smn over phonons because HAT~'Voh ' implicitly
contains a 8 function of wave vector if V~h, is taken to be the volume in which the electron-phonon interactions of
interest may take place, Voh ——(p, —pz, )2, rather than the volume of the entire p —e junction. "We change the
sum over kz. and k, to integrals over V(2s) 'd'k and use

kiid'k =k, )dk„d'k, = [h'(m-') „(m-'),]-'d8„'d8,'18= [h'(m-') „(m-'),]-'d 8'd 8,'de, (53)

[where (m ')~ is the geometric average of the maximum and minimum values of kz (m ') k,/kz'] to obtain

242eJ= -Mz ~'(t (f, f )(8, o+B,z o Bz +8 +g,) oi-
h (2ir) (ms, e )z o o o o

Xexp[ $(2mz, )'I'(—eEA) '(8„'+Bzr,-' Bz.+8.+h—z)'io]b(Bz.—B.w ho&) d B,z.'d 8„'dBz,od 8,' (54).
We expand the exponential to exp[—so(2m&, )'"(eEA) 'f(8, Bzg+A—z)'"+i}(8—Bz+az)'~'(8»o+B, z ')}]
ignore Bzo where it appears outside the exponential and integrate over B,z,o, Bz.o, and 8,' using Eq. (20) to obtain

VZ(XeMTg (eE) m, exp[—$(2m'„)'I'(eEA) '(hz&hio)' ']J=
4(2x)'mz„'Ioh'(mz„') z(hzW hoo) oi'

dBz„(fz„—f,)(1 exp[ 2(—2mz)'I—'(eEA) ', (k zW Puo)"'(gg, +f e'0 Bz. +—Aio)]—}
0

X(1—exp[—2(2mz )'I'(eEA) '(hz&ho&)'I'Bz ]}. (55)

For the values of f, and Pz given by Fritzsche and
Tiemann, " the exponentials in the integral are not
negligible as sometimes is assumed. At the temperature
(4'K) at which the experiments are done, the Fermi
functions may be replaced by step functions and the
integral done between the limits given in Table I. In

15 This may be seen as follows: The product pr.,{kited)P{kilo)
may be written as a periodic function times Z&Bg) elf (kflc krone—bkf~)pj, where ABktj J pl, (k)I )p, (k)),)e'8~&»dp and Eq. (Si)
gives Aqk&I for bk~~=O. If the crystal is iV atoms thick then there
are Edi Berent Skag~'s; however, the number of bkf~'s for which

3Bgqf o iS giVen by V tissu/{p —pL, )8. ThuS AfTA~VX ~~
times the number of phonons contributing appreciably to the
sum in Eq. (48) is just ~T+~P~-'.

"H. Fritzsche and J. J. Tiemann, Phys. Rev. 13P, 617 (1963).

Sec. VII, we evaluate the integral in the low-voltage
range and 6nd the current to be two orders of magnitude
smaller than experiment. The same 6rst-order process
applied to the LA-assisted case yields a current three
orders of magnitude too small. (The experimental LA
current is four times larger than the TA while theo-
retically it is only half as big because of the two TA
branches. )

VI. SECOND-ORDER LA PHONON-ASSISTED
TUNNELING

In this section we calculate the current due to the
following processes. With negative applied voltage an
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e ra an
'

ions are replaced by step functions. The following
holds for ositive (negative) voltage

TABLE . iml s 0 e ra. L its of integration in current integra
relation holds between g,' and GL,,= GL„'.
This table is valid only when gg&g, .

Range of eQ

ea &0
0&e~&g,+A
pe+~ &e'U &gg+Aco

pa+~ «'U &pe+(I +~

Lower limit
of gL„

f,—e'U —4a
ge —e'U+ Au)

0
0

Upper limit
of ~L,c

fe
fe
te|.+pa —eV+M

Lower limit
of g0

fg—e'U —Ace

fg —e'U+Aa)

gg —em+Ace
0

Upperl unit
of g,0

fa
fa
fg+g, —e'U+ku

g&+g, —e~+A

electron tunnels from a state on the p side to a
' evia l the1 t t 'ntheI"2 bandonthelsi evia l, t e

interband art of the Hamiltonian, and then sca
an 'd ith the emission of at an L state on the n si e wi

honon. With positive applied voltage anan I, electron
't honon on scattering to a vir uon the n side emi s a p

nnelsstate in tLie 2 an oth F b d on the same side and then tunne s
via H1 to a I'22 state on the p side,

