ULTRAVIOLET REFLECTION SPECTRUM OF CUBIC CdS

The energy-loss function'® —Im(1/e) of our cubic
CdS is also seen in Fig. 4. The peaks of this function
correspond to plasma resonances. The peak at 16.4 eV
correspond to the plasma resonance of the valence
electrons, somewhat modified by the presence of
interband transitions originating at the d electrons of the
cation. A strong secondary resonance is seen at 11.8 eV.
Similar effects have been reported!” for hexagonal CdS.

The reflection spectrum of the hexagonal CdS
deposited on the gallium side of the GaAs substrate
shown in Fig. 2 agrees reasonably well with that of bulk
hexagonal CdS. In particular, the splitting of E; into
the A— B doublet and the appearance of the F; peak

1;61321 R. Philipp and H. Ehbrenreich, Phys. Rev. 129, 1550
( w I\i Balkanski and Y. Petroff, Proceedings of ihe International

Conference on the Physics of Semiconductors, Paris 1964 (Dunod
Cie, Paris, 1964).
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is clearly seen. However, small shifts towards lower
energies by about 0.05 eV are seen for the peaks Eo, Ey,
EJ, and F;. These shifts could be due to strains or
imperfections. The E; peaks seem to have shifted by
a larger amount (~0.2 eV) towards lower energies with
respect to those of bulk hexagonal CdS.

Figure 5 shows a section of the reflection spectrum of
partially cubic CdS, deposited on the {111} “P face”
of GaP, and that of pure hexagonal CdS deposited on
the opposite “Ga face.” It is seen that the intensity of
the 4 and F, peaks is lower for the partially cubic
material. Hence a clear indication of the mixed structure
of this CdS layer, which is difficult to obtain from x-ray
data, is readily obtained from reflectivity measurements.
By using the epitaxial deposition technique one should,
therefore, be able to obtain optical data for the meta-
stable phases of many III-V, II-VI, and I-VII materials.
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We calculate the phonon-assisted tunneling current for a model p-» junction (as opposed to the homo-
geneous-electric-field model) due to two mechanisms. A first-order mechanism in which an electron on,
say, the p side scatters to a state on the # side with the emission of a phonon yields results similar to those
calculated by other workers for the homogeneous-electric-field model and is about three orders of magnitude
too small to account for the experimentally observed current. A second-order process in which an electron
on the p side tunnels to an intermediate state in a higher band on the # side via the interband term in the
Hamiltonian and then scatters with the emission of a phonon to a final state on the # side yields a current
equal in magnitude to the experimentally observed current. This mechanism also succeeds, where the first
one fails, in accounting for the magnitude of an differences between the experimentally measured pressure
coefficients wra*, xLa~, 1A, 7T~ Where #=J"1dJ/dP, the superscripts identify the direction of current
flow, and the subscripts, the branch of the phonon involved in the tunneling process (LA =longitudinal

acoustic, TA =transverse acoustic).

I. INTRODUCTION

HE theory of direct and phonon-assisted indirect
tunneling in semiconductors has been developed

for the homogeneous-electric-field case by Keldysh! and
Kane? and applied to the heavily doped Esaki® p-n
junction by Kane.* Fredkin and Wannier® (hereafter
FW) have developed the theory of direct tunneling for
a model p-n junction with a constant electric field in the
intermediate region and zero field on both the p and »
sides. Price and Radcliffe® have discussed the -z junc-

* A large portion of this research was accomplished while the
author was at the University of Pennsylvania and was there sup-
ported by the Advanced Research Projects Agency.

t This work was supported in part by the Joint Services Elec-
tronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force)
under Contract No. AF-AFOSR-496-64.

'L. V. Keldysh, Zh. Eksperim. i Teor. Fiz. 33, 994 (1957);

tion with position-dependent electric field. FW’s work
essentially confirms Kane’s result. The success of the
homogeneous-field model in explaining direct tunneling
in p-n junctions is at first sight surprising since in a
constant electric field each electron wave function con-
sists of a superposition of all the Bloch functions in the
band with a fixed ki, the component of wave vector
perpendicular to the electric field. However, it may be
understood for the following reasons: (1) Because the
tunneling matrix element [Eq. (7) of Ref. 2] depends

34, 962 (1958) [English transls.: Soviet Phys.—JETP 6, 763
(1958); 7, 665 (1958) 1.
2 E. O. Kane, J. Phys. Chem. Solids 12, 181 (1959).
3 L. Esaki, Phys. Rev. 109, 603 (1958).
4E. 0. Kane, J. Appl. Phys. 32, 83 (1961).
(1;6 2) R. Fredkin and G. H. Wannier, Phys. Rev. 128, 2054
¢ P. J. Price and J. M. Radcliffe, IBM J. Research Develop. 3,
364 (1959).
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F1G. 1. Energy bands of a model p-» junction with a constant
electric field £ in the region 0<p<I.

exponentially on the energy difference between the two
bands at wave number k, and for simple bands this
energy difference is stationary only for £;=0, tunneling
occurs only at k;;=0 as it does in the FW model. (2) The
distance between the turning points of two electrons
of the same energy in an electric field E, but in bands
separated by a gap A, is A/eE just asit is in FW’s model
Esaki diode.

In this paper we develop the theory of phonon-
assisted tunneling in the FW model p-» junction; we
find there are two distinct processes contributing to the
phonon-assisted current only one of which has been
calculated by Kane* for the homogeneous-electric-field
case. However, this process yields a current over three
orders of magnitude too small to account for the experi-
mentally observed phonon-assisted tunneling current.

Fritzsche and Tiemann’:® (hereafter FT7 and TF?)
have measured (in Ge) the pressure coefficient of the
tunneling current w=J"1dJ/dP and found wps*=+mpa~
to be 50% larger than 1rTA++1rTA‘, and rra——7rat to
be four times wra~—mra*, where the superscripts refer
to the direction of the current and the subscripts refer
to the branch (longitudinal acoustical, transverse
acoustical) of the phonon emitted in the tunneling
process.® They point out that an electron at I'ss in the
valence band of the p-type semiconductor may emit a
TA phonon (symmetry L;) and tunnel to the L, state
in the conduction band of the z-type semiconductor but
that the same process involving an LA phonon (sym-
metry Ly ) is forbidden on group-theoretical grounds.
They quite correctly argue that the LA phonon-assisted

7 H. Fritzsche and J. J. Tiemann (unpublished).

8J. J. Tiemann and H. Fritzsche, in Proceedings of the Inter-
national Conference on the Physics of Semiconductors, Paris, 1964
(Academic Press Inc., New York, 1965).