Rather than apply the golden rule to second order,
late the above processes by 6rst determiningwe calcu ate e a

rder in Hl andh
'

nfunctions of II0+IIl to first or
then use the golden rule to erst order in th e electron-
phonon interaction o cat alculate the current. This corre-

d t the method used previously for phonon-spoll s o
rs." We thereforeassis e

'
ted tunneling in superconductors.

a I' tail in theroceed to calculate the admixture of a
he F ~ wave function in the p region using

( )first-order perturbation theory. From an

dining
ho= Ar Eel= 6—r hr, —l /,

—f,+—e't'/, (56)

(57)B=-,'(m„&r/h'+k1. 2)'",
lg= 2B(l (eE—) '(h'k1, '/6m„+ h'k„, '/2m, +o Ar) 5,

(58)
we obtain

M(k„k~[r )Pr (p)dk[[roo

Pv. 1(P) =
2x' 0

= —-'zh'
2

&o+2 h'[ki i r'/mr. +k22/mv+k ~ ~ v2/mv5

1/2&& V '/' exp[-'ih'k„v'/mveE5[arm, /(Arm, +h k &&'/'e &( k—„,/—mr, m. ) /'

(hok„„,oB/ ...E)u„... (59)
-'h' k, (rv'/mr, +k,'/m, +kiev'/mv5o o+. [

will cancel out when the electron-phonon matrix(0.Dro ing the unimportant phase factors which wi cance ou w
e em

'
the lower limit of integration to —~ "we obtainelement is squared and changing the ower imi o in

h2V —1/2 ( Q~ 1/2

1/2A 1(p) = I, (k~i./ r,m)m

)' ' 'k ——''h'k '/ .E+h'k .'B/ .E5/r xpoirp
Ao+s1-h2[k(/rv2/mrv+k, 2/m„+k„v2/mv5

ln the lowest order the exponential alone determines p
'

ines the oints of stationary phase at

(6l)k i ~. = iB&i(B' mr, eE—p/h') '/'. —

a be distorted to lie along the path of steepest descents through
'b ' t th

' t lfo th ddla ina axis. The contri ution othe oint of stationary phase on the negative imaginaryt epointo saio
with the contribution from the pole" atpoint is negligible compared wi

k r= iG= i—m1.'/' 2h—oh ' jk((v'/mv+k1v /m„)' 2= i(2mr, )'—/2h '[Do+8 o+(mv/m, —vkff~ ———zG ——zmi.

which by the method of residues gives

1 2 1/2e Ve22G2/omr, vt/e 2—262///mrvvt/eGV -(P (63)pv 1(p) =-', mrvv —' ' [horrm/(6 rm+ ho.k)152' ( /2k/ rm, m)' 2 '/'e — "v'e»G™"r-e"e' 'G2/r/"t/e v, p(Cvll P 2 rc

'& os d =2 '&{1+i)f '" (x+vr&&x=~ '~f, x'"(»' x+coox)dx=r& y, x, ' coo = —~x ~»nx~x+ - x cosx x0 0

of t e sa e-poin
'

e ole but both terms are thenof the saddle-point contribution exceeds that of t e po"For suKciently large negative values of p t e sa e-poin
negligible.
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llP

lls

Fzo. 2. Path of integration in complex klan plane. The solid lines
are paths of steepest descent through the saddle points kli.
= —iB&f:(B'—nsr, eEp/4')'& (note p is negative). The short
dashed lines are paths of steepest ascent. There are toro poles at
krly= +i(2m'}'&A 'QO+ ~~ + (m~ jesse —1) g,dj'&.

lls
L

The LA phonon-assisted current is given by the erst-order golden rule LEq. (4g)] but replacing the matr1x
element there with

(4'I.(kr ) ~+~.Ioo~f, (lr, ))=M~p', s- I (V„ In
~ p, .,(p))

We take Voo= CW', the volume over which pr,,u(p) is large, integrate po„I(p) between 0 and—

tudinal and transverse I-z eB'ective masses, to write

eM Lo.'Gm„mr. mr. ,'(mI, ,')'~'
I(f..-f.)

4'(2w)oho Arm„+hok, o)

8~~ho') expL2h'G'/3mr. «—2h'G'8/mr, eE 2&]G—o8 o &Iod8 od8 od8

(64)

g o ~, to eliminate the 8 function is trivial. Ke integrate g„' between the li it {} d g 0

Ilec se tile 't grand 1s s sile by factor
st

pprox m It by (2mr, )'I'h-1(go+ 8,o)1 ooo N««h t
ve ~~~~a~~ but ~0+ ~

elf ~'Sm, mr„'(mr, ,') 'I'

6442m'h'

2
L-'m '"~r"' '(2mr.—)'-(a,+8 o)ofo],EL( g„)1(o(o+o

eEh
2(r. '—"~o+8.' '"(m./m, 1)] '1——„p—

((m g„) ( (o+ o / ) 2(
heE

X( o+ .')'"(m./m, —1)]8,o O.+io—e'Ua4& —8.o)&I (go+8 o) I(f f.)d8. ', (66)

where we have used

8.=Eel 51, 8.'= 1 o+f'. e'0 8—,'. —— —
The Fermi functions may be replaced by step functions
giving the limits of integration shown in Table I.

In calculating (66) we have not considered po, II in the
region p)0. If in Eq. (59) we use Eq. (12), P„(p)=11I'Q Pa.(1—p/p, )], we 6nd ourselves unable to evalu-
ate the integral exactly. po„I represents the ro-side I'o
character admixed into the P-side I'oo wave function

by the interband term in the Hamiltonian. %e have
shown it falls o6' exponentially for p&0 because of the
exponential falloG of I'2~ itself. For p&0, providing the
major contributions to P&»& come from the bottom of the
I'~' band, we would also expect P~.,~ to fall oG exponen-
tially because t'he e-side r&' functions fall oG exponen-
tially for p) 0. We have evaluated the integral (59), sub-
stituting the asymptotic expression for ALn, (1—p/p, )]

alvidf r(o/h2 orm. eE) okoiirc (h'/2mr. eE—) '"p«0. This
expression is also valid everywhere in the complex k»I,
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TxaLE II. Values of quantities de6ned in text. first exponential to first order in y and the second one
to first order in 8,o and integrating (66) we obtain

yn p, ——0.034m

m, =0.044n
yg, =0.0192m&

mz„' ——0.082yr
~„~=1.58~
(mz„')g= 7.108m '
(ygz„') ll ——8.341m '
mz„——0.0322m

(,=0.020 eV

gy, =0.15 eV
da„/dP= 12X10-~

eV cm~/dyn

diaz, /dP=SX10 "
eV cm&/dy

d&„/dP= 7.5X»-
eV cm'/dyn

gI ——0.803 eV

zz, =0.66 eV

Az, z, -—2.1 eV
Acgz, g=0.028 eV
AceTg=0.0076 eV
m*=5.04X10» cm '
N:=16
8= {1.62—0.98')10' esu

(v in volts)
.M»~=mL+~=4. 3x 10-49

erg cm
@=0.002 cm'

dg, /dP= —2.92X10 '4

eVc &/dy

dye/dP=1. 17X10 "
eV cm'/dyn

V 'dV/dP= —1.38X10 ~

cml/dyn

8=eM L11(t m. mr'mr, ""exp( —(2/eEh)
X fgm 'I'6r'~' '-(2—mr. )'I'(Eo+t o)»'j}

Xf'o/4M''h'(~o+1'o) (7&)

In both (67) and (70) a sum over the four 1.1 valleys
is implied. We calculate the current for a (1,0,0) junction
where all the valleys are equivalent. In Table II we list
numerical values for all the parameters in (67) and
(70) using"

E= f2)rn*(61+/, ji g,
—e'U)/ ]'(' (72)