9 rra is measured in the region of applied voltage #iwra <e
<#wra and w4 in the region eV>%wra after subtracting off the
extrapolated TA-assisted current.
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tunneling must occur through the intermediate state I'»
(see Fig. 1) (Lo X T'y contains L; whereas Ly X s does
not) and that this accounts for the differences between
wra and wra. In TF they argue that in the p-type semi-
conductor the T'y level is mixed into the T level
through the k-p perturbation and then the LA assisted
tunneling takes place from I'y in the p-type semicon-
ductor to L, in the # type. They have calculated the TA
and LA phonon-assisted currents due to this mechanism
and found no substantial forward-reverse asymmetry
for either.!® Furthermore, the magnitude of the current
is very close to that obtained by Kane* and thus is
about three orders of magnitude too small to account
for the experimentally observed currents. In FT they
describe a completely different mechanism in which a
T's5 electron in the p-type semiconductor tunnels to the
intermediate T'y level in the # type through the direct-
tunneling interband matrix element and then emits a
phonon on scattering to the L state in the n-type semi-
conductor* (see Fig. 1). Their calculation is open to
criticism on two counts: (1) Only one intermediate I'y
state is considered rather than a sum over the entire
I's band. (2) The interband-tunneling matrix element
is evaluated by substituting Aq (the sy —T'y energy
gap) for Ay (the T's— L, energy gap) in the tunneling
matrix element calculated by FW.5 As we shall show,
the FW matrix element has a rather more complicated
dependence involving both Ar and Az which reduces to
the simple FW form only when the electron tunnels
directly from the valence band of the p-type semicon-
ductor to the conduction band of the n-type (either
with or without the emission of a phonon).

In this paper we calculate the first-order TA phonon-
assisted current and the second-order LA phonon-
assisted current for a model p-» junction. By invoking
the k+p mixing of I'ss» symmetry into the intermediate
T'» states we are also able to estimate the second-order
TA phonon-assisted current which would otherwise be
forbidden by symmetry. We find that the second-order
process of FT accounts well for both the magnitudes
and pressure coefficients of the TA and LA currents.
Although we have not done it, we think it might be
interesting to calculate the second-order phonon-assisted
tunneling current for the homogeneous-electric-field
case. Because in that case the energy of the intermediate
Iy state is a function of position, there will occur
singularities in the energy denominator which Fig. 1
shows cannot occur in the p-z junction. This could
conceivably lead to qualitative differences between the
two models.

It should be pointed out that our use of the Fredkin-
Wannier® extended wave functions is quite controversial.
There is a school which holds that the electron can be
thought of as localized in the semiclassical limit and

19 The agreement claimed in Ref. 8 is not correct. H. Fritzsche
(private communication).

1 We will refer to these two processes (TF and FT) as first-
and second-order phonon-assisted tunneling.
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that WKB considerations are physically meaningful.
They picture the electron with a complex k vector which
is a function of the electron’s position. At that point in
the junction corresponding to a k;; which is a branch
point in the complex E(k,;) plane, the electron (in their
picture of our second-order process) tunnels into the
intermediate (but not virtual) state. A little while later
at a position corresponding to a &, which is a point of
stationary phase in the electron-phonon matrix element,
they picture the electron as tunneling into the final
state with the emission of a phonon. In this picture
nothing that happens to the electron in the region out-
side the junction is of consequence; in fact, the calcula-
tion is independent of the Fermi levels on the # and p
sides. This is to be contrasted with our picture where the
scattering of the electron into its final state with the
emission of a phonon is zof a tunneling process and takes
place near but not necessarily in the junction.

We would argue with the semiclassical picture on two
points. In the first place, in order to get localized elec-
trons it is necessary for the electric field to extend over
distances such that Ed=10 eV so that a wave packet
can be made up of states mixed in from the entire band;
this situation does not exist in the p-» junction although
it does in the constant-electric-field case. Secondly,
even in the constant-field case the semiclassical picture
is dangerous to use. Kane in an appendix to his paper?
has written ¥ (which is made up of a superposition of
Bloch states, all from a single band and with real k
vectors) as ¥(r,k) where k is itself a function of r.
However, he did not use his semiclassical ¥(r,k) to
calculate anything in the body of his paper. Note that
if one starts with ¥ a sum of Bloch states in one band,
makes the semiclassical approximation but does #nof
allow the interband term in the Hamiltonian to perturb
¥, and then looks at ¥ at a point k(r) beyond the branch
point, ¥ describes an electron in another band! This
surprising result appears to be due to the rapidly vary-
ing crystal field violating the condition for the validity
of the WKB approximation.

II. TUNNELING WAVE FUNCTIONS

In this section we review Sec. V A of FW in order to
obtain the wave functions at Iss in the p-type semi-
conductor and at L; and T'» in the n-type, as well as
the direct Ty —I'y» tunneling matrix element. We may
write the Hamiltonian for the p-z junction in the
Wannier representation as H= H,+ H,, with

Ho=wn(—iV,)—ep(p), Hi=e¢EX,, (1)

where ¢(p), the potential due to the electric field E(p),
is taken to be

¢(p)=0, p<0,
=—FEp, 0<p<l, (2
=—El, p>I,

and the interband operator X, operates on eigenfunc-
tions of Hy as follows:

X"ﬂ,,:Z’: Xnn’("'ivp)ﬂn' I} (3)

(i)
Xnn'(k) = i/unk*—-un'kdr ) (4)
ok

where #. is the periodic part of the kth Bloch function
in the nth band.
We make the effective-mass approximation for wa(k):

wo(k)=—Ar— 42k 2m,= — A— 8,°(k,),
wre(k)=3#k- (mz?) k= 8. (k) ,
wrc(k) =Ar— AL+ hzkz/sz: Ar—"AL+ 8rc°(krc) )

©®)

where Ar and Ay, are the direct and indirect energy gaps
shown in Fig. 1, and the subscript v signifies the light-
mass I'ys» valence band and I'c and Lc¢ the T'y and L,
conduction bands. The light-mass valence band is
approximated with an isotropic mass, while mz;™ is a
tensor. Note that we use w,(k) for the energy as meas-
ured from the bottom of the L; band in the semicon-
ductor of interest, 8°(k) for the energy as measured
from the extremum of the band of interest and later
&(k) for the energy as measured from the bottom of the
L, band in the n-type semiconductor.

In the region 0<p</, the Schrédinger equations for
Br. and B are

[Ar— AL+ (5% 2mr.) (k.2 —d?/dp?) 1Br.
+eEpBre= 8re, (6)
3%k (mp?) kyo— (mp ) u(d?/dp?) JBLe
+3EPﬁLc= chBLc . (7)
Recalling that ;. and &r. are determined in the n-type

region, 8..=wrc(k) and 8r.=wr.(k), defining the classi-
cal turning points,

Pre= h2k|1rc2/2mrc8E, PLc= hzkHLc2(mLc_l)H/2eE ) (8)
and making the substitution
t=a.(1—p/pc), ©
where
ac=(Pcku)2/3, (10)
we find that Eqs. (6) and (7) both become
d’B./dE*+£8.=0. 11)

The solution of (11) which is oscillatory for p<p. and
decays exponentially for p>p, is

ﬁc(P) = ]ch (E) =N_.A [ac(l _'P/Pc)] ’ 0<p<l ,

where

(12)

A(x)= exp(3z3+xz)dz.

—10

(13)
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We shall need the Fourier transform of 4(x),
Ax)= f dx =24 (x)=2mi exp(—3}ix?®). (14)

In the region 0<p<p., 4(x) may be evaluated asymp-

totically yielding

Be(p)~2iN at?a ;41— p/pc)~1/4
Xsin[Fal*(1—p/pc)*/*+47]. (15)

By requiring continuity of amplitude, phase, and

derivative of phase, we match (15) to the standing wave

outside the junction to obtain

Be(p)=2iN a1 2,14 sin[ — ki p+3a 32 +37],

p<0. (16)

Normalizing the incoming part of 8.(p) to unity, we

obtain
Ne=—(Var)Padlt exp[ila+dr],  (17)

where V, is the volume of the # side of the junction.
In the region 0<p</, the Schrédinger equation for
Bo is

[—AL—(#*/2m,) (k.2 —d%/dp?) 1B+ eEpBo= 8.8,. (18)
Defining the classical turning point
p.=l— h’k;ﬁ/Zm,eE, (19)
noting that (see Fig. 1.)
&,=eEl+w,(k)=eEl— Ar— #?k?/2m, , (20)
and substituting
§=av[1+(P—'l)/(l_Pv)]: (21)
where
ay=[(—ku)(—p.)]*3, (22)
we find that (18) becomes
dzﬁv/d§2+§ﬂv=0; (23)
which gives us
130(9) =N,4 (s“) =N,4 {av[1+ (P—l)/(l“Pv)]} ’
0<p<l, (24)
where, just as in the calculation of 8.(p),
No= (Vo) e exp[ =i+ 1)1, (25)

III. THE INTERBAND OPERATOR

In this section we derive X,.(—iV,) of Eq. (3) in the
four-band model. Kane!? chooses the z direction to lie
along the k vector and considers the k-p perturbation
matrix between I';y and the three fold degenerate
Ts. He takes as a basis'® [iS|), |(X—iV)1/V2),

2 E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).

3 For Ge with a center of inversion make the substitution
X—-YZ,Y—-2X,Z—XY.
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|(X—1Y)]/V2), and finds that the 8X8 matrix may
be written

o
o HI
with
Ar 0 kP 0
k2 | 0 —2Asy/3 VZAse/3 O
2m |kP  V2Ag)/3 —Asy/3 O
0 0 0 0

where Ago is the spin-orbit splitting of the valence
band and

= —i(h/m)(S|$.| Z). (27)

The heavy-hole band in this approximation is not con-
nected to any of the other bands and will henceforth
be neglected. If we diagonalize the spin-orbit part of
H we find
2)1/2 1y1/2
e | A0 @VRP Qnp

H=—oH|(}3)"%P 0 0
2m
()'*kP 0 —Aso

(28)

The spin-orbit splitoff band does not mix with the light-
hole band and we treat its admixture into the conduction
band by perturbation theory, reducing our four-band
model to a two-band model?:

h2k? 1A, (B)U%p
a-tact—+( ) @
2m  \3)V%P —1iA,
where
Ak= Ar+%(kp)2/(Ar+Aso) . (30)
The solutions of (29) are
E,=3A+1%2/2m=t3n, (31)
7= (As>+8k2P?/3)1/2, (32)

where - refers to the conduction band I'c, and — to the
light-hole valence band v. Using the convention that
effective masses are positive quantities, we calculate

X 2 Arp 1 P2 h?
(+ ):z:(— + ) (33)
Ar+Aso 3 Ar+Aso m

Defining a reduced effective mass m, by

my 3A]‘

ml=mre Hmy 1, (34)
we express P in terms of m, as follows:
Ar 1/2
p= h[3Ar/2m,(4+ ) e
Apr+Ago
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so that (32) becomes, dropping a negligible term in %4, Substituting (37) into (4) we find

® ihArll2r 1 Ak(4¢ Ar >]
— (A2 h2m 1)12, 36) Xoo(k)= s
n=(Ar+Ark2kim, ) (36) am 2L ArtAse 72\ ArtAso
. . . —1/2
The functions #.x which diagonalize H of Eq. (29) X(‘H— m ) . (38)
are Ar+Aso

Substituting (30), (35), and (36) into (38) and making
thox= ) 2{ (n+ M) Psto (17— D) 2040} (37) @ spectral expansion, we write X ,o(—1V,) as an integral
wox= (29)12{(n— Ar)Puco— (n+ Ax) 2100} . operator with kernel

Ar —1/2 A L/2 Ar
PR S TR
Ar+Aso 4m 12 Ar+Aso

x[[1— r (g 24T )_l] / [2h2m,—1(Arm,h—2+kﬁ)l/2]]

Ar-}-Aso\ TAI"‘*'ASO
Xexp[— |p—p'| (Arm,f2+k,2)H?]— (Ar+Aso)“5(p—p')} . (39)

We could work with the kernel (39), but, for the price of an error considerably smaller than the uncertainties in
the four-band model, we greatly simplify (39). Integrating over o', we see that when X,.(—%V,) operates on slowly
varying functions the delta-function term is about 209, of the exponential term. For the rapidly decaying functions
in the tunneling region, however, it is easily shown that the delta function is completely negligible. We make a
29, error by setting Ar/(Ar+Aso) equal to zero everywhere it appears, to obtain the following kernel:

i (Arm,)!? exp[— | p—p' | (Arm, A2+, 2)V%]

K=—m . (40)
4 (m,Ar+ #2k,2)1/2

This is just the kernel one would get from Kane’s? two-band model; it differs from FW’s Eq. (74) because their
Eq. (73) for X.,(k) differs from Kane’s.

IV. THE INTERBAND MATRIX ELEMENT

In this section we calculate the matrix element of the interband part of the Hamiltonian H, by integrating the
kernel (40) between the tunneling functions Br.(p) and B.,(p’).