= S{/g,»' (—f. e—V+h )'('j
+ $fl' '('(21' 5e—'0&5 h(d) 2—(f' —e'0 +h(o) ol'1

Xf2(2mr. )'"(&o+fo)'"/eEh+&olf o(&o+f'o)7}, (7o)

where

plane that
~
(ho//2mr, eE) (oh [r (h /2mr eE) 1 p~)&0

except along the real axis. However, for kllr. very large
and real, Afo. ,(1—p/p. )] oscillates like sinh~ir. o and
thus does not contribute to the integral. %e And saddle
points and poles (in regions where the asymptotic
expression is valid) leading to the same exponential
falloff as for the p&0 case. %'e therefore take the total
LA phonon-assisted current to be twice that given by
Eq. (66). Although we believe the preceding arguments
to be valid, we cannot claim to have proven beyond any
doubt that the contribution to the phonon-assisted
tunneling current from p&0 is not much greater than
from p&0. Since the main purpose of this paper is to
demonstrate that the second-order process yields a
current at least three orders of magnitude greater than
the 6rst-order process, such an error vrould only serve
to strengthen our argument.

VII. COMPARISON WITH EXPERIMENT

We integrate Eq. (55) between the limits shown in
Table I for positive and negative voltages such that

~

e'U —ho)
~

&1'„ to obtain

g,„+=g+((e%3~ h„)(I+;a+(ro+r.—&+o-))

+ (E+) 1fe R+re —
e
—)o+—(ree&+ora)-

+.e—)1+ra e—)1+(ra—~o+»)]} (67)
where

Q+ =v2 SeMT~'(eE) 'm,

Xexpf oo (2m', ) '~'(eEh) '(~1w h(d)'I'j/
167('mr, »'h4(mr, „'),(Ar,a ho))»—' (68)

R+= 2(2mr„)'I'(dr& ho))'I'/eEh. (69)

We may evaluate the integral (66) for small voltages
by wr(ting S„o=&o+)( and treating X as small Q is
between the limits 0 and —e'U&ho)). Expanding the

where n*=np/(n+ p) is the reduced doping constant
and ~ is the dielectric constant. It should be pointed
out that our JT+ diGers from Kane's4 by a dimensionless
prefactor feEh/m. mr„']'"f2m', „/hr]'14f 2/mI. ,'(mr, . ')&]
=0.66. In Fig. 3 we plot the calculated currents. Com-
parison with Fig, 2 of Ref. 16, shows that J~ is in
remarkable agreement' with experiment but JTg is too
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FIG. 3. Plot of JI,+, the second-order longitudinal phonon-
assisted tunneling current, and 500 JTg, the 6rst-order transverse
phonon-assisted tunneling current, versus voltage.

~ Because of the 6xed average electric 6eld, the effective mass,
and the two band approximations, one should expect the exponent
in (71) to be in error by several percent leading to factors of 2 or
3 in the current. Therefore the remarkable agreement bet&veen
theory and experiment is to that extent fortuitous.
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small by over two orders of magnitude. Actually in
Fig. 2 Fritzsche and Tiemann" plot the characteristics
of a {1,1,0) junction but they state that these dier from
their (1,0,0) junction by less than 10%%uo. Note that our
second-order process [Eqs. (70) and (71)] is inde-

pendent of junction orientation but that the erst-order
process [Eqs. (67), (68), and (69)j depends expo-
nentially through ml, „on the junction orientation. Thus
for a (1,1,0) junction JTA is a factor of four smaller than
shown in Fig. 3 diGering from experiment by almost
three orders of magnitude. Therefore even though the
hrst-order phonon-assisted tunneling mechanism leads
to approximately correct values for the pressure co-
e%cients' it cannot be responsible for the TA current.
This accounts for the failure of Nathan" to obtain from
experimental data the correct prefactor A in Kane's
formula J=A'Ue-"+).

We calculate the pressure coefficients for the LA
phonon-assisted current given by Kq. (70), assuming
~v and ~rc are directly proportional to hr, ms. ,' is
directly proportional to hl, g, the I.g—1.3 gap, and ml. ,'
is pressure independent. This leads to

di. /dP= —-'f [V 'd V/dP-+&LL 'd&LL/-dP j
and

df „/dP = fh[-, V id V—/dP+(-nc. /Pa)"'&r id', /dP],

where the factor (yg, /es)'i' accounts for the fact that it
is the heavy holes which really determine g&. Using the
values for the pressure dependence of the various
quantities listed in Table II and neglecting the pressure
dependence of the the electron-phonon matrix element
MV—'~' (which should be of the order of V 'd V/dP),
we compare x~~+ and x~ with the experimental values
in Table III. Considering the simple pressure depend-
ence assumed for the effective masses, the agreement is

quite satisfactory both for x~++x~ and m-~+ —
ALA .