M) =_%""Ea/ / B H(Aemo) 2 Acm, -+ HR2) 1 expl— | oo | (Armd=*H B8, (3) i’ dp,  (41)

where @ is the area of the junction. Because the integral is negligible outside the region 0<p<! we have been able
to extend the region of p integration to ==« . For the same reason we may use Egs. (12) and (24) (which are valid
only in the region 0<p</) for Br. and B8,. Expressing r. and 8, as Fourier integrals we obtain

c ( v’-l Al‘mr e
M(k)=;ieEaNpc*N,,(21r)—2[:p re (i) (Aem.)
Qre Oy —I(Almr+h2k12)ll2

* 1— v c
X/[//dx'dxdp'dp:&( px)l*<—£r——x')

v are
Xexp[i(kp—«'p'+K'pre—kps)— | p—p'| (Arm, 2R, 2)VE].  (42)
On integration over the variables (o—p’), p/, and «’, (42) becomes

PTec (Pv_ l)

MK)=ieE(4xh)! azvu*zv.,[ ](Am,)w

® l—' v - c
X f dd( px>[1’*( or x)(x2+Am,h—2+k3)—lewrc—n>~. (43)

Qy arc

Qre Oy
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Through substitution from Eq. (14) the integral in (43) becomes

* l_Pv 8 Prec 3
I= —(21)2/ dx(k*+ Arm f2 k%) exp[i(prc-—p,)x—%i( K) —%i(——x) :|

Qy QTc

=—(2r)* / dx(k2+Arm, 2+ k) expli(eE){ Ghtkurdmrs 3 ik m 1 —eEDx—§htm, ) ], (44)

where we have used (8), (10), (19), and (22). Note that the term linear in « in the exponential cannot
be simplified to depend only on the energy gap as it can be for direct tunneling.!* We may perform the integration
by the method of steepest descents if we deform the path of integration through the saddle point at
ko= —1[ 2m, 12 (eEl— 3 W2k rimrect — L 2k, 2m, 1) |2~ —i(2m, #?AL)'/2. However in deforming the path of inte-
gration we pick up a contribution from the pole at k,= —i(Apm, 7~2+k,2)1 2~ —i(Arm, 212 As long as 24y is
sufficiently greater than Ar (as is the case for Ge) the contributon from the pole is exponentially larger than the
saddle-point contribution and is the only one we will consider. Thus, by the method of residues,

I=4x3(Arm 72+ k1,?) V2 exp[— (eE)H(Arm, f k1, 2) 2
X {(eEl—-%th” rc2'}nrc_‘l'—%h2knu?mv_l - %(Ar'F th”‘_’mT—l)}] ) (45)

so that
klll‘c(_kllw) 12 g Arm, 12
M(k) = h2<_______) —<——_> exp[%ih"’(eE)“ (k“ﬁmv_l —klll‘csm I‘c_l):]
MmyMre 2L AImr+ h2krv2
Xexp[— (eE) Y Arm, 24k, ) 2(Eel—1 1%k v 2mpst — 1 1%k 10t my ™ — §Ar—§ WPk *m, 1) ], (46)
where

L=(V,V)'?/Q.

At this point some justification of the use of the effective mass 3’s instead of the exact §’s obtained by substituting
(31) in (1) should be made. One might worry that because the pole in (44) is also a branch point of (31), the use
of the exact #’s in (41) would yield a result different in structure from (46). In the direct-tunneling problem Fredkin
and Wannier® made exactly the same approximation and obtained a result differing from Kane’s? by only the
numerical factor 1.06. The effect of using the exact ’s on the integrand of (44) would be to make mr. and m,™!
functions of x. Remembering that « is real and that most of the integral comes from the region of small k, we see
that the effective-mass approximation (constant mr. and m,) is quite good. That we choose to evaluate (44) by
integrating in the complex « plane can have no effect on the validity of the approximation we made to obtain (44).

The same comment will apply to Egs. (50) and (60) where integrals over real wave numbers are again evaluated
by saddle-point methods.

V. FIRST-ORDER TA PHONON-ASSISTED TUNNELING

The wave functions for the I'ys- light mass and L, bands in the tunneling region may be written in the form
Y(k,r)=e*"B(p)u(k,r) @47

where B(p) is the apporpriate solution of the Wannier equation of Sec. II and u(k,r) is the periodic part of the
Block function whose k vector is given by its value outside the tunneling region.

We calculate the first-order TA phonon-assisted tunneling current (assuming a temperature sufficiently low
that only phonon-emission processes are important) by applying the golden rule:

J=Qre/ME Y 2 [(Wre(kee)|Hra et pu|¥o(ko))| *(fre— f2)8(8Le— 8, F o), (48)

kpc ky phonon

where the — (4-) sign holds for positive (negative) applied voltage, i.e., for tunneling from the 7 (p) side to the
 (n) side, and the f. , are Fermi functions. Although both 8. and 8, decay quite rapidly in the tunneling region,
their product is much more nearly constant so that

<¢Lc(kLc) l HTA el ph I ‘;bn(kv))zMTA Vph—”2<,BLc(kllc) IBv(kllv)> ) (49)

where MtaV n~!/21s the TA phonon matrix element between I'ss and L; Bloch functions and V' is the normaliza-
Y1In that case %2%kuc2/2m.=w.—#k2/2m.= 8. —#?k2/2m. and #2k12/2me= — A —wo—#2k2/2mo= — A+eEl— &,—#2k,2/2m,. Adding

these two terms to —¢El, using conservation of energy, i.e., &= &,, and conservation of ky, we obtain —i (eE)~(A+#%%k,2/2m,) for the
coefficient of «.
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tion volume. We proceed to calculate

(Brel Bo)= AN LN, / dp A*[ar(1—p/pze) A [a,(1+

0

PLepo—L 2 di l—po
~ QN AN / dk——dpd ( u)l*(
—c0 Uy

Qre (27)?
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p—

z—pl.,)] ’

_ PLcK’)
QLe

X ei(e=x") pgi(K pp—%pe) = QN ¥ N ,—

pLe pv—1

)
2”/ d"ei(pz‘e—p,)xe—ihzxﬂlﬁeEmL, s (50)
—0

QLec Oy

where @ is the area of the junction and my,'=m, '+ (mr; V). A straightforward saddle-point integration yields

pLe po—1 eEmp,
(BLcle)z (27")3123_ NLc*N'["'—_—_
are 2h2(py—pLe)
2h2/ eEmL,

N LeE\zhz(p, —PLc)

1/4
] exp{—3#7'[2eE(po—prc)’mr. '}

1/4
) ks —kus) (mre™)u/2m. 1'1* exp{—3% [ 2eE(ps—prc)*mr- 1'%}, (51)

where we have dropped unimportant phase factors from N.*N, and (see Ref. 14)

PLc™Pv= (eE)_l(_ 81,0—— 81.Ln0+ 8Lc— 80_ AL) .

(52)

Substituting (49), (51), and (52) into (48), we may drop the sum over phonons because Mta?V ! implicitly
contains a § function of wave vector if Vyy is taken to be the volume in which the electron-phonon interactions of
interest may take place, Vin=(p,—pr.)®, rather than the volume of the entire p—» junction.!'® We change the
sum over kz. and k, to integrals over V(2r)~3d% and use

k||d3k= k”dk”dzk1= [h‘(m_l)l1(m—1)1,]“1d5”°d81°d0= [h4(m_l)||(m_1)1]_1d80d810d0 y (53)
[where (m™), is the geometric average of the maximum and minimum values of k,- (m)-k,/k,%] to obtain
2V2e Momp,I2 o po 8O 8L
J= MTAzG’ / f / / (ch_fv)(g.Lto"" 811260'— 8Lc+ 8.+AL)—3I2
#5(2r)? (mze1Jo Jo Jo 0
Xexp[—%(2er)1/2(eEh)_l(8uo+ S.I.Lco_ 8Lc+ 6v+ Ab)alzja( 8Lc_ 8,:F hw)dgll,codguodgl,codgpo . (54)

We expand the exponential to exp[—4(2mr,) 2(eER){(Es— ErctAL)¥2+3(8s— Erct AL) V(8104 8110} ],
ignore 8,° where it appears outside the exponential and integrate over 8,10, 8,,% and 8,° using Eq. (20) to obtain

J_\/f QeMra*(eE)*m, exp[—4$(2mr,) 2(eEh) (AL TF hw)3!?]

4(27) m e 204 (m L) 1 (A LF ) B2

X/‘w dch(ch—f-){l—eXp[—2(2er)”2(8Eh)—l(AL:Fhw)m(ﬁ'i'i'.—e'U— chﬂ:h‘*’)]}

For the values of ¢, and {4 given by Fritzsche and
Tiemann,'® the exponentials in the integral are not
negligible as sometimes is assumed. At the temperature
(4°K) at which the experiments are done, the Fermi
functions may be replaced by step functions and the
integral done between the limits given in Table I. In

16 This may be seen as follows: The product Br.(ki.)Bs(Fity)
may be written as a periodic function times ZA san1 exp[ (Rue— kit
—'Sku)p], where Au”=fﬂ[,,"‘(ku,)ﬁ.(k",)c‘”"’dp and Eq. (51)
gives Aspy for 8k =0. If the crystal is N atoms thick then there
are Ndi fierent 5% ’s; however, the number of 8k;’s for which
Asin=~Asipmo is given by Vx i/ (pv—prc) @. Thus M1s2Vx ta1}
times the number of phonons contributing appreciably to the
sum in Eq. (48) is just Mra?Vn L.

18 H. Fritzsche and J. J. Tiemann, Phys. Rev. 130, 617 (1963).

X {1 —exp[— 2(2mz,)2(eER) (AL F ho)1/28..]) . (55)

Sec. VII, we evaluate the integral in the low-voltage
range and find the current to be two orders of magnitude
smaller than experiment. The same first-order process
applied to the LA-assisted case yields a current three
orders of magnitude too small. (The experimental LA
current is four times larger than the TA while theo-
retically it is only half as big because of the two TA
branches.)

VI. SECOND-ORDER LA PHONON-ASSISTED
TUNNELING

In this section we calculate the current due to the
following processes. With negative applied voltage an
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TaBLE I. Limits of integration in current integrals (55) and (66) when Fermi functions are replaced by step functions. The following
relation holds between &0 and €r.= 8.0: &0={a+{.—eVAw— & where the upper (lower) sign holds for positive (negative) voltage.

This table is valid only when {3>¢,.

Lower limit Upper limit Lower limit Upperl imit
Range of eV of &z of &L of & of &0
et <0 Ce—eV—Hw Ce A—eV—Fw &a
0<eU<¢etTuw Ce—eV+w Ce a—eV+7w &a
$etTiw <eV<iathw 0 e th—eV+hw tatte—eV+hw
St <eV<¢etintw 0 Cettr—eVthw 0 S te—eVtiw

electron tunnels from a T's; state on the p side to a
virtual state in the T'y» band on the # side via Hj, the
interband part of the Hamiltonian, and then scatters
to an L, state on the » side with the emission of a
phonon. With positive applied voltage an L, electron
on the » side emits a phonon on scattering to a virtual

sponds to the method used previously for phonon-
assisted tunneling in superconductors.’” We therefore
proceed to calculate the admixture of a T'y tail in the
n region to the T'y; wave function in the p region using
first-order perturbation theory. From (16) and (46) and
defining

state in the 'y band on the same side and then tunnels
via Hj to a T state on the p side,

Rather than apply the golden rule to second order,
we calculate the above processes by first determining
the eigenfunctions of Ho+H; to first order in H; and

A= Ar—'Eel= AP'—AL—;h—'?e'*‘e’U )
B=}(m, A/ B4kt 2,
v=2B[l— (eE) (hk,,2/6m,~+ A2k 11,2/ 2m,+EAr) ],

(56)
€]

then use the golden rule to first order in the electron- (58)
phonon interaction to calculate the current. This corre- we obtain
@ M(kv,kllrc)BPc(P)dklch .
Beair(p) =— / =—1in
2r 0 A0+%h2[kllch/mrc+kl2/mr+kllv2/mv]
X V=12 exp[ 3i4%k110%/ moeE [ Arm,/(Arm,~+ h2k,2) 12 (— kiyy/mpem,) /2
® sin(—kurco+37#%kure/mreE+m/4) (kure) 2
/ cxp(hzkurczB/mraeE)dkl.rc ’ (59)
0 A0+%h2[kl'Fﬂz/mrc+k12/mr+kllv2/mv:|

in the region p<0. Dropping the unimportant phase factors which will cancel out when the electron-phonon matrix
element is squared and changing the lower limit of integration to — «,1® we obtain

p2y—1u2 / Arm,
4 \Apm,+72%k2

1/2
Bain(p) = > (kuo/mrem,)t2

® (kure)''? exp[ikirco—3ih%kird/mreE+hkir2B/mr.eE ]
Xe—‘i/‘ dk”rc. (60)
—o0 A0+%h2[kllPcz/mrc+k12/mr+kllv2/mu]
In the lowest order the exponential alone determines the points of stationary phase at
kie=—iBxi(B*—mr.eEp/h2)1/2, (61)