Note that for the 6rst-order phonon-assisted mechanism
given by Eqs. (67) and {68)most of the forward-reverse

asymmetry is due to the (b L&hap)'i' term in the expo-
nential. For the second-order mechanism, however,
there is no exponential Aced dependence because energy is
not conserved between the initial and intermediate
states. The large forward-reverse asymmetry is rather
caused mainly by the voltage dependence of the energy
denominator hh+t'h= hr &L f,+e'U —in E—qs. (70)
and (71).

The TA phonon-assisted current may be understood
as caused by the same second-order process as the
LA-assisted current if we consider the symmetry break-
ing due to the lt p perturbation. The 1'I tail of Eq. (63)
falls ofF with a characteristic wave number G= 3.44& 10'
cm-'. Now the I'~ tail has a fraction Xp of I'gg character
mixed into it given by

Xr=(-', )'"(GPp)/br=0. 342, (73)

"M. I. Nathan, J. Appl. Phys. 33, 1460 (1962).

Tasz, E ID. Comparison of experimental pressure coefEcients
~=J 'dJ(dP with theoretical ones in units of cm~/dyn. The m LA's
were calculated at applied voltages of ~0.038 and ~0.032, the
~TA's at %0.0156. The two contributions to ~TA come from the
pressure dependence of Eq. (70) and the symmetry-breaking
factor.

7f"LA

~LA
7f TA

~TA

Experiment

—2.07X 10—1o

—2.46X10 'o

—1.47X 10-1o
—1.56X10 'o

Theory

—2.61, —2.62X 10-1o
—3.16, —3.13X10-I
—2.76+0.38= —238X10—1o

—2.94+0.47 = —2 47X10—1o

where we have evaluated Pr from Kq. (35). Since the
transverse component of wave vector is conserved in
direct tunneling, the I'2 tail has a k& which may be as
large as the Fermi momentum of the I'~& holes. How-
ever, we see from Eqs. (63), (62), and (57) that only
when lr, 0 is the I'2. tail large. Thus Eq. (73) represents
the total symmetry breaking for I'&. In addition, the
final J.i state has a fraction XL=kFiPL/ALL=0. 113 of
1.3 character mixed into it where PL= k(ELL/2esL, ')'i'
and kF, = (4f,mL, '/3k')'" is the average transverse (to
the axis of the constant energy ellipsoid) component of
the electron Fermi wave vector. Furthermore using a
first- and second-neighbor force-constant model we are
ab1e to estimate the fraction of LA character mixed into
the TA phonon of wave vector (F/u —G, s./a, s/a) and
hand X~i,=0.0j.7. These three contributions come in with
arbitrary phase so that the cross terms cancel out and
(if we assume 3f'TA=3ELA) the TA-assisted current
at a given (e'U —k~pTA) is approximately equal to
2(&r'+~L'+&,h') times the LA current at the same
value of (e'U —hcpLA). The factor 2 arises from the two
TA phonon branches. Thus we find JTA(e'U)=0. 26
JLA(e'U+ kcpzA —hap TA) in excellent agreement with
experiment. "

The pressure dependence of the TA current has two
terms. The erst is from the pressure dependence of
Eq. (70) and is the same as one gets for LA phonons but
has a smaller forward-reverse asymmetry because of the
smaller voltage required to get the TA current. The
second is just 2(~rdxr/dPXXLdXL/dP+Xphdxph//dP)/
(xr'+ &L'+ Xph'). These contributions are listed in
Table III. The cancellation between these two terms
accounts for more than half of the experimental value
Of (FLA++irLA ) (X'TA +FTA )

In summary we have shown that the second-order
phonon-assisted tunneling mechanism yields a current
about 1000 times as large as the direct phonon-assisted
mechanism and accounts for both the LA and TA
currents. The reasons for the dominance of the second-
order mechanism are twofold. When a phonon scatters a
left-hand electron into a right-hand state, if the inter-
action takes place in a region where the right-hand state
has large amplitude, then the left-hand state will have
small amplitude and vice versa. On the other ha, nd the
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interband tunneling operator is noniocal LEq. (40)] and
therefore is not quite so affected by the fact that where
one wave function is large, the other is small. The second
reason for the dominance of the indirect mechanism is

of course that there is a nearby band of intermediate
states to be mixed in by the nonlocal operator.