In Fig.' 2 we shov.v how the path of integration may be distorted to lie along the path of steepest descents through
the point of stationary phase on the negative imaginary axis. The contribution to the integral from the saddle
point is negligible compared with the contribution from the pole!® at

knp= —iG=—1im roll2(2th-2+kl|v2/mv+k1.u2/mr)1/2= - i(2m K‘C)Uzh_l[AO'*' 8.+ (m!’/m"_ 1) 81”0]1/2 ’ (62)
which by the method of residues gives
Bair(p) =FmrcV =1 2a[ Arm,/ (Arm,~+ 1K 1o?) 112 (Riro/mrcm ) 2G 112~ 1gh G 13mrce Eg—h26*B ImresEgGr  p (), (63)

i: L. leeinman, Phys. Rev. 132,3484 (1963). [ e ]
_/0‘ X2 sin(x+ir)dy =271 f; X' (sinx+cosx)dx = 2“”{ i f_.,. x'7 siny dx+1—_1:;. /_a X' cosx dx} =2732(1+1) f X' ixdx.

“-’liFgglsuﬁiciently large negative values of p the saddle-point contribution exceeds that of the pole but both terms are then
negligible.
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~
N i
~ //
N N Kiip 7
SO -
\\\_4 ls//
F16. 2. Path of integration in complex &y plane. The solid lines N\ Vel
are paths of steepest descent through the saddle points ki,
= —iB+i(B*—mr.eEp/h?)12 (note p is negative). The short
dashed lines are paths of steepest ascent. There are two poles at
kup=£i2mr) P H [ Ao+ 82+ (mo/me—1) 8,10 J12.

The LA phonon-assisted current is given by the first-order golden rule [Eq. (48)] but replacing the matrix

element there with
<‘/’Lc(kLc) l Hypa ph l ‘pv(kv)) ~Mra Vph_1 /2< Vol 2 l 5tail(P)> . (64)

We take Vpn~ QG the volume over which Bui(p) is large, integrate Bui(p) between 0 and — o, use k,;,d%-
= (m.*/%%)d8,°d8,,°d0 and d%krc=[mrc(mr’)"?*/ 1] 8. 212d 80 sinbdbdp where myt and my.t are the longi,
tudinal and transverse L, effective masses, to write

eMa2@momrempct(mpt)? /( Arm,
B W22n) T
X 8(8Lc— 8,F #w) exp[242G3/3mr.eE— 2422 B/mrceE— 2y |G—28..912d 8,24 8,°4 6,0

)1

(65)

The integration over 8. to eliminate the § function is trivial. We integrate 8,,° between the limits 0 and 8,°.
Because the integrand is smaller by a factor ¢~% at the upper limit we may ignore 8,,° (compared with 8,%) where
it appears outside the exponential. The G* term is the least important one in the exponential so we do not make
too serious an error when we approximate it by (2mr.)!/24~1(Ap+ 8,9)!/2G2. Note that with the parameters listed
in Table II, A, is negative for negative or small positive voltage but As+ &, is always positive. Thus we obtain

; eMLAzammect(mLcl)llsz { 2 [3m,112Ap312—2
= expy ——— g, *Ar*2—2 (2mr.) (Aot 8,°)3/2] t eE[ (m,Ar)V/2(3 42
Py T , P Eh 6 I x4 re) (Aot ) ] € [(m Ar) (6+3mv/mr)

2
—2(2mrc)”2(Ao+5v°)”2(mv/mr—1)]"1[1—‘3XPl—h‘E[(mrAr)m(% 3./ m)—22mr )2
€.

X (Aot 8.0 2(m1/ 1, — 1)]8,0} ] (€A E1— €0 ho— 8,9)1/2(Ag+ 8N (fro—£.)d6,0, (66)

by the.interband term in the Hamiltonian. We have
shown it falls off exponentially for p<0 because of the
exponential falloff of I'ys itself. For p>0, providing the

where we have used

8,=Eel—Ar— 8, =3+ ¢—eV— 8,0,

The Fermi functions may be replaced by step functions
giving the limits of integration shown in Table I.

In calculating (66) we have not considered Bia;; in the
region p>0. If in Eq. (59) we use Eq. (12), Br:(p)
=N A[e.(1—p/p:)], we find ourselves unable to evalu-
ate the integral exactly. Biu represents the n-side T'y
character admixed into the p-side I's;» wave function

major contributions to B.i1 come from the bottom of the
I'y’ band, we would also expect By to fall off exponen-
tially because the n-side I'y’ functions fall off exponen-
tially for p>0. We have evaluated the integral (59), sub-
stituting the asymptotic expression for Ale:(1—p/pe)]
validfor (4%/2mr.eE)*/3k v — (h2/2mr.eE)~1/ 30<<0. This
expression is also valid everywhere in the complex kj;r,
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TasLe II. Values of quantities defined in text.

mre=0.034m Ar=0.803 eV
my=0.044m Az=0.66 eV
m»=0.0192m Arr=2.1¢eV
mret=0.082m #fwpa=0.028 eV
mret=1.58m #wra=0.0076 eV
(mpe™)1=7.108m1 n*=5.04X 10" cm™3
(mpe ) u=8.341m™1 k=16

mrr=0.0322m E=(1.62—0.980)10% esu

(v in volts)

£.=0.020 eV Mral=Mpa?=43X10"%
erg cm?
tx=0.15eV @=0.002 cm?
dAr/dP=12X10"12 d¢e/dP=—2.92X 1071
eV cm?/dyn eV cm?/dyn
dAL/dP=5X10"1 d¢p/dP=1.17X10"1
eV cm?/dyn eV cm?/dyn
dArr/dP=7.5X10"12 V-13V/dP=—1.38X10"12
eV cm?/dyn cm?/dyn

plane that | (#%/2mr.eE)* %k ir2— (h%/2mreE)"13p|>>0
except along the real axis. However, for &,,r. very large
and real, A[a.(1—p/p:)] oscillates like sink,r.* and
thus does not contribute to the integral. We find saddle
points and poles (in regions where the asymptotic
expression is valid) leading to the same exponential
falloff as for the p<0 case. We therefore take the total
LA phonon-assisted current to be twice that given by
Eq. (66). Although we believe the preceding arguments
to be valid, we cannot claim to have proven beyond any
doubt that the contribution to the phonon-assisted
tunneling current from p>0 is not much greater than
from p<0. Since the main purpose of this paper is to
demonstrate that the second-order process yields a
current at least three orders of magnitude greater than
the first-order process, such an error would only serve
to strengthen our argument.

VII. COMPARISON WITH EXPERIMENT

We integrate Eq. (55) between the limits shown in
Table I for positive and negative voltages such that
|e0—hw| <¢., to obtain
JraE= QF{(eVOF hw) (14 ¢~ BT GntteeVha))
+ (RF)1[¢BTte— ¢ BT e—eVtha)
+e BT — BT GO=-Vmr) |y (67)
where
QF=V2ZGeMta%(eE)*m,
Xexp[—§(2m1.) 12(eER) 1 (ALTF hw)?/%]/
167r2er”2h4(’mL.f’l)1(AL;: hw)5/2 ,

R¥=202m ) 2(ALF hw)'/2/eEh.

(68)
(69)

We may evaluate the integral (66) for small voltages
by writing 8,°={,+x and treating x as small (x is
between the limits 0 and —eU=+/%w). Expanding the

KLEINMAN

first exponential to first order in x and the second one
to first order in &,° and integrating (66) we obtain

Jra= S{ [§‘G3I2_ (g-e—evﬂ:h‘*’)alz]
+%[§'sal2(2§-e—seeoﬂ:5hw)— Z(K'G—C'O:t hw)SIZJ
X[2(2mre) 1 2(AgtE0)H2 eER+Bo/En(ActE) 1}, (70)

where

S=eM1a?@momrc'myt /2 exp{— (2/eEHh)
X [gm A 12Ar312—3(2mr o)V 2 (Aot Ea)3 2]}
XEn/48V2m 8 (Ao +Ea) . (71)

In both (67) and (70) a sum over the four L; valleys
isimplied. We calculate the current for a (1,0,0) junction
where all the valleys are equivalent. In Table II we list
numerical values for all the parameters in (67) and
(70) using'®

E=[2rn*(AL+{ 4 a—e0)/k M2, (72)

where n*=np/(n+p) is the reduced doping constant
and « is the dielectric constant. It should be pointed
out that our Jr4 differs from Kane’s* by a dimensionless
prefactor [eEh/momp 12 2my,/ AL B2/ mrd(mre™),]
=0.66. In Fig. 3 we plot the calculated currents. Com-
parison with Fig. 2 of Ref. 16, shows that Jpa is in
remarkable agreement? with experiment but Jr4 is too
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Fic. 3. Plot of Jra, the second-order longitudinal phonon-
assisted tunneling current, and 500 Jra, the first-order transverse
phonon-assisted tunneling current, versus voltage.

® Because of the fixed average electric field, the effective mass,
and the two band approximations, one should expect the exponent
in (71) to be in error by several percent leading to factors of 2 or
3 in the current. Therefore the remarkable agreement between
theory and experiment is to that extent fortuitous.
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small by over two orders of magnitude. Actually in
Fig. 2 Fritzsche and Tiemann!® plot the characteristics
of a (1,1,0) junction but they state that these differ from
their (1,0,0) junction by less than 109,. Note that our
second-order process [Egs. (70) and (71)] is inde-
pendent of junction orientation but that the first-order
process [Egs. (67), (68), and (69)] depends expo-
nentially through m., on the junction orientation. Thus
for a (1,1,0) junction Jra is a factor of four smaller than
shown in Fig. 3 differing from experiment by almost
three orders of magnitude. Therefore even though the
first-order phonon-assisted tunneling mechanism leads
to approximately correct values for the pressure co-
efficients? it cannot be responsible for the TA current.
This accounts for the failure of Nathan?! to obtain from
experimental data the correct prefactor 4 in Kane’s
formula J=AUVe @,

We calculate the pressure coefficients for the LA
phonon-assisted current given by Eq. (70), assuming
m, and my. are directly proportional to Ar, m.c* is
directly proportional to Arz, the Li— Ly gap, and mr.
is pressure independent. This leads to

d¢./dP= —%g‘,[V“dV/dP-I—ALL“ldALL/dP]
and

dgy/dP=—{[3V 14V /AP~ (mo/m)**Ar~"dAr/dP ],

where the factor (m,/m)3? accounts for the fact that it
is the heavy holes which really determine {5. Using the
values for the pressure dependence of the various
quantities listed in Table IT and neglecting the pressure
dependence of the the electron-phonon matrix element
M V-2 (which should be of the order of V-'dV/dP),
we compare mrat and ma~ with the experimental values
in Table III. Considering the simple pressure depend-
ence assumed for the effective masses, the agreement is
quite satisfactory both for rpat+wra~and wpat—mra~.
Note that for the first-order phonon-assisted mechanism
given by Egs. (67) and (68) most of the forward-reverse
asymmetry is due to the (ALF #w)*/2 term in the expo-
nential. For the second-order mechanism, however,
there is no exponential 7w dependence because energy is
not conserved between the initial and intermediate
states. The large forward-reverse asymmetry is rather
caused mainly by the voltage dependence of the energy
denominator A¢t+¢r=Ar—Ar—{+€0 in Egs. (70)
and (71).

The TA phonon-assisted current may be understood
as caused by the same second-order process as the
LA-assisted current if we consider the symmetry break-
ing due to the k-p perturbation. The I'y tail of Eq. (63)
falls off with a characteristic wave number G= 3.44 X 10°
cm™1. Now the I'y tail has a fraction Xr of T'ss character
mixed into it given by

Xr=(2)V*(GPr)/Ar=0.342, (73)

2 M. I. Nathan, J. Appl. Phys. 33, 1460 (1962).

TasLE III. Comgarison of experimental pressure coefficients
w=J"1dJ /dP with theoretical ones in units of cm2?/dyn. The wpa’s
were calculated at applied voltages of 30.038 and =+-0.032, the
#ra’s at £0.0156. The two contributions to #ta come from the
?ressure dependence of Eq. (70) and the symmetry-breaking
actor.