The author would like to thank Professor H. Fritzsche
for informative discussions.
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Effective Hyper6ne Fields at the Nuclei of Os and Pt Dissolved in Fe*
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The heat capacities of two alloys containing, respectively, 0.75 at.% Os and 3.21 at.% Pt dissolved in
Fe have been measured from 0.08 to 1.15'K. From the coeKcients of the T ' terms, the hyperfine fields at
the nuclei were found to be 1400 kOe for Os and 1390 kOe for Pt.

' N recent years a number of experimental techniques
~ - have been used to measure the product of the
nuclear magnetic-dipole moment p and the effective
magnetic hyperhne 6eld IJ, for a dilute impurity in a
ferromagnetic metal. The results are of interest because

they give information about nuclear moments and also
because a systematic study of H, values may contribute
to a better understanding of ferromagnetism. The
calorimetric determination of pB, is based on measure-
ment of the contribution to the hyper6ne heat capacity
associated with the impurity nuclei. For 1 mole of
sample, and at temperatures T&&ALII./k (k is Boltz-
mann's constant), this contribution C is given by

1 (I+1)(2I2+2I+1) H. '
+". , (1)

30 p kT

where f is the atomic fraction of impurity, R is the gas
constant, I is the nuclear spin, and the average is taken
over the isotopic composition of the impurity. The
calorimetric method is limited to alloys for which the
contribution from nuclei of the impurity is large relative
to that from nuclei of the host metal, but it is a useful
complement to the methods based on nuclear orienta-
tion and the Mossbauer eGect, each of which can also
be used only in certain cases. Furthermore, Eq. (1)
involves p for the nuclear ground state, which is usually
known, whereas the nuclear orientation method —and
in some cases the Mossbauer method —give the product
of H, and p, for an excited state. A combination of two
experiments may therefore give both H, and the ex-

*Work supported by the U. S. Atomic Energy Commission.
t Alfred P. Sloan Research Fellow 1962-44. We are grateful to

the Alfred P. Sloan Foundation for this support during the period
in which the experiments were carried out.

cited-state p. We present here a calorimetric determina-
tion of IJ, for Os and Pt dissolved in Fe.

An alloy of iron with 3.21 at.% Pt was prepared by
melting 99.999% iron sponge and 99.9% Pt foil chips
in a helium atmosphere, and was homogenized by an-
nealing for 20 h at 1300'C. A sample containing 0.75
at.

%%u&0s in irono f th esam epurit ywa ssupplie dby
Johnson, Matthey and Company, Ltd. The heat-
capacity measurements were carried out in the tem-
perature range 0.08 to 1.15'I with an apparatus pre-
viously described by O'Neal and Phillips. '

The experimental data were analyzed by plotting
CI' versus T', as shown in Figs. 1 and 2. The straight-
line regions of these plots gave the T ' and T terms in
the heat capacities,

C(mJg ' deg ') =8.36X10 'T+1.12X10 'T'(2)-
for 0.75 at.% Os in Fe, and

C(mJg ' deg ') =8.25X10 'T+1.40X10—'7 ' (3)

for 3.21 at.% Pt in Fe. The observed 2' ' terms were
corrected by subtracting the contribution expected for
the Fe nuclei in pure iron (the corrections were 3.3%
and 0.25% for the Os and Pt samples, respectively)
and were then used to calculate II, values by compari-
son with Eq. (1). The comparison was based on the
following data' for the isotopic abundances, spins, and
nuclear moments: 1.64% Os~ r with I=— =0.12 nm;
16 1%Os'" with I=-,', p=0 650'I nm; 33 8% Pt'" with
I=-,', p=0.6004 nm. The resulting values of H,—1400
kOe for Os and 1390 kOe for Pt—were used to calculate
the expected T terms in the heat capacity. (The con-
tributions of the Fe nuclei to the Z terms are com-
pletely negligible. ) On this basis, the hyper6ne heat

' H. R. O'Neal and N. E. Phillips, Phys. Rev. 137, A748 (1965).~D. Strominger, I. M. Hollander, and G. T. Seaborg, Rev.
Mod. Phys. 30, 585 (1958).