Experiment Theory
mLat —2.07X10710 —2.61, —2.62X10710
LA™ —2.46X 10710 —3.16, —3.13X 10710
wrat —1.47X10™10 —2.764-0.38=—2.38X 10710
TTA” —1.56X 10710 —2.944-0.47=—2.47X 10710

where we have evaluated Pr from Eq. (35). Since the
transverse component of wave vector is conserved in
direct tunneling, the Ty tail has a k, which may be as
large as the Fermi momentum of the I'ss holes. How-
ever, we see from Eqs. (63), (62), and (57) that only
when k,~0 is the I'y tail large. Thus Eq. (73) represents
the total symmetry breaking for I'y. In addition, the
final L, state has a fraction X;~kp.Pr/Ar;~0.113 of
Ly character mixed into it where Pr="%(Arr/2my.t) 2
and kpo= (4 .mL.'/3%42)12 is the average transverse (to
the axis of the constant energy ellipsoid) component of
the electron Fermi wave vector. Furthermore using a
first- and second-neighbor force-constant model we are
able to estimate the fraction of LA character mixed into
the TA phonon of wave vector (r/a—G, n/a, n/a) and
find X,,=0.017. These three contributions come in with
arbitrary phase so that the cross terms cancel out and
(if we assume Mrto=My,) the TA-assisted current
at a given (¢U—#wrs) is approximately equal to
2(Xr?+ X124 Xp,2) times the LA current at the same
value of (¢U— #wra). The factor 2 arises from the two
TA phonon branches. Thus we find Jr1a(eV)=0.26
J1a(eU+7wra—hwra) in excellent agreement with
experiment.16

The pressure dependence of the TA current has two
terms. The first is from the pressure dependence of
Eq. (70) and is the same as one gets for LA phonons but
has a smaller forward-reverse asymmetry because of the
smaller voltage required to get the TA current. The
second is just 2(XrdXr/dPX X1 dX1/dP+ XpndXpn/dP)/
(Xr®4X 2+ X,2). These contributions are listed in
Table III. The cancellation between these two terms
accounts for more than half of the experimental value
of (rLa*+mra™)— (wrat+mra”).

In summary we have shown that the second-order
phonon-assisted tunneling mechanism yields a current
about 1000 times as large as the direct phonon-assisted
mechanism and accounts for both the LA and TA
currents. The reasons for the dominance of the second-
order mechanism are twofold. When a phonon scatters a
left-hand electron into a right-hand state, if the inter-
action takes place in a region where the right-hand state
has large amplitude, then the left-hand state will have
small amplitude and vice versa. On the other hand the
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of course that there is a nearby band of intermediate
states to be mixed in by the nonlocal operator.

The author would like to thank Professor H. Fritzsche
for informative discussions.

interband tunneling operator is nonlocal [Eq. (40)]and
therefore is not quite so affected by the fact that where
one wave function is large, the other is small. The second
reason for the dominance of the indirect mechanism is
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Effective Hyperfine Fields at the Nuclei of Os and Pt Dissolved in Fe*

James C. Ho anp NorMAN E. PHILLIPST
Inorganic Materials Division of the Lawrence Radiation Laboratory and Department of Chemistry,
University of California, Berkeley, California
(Received 17 May 1965)

The heat capacities of two alloys containing, respectively, 0.75 at.% Os and 3.21 at.%, Pt dissolved in
Fe have been measured from 0.08 to 1.15°K. From the coefficients of the 72 terms, the hyperfine fields at
the nuclei were found to be 1400 kOe for Os and 1390 kOe for Pt.

IN recent years a number of experimental techniques
have been used to measure the product of the
nuclear magnetic-dipole moment p and the effective
magnetic hyperfine field H, for a dilute impurity in a
ferromagnetic metal. The results are of interest because
they give information about nuclear moments and also
because a systematic study of H, values may contribute
to a better understanding of ferromagnetism. The
calorimetric determination of uH, is based on measure-
ment of the contribution to the hyperfine heat capacity
associated with the impurity nuclei. For 1 mole of
sample, and at temperatures T>>uH./k (k is Boltz-
mann’s constant), this contribution C is given by

C 1/0+1 2> (H,)z

R 3\ 1/ et
1 ,I+1)Q@P+20+1) Hot
Ak

- [
30 B kT

- @)

where f is the atomic fraction of impurity, R is the gas
constant, 7 is the nuclear spin, and the average is taken
over the isotopic composition of the impurity. The
calorimetric method is limited to alloys for which the
contribution from nuclei of the impurity is large relative
to that from nuclei of the host metal, but it is a useful
complement to the methods based on nuclear orienta-
tion and the Mdossbauer effect, each of which can also
be used only in certain cases. Furthermore, Eq. (1)
involves u for the nuclear ground state, which is usually
known, whereas the nuclear orientation method—and
in some cases the Mossbauer method—give the product
of H, and u for an excited state. A combination of two
experiments may therefore give both H, and the ex-

* Work supported by the U. S. Atomic Energy Commission.

t Alfred P. Sloan Research Fellow 1962-64. We are grateful to
the Alfred P. Sloan Foundation for this support during the period
in which the experiments were carried out.

cited-state u. We present here a calorimetric determina-
tion of H, for Os and Pt dissolved in Fe.

An alloy of iron with 3.21 at.%, Pt was prepared by
melting 99.999%, iron sponge and 99.9%, Pt foil chips
in a helium atmosphere, and was homogenized by an-
nealing for 20 h at 1300°C. A sample containing 0.75
at.% Os in iron of the same purity was supplied by
Johnson, Matthey and Company, Ltd. The heat-
capacity measurements were carried out in the tem-
perature range 0.08 to 1.15°K with an apparatus pre-
viously described by O’Neal and Phillips.!

The experimental data were analyzed by plotting
CT? versus T3, as shown in Figs. 1 and 2. The straight-
line regions of these plots gave the 7-2 and T terms in
the heat capacities,

C(mJg™ deg™)=8.36X102T+1.12X 1072 (2)
for 0.75 at.9%, Os in Fe, and
C(mJg deg™)=8.25X10"27T+1.40 X 1072 (3)

for 3.21 at.9, Pt in Fe. The observed T2 terms were
corrected by subtracting the contribution expected for
the Fe nuclei in pure iron (the corrections were 3.39,
and 0.25%, for the Os and Pt samples, respectively)
and were then used to calculate H, values by compari-
son with Eq. (1). The comparison was based on the
following data? for the isotopic abundances, spins, and
nuclear moments: 1.649, Os'¥” with 7=1, =0.12 nm;
16.1% Os'® with /=4, p=0.6507 nm; 33.89, Pt!% with
I=3%, p=0.6004 nm. The resulting values of H,—1400
kOe for Os and 1390 kOe for Pt—were used to calculate
the expected 7—* terms in the heat capacity. (The con-
tributions of the Fe nuclei to the 7% terms are com-
pletely negligible.) On this basis, the hyperfine heat

;g lgt O’Neal an(i NME. Il-I)hlilmps’ Phys. Rev. 137, A748 (1965).
- Strominger, I. M. Hollander, and G. T. Seaborg, .
Mod. Phys. 30, 585 (1958). caborg, Rev



