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The formalism of solid-state scattering theory is applied to the construction of the t matrix for a pair of
electrons interacting through a repulsive potential of finite range. Expressions for t are obtained in suitable
limits for three cases: (1}a potential acting only at a single site and in a single band, (2) a potential acting
at a single site but connecting a pair of bands, and (3) a potential acting in a single band but extending to
first neighbors. The results are applied to the determination of an optical potential which can be used in a
study of the range of excited electrons in metals, and to the determination of the ground-state energy of a
low-density system. The ground-state energy is examined as a function of spin alignment, leading to the
development of criteria for the occurrence of ferromagnetism in the low-density limit. It is shown that for
repulsive, finite-range interactions, ferromagnetism does not occur for very low densities, whatever the band
structure is.

I. INTRODUCTION

N this paper we will consider the calculation of the
~ ~ ground-state energy of a low-density system of
fermions interacting by repulsive forces of finite range
in the presence of a periodic potential. Our work is
intended as an approximate method of studying the
energies of electrons in crystals which should be
applicable in the case in which a small number of
electrons or holes are present in a narrow energy band.
Therefore, it should be possible to use these techniques
in the energy-band theory of ferromagnetism, partic-
ularly with reference to situations in which the magnetic
properties are determined by a small number of carriers.

It has been known for several years that the energy
of a low-density system of interacting fermions at
zero temperature can be determined from the t matrix. '
The fundamental result is that if E is the energy of the
interacting system, and Eo is the energy of the system
if the particles do not interact, then

E=EO+ P(mrs(t~mn). (1.1)

The elements of the t operator are expressed on the
basis of free (but properly symmetrized) two-particle
states described generally by the quantum numbers

m, s. |A'e will discuss this basis more completely below.
The sum in (1.1) includes only those states which are
occupied in the ground configuration.

The t matrix obeys an integral equation which is quite
similar to that satisfied by the ordinary scattering
matrix for two particles. This equation can be rep-
resented formally by

t= V+Vcit

in which V is the two-body interaction and ci is a two-
body Green's function. This Green's function can be
represented at low densities by II. TWO-PARTICLE STATES

%'e consider a system of electrons in a crystal lattice,
composed of monatomic unit cells of volume Q. If the
electrons did not interact with each other, the system

(1.3)
~ Supported by the U. S. Air Force once of Scientific Research.
' C. Bloch and C. de Dominicis, Nucl. Phys. 10, 509 (1959).

N. M. Hugenholtz, in The Many Body Problem, edited by C. de
Witt (John Wiley R Sons, Inc. , New York, 1959), p. 1. ' J. Callaway, J. Math. Phys. 5, 783 (1964).
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in which IIO is the Hamiltonian for two noninteracting
particles. The operator Q destroys states which are
occupied in the ground configuration. This has the
consequence that the t matrix is real for occupied states.
We do not include in g any modification of the single-
particle energies by the interaction since this is un-
important for sufliciently low density.

Our first objective in this paper is to develop a method
for the computation of the t matrix defined by (1.2) in
solid-state problems. Our approach is based on the
formalism of solid-state scattering theory, ' and is
applicable in the case of finite range forces. (The
precise definition of finite range will be given below. )
In particular, an expression for t will be derived whose
evaluation can be accomplished by operations on
matrices of finite dimensionality. Sections 2, 3, and 4
are devoted to this calculation. Section 2 contains the
definitions and properties of the two-body states which
are employed; Sec. 3 presents expressions for matrix
elements of the potential and the Green's function;
and Sec. 4 contains the explicit construction of t.

Applications of the method are studied in Secs. 5, 6,
and 7. In Sec. 5, an effective one-body potential is
obtained which contains an imaginary part for states
above the Fermi surface; this potential is calculated
explicitly in a limiting case for electrons in a single
band interacting on a single site. Interactions connecting
bands and interactions extending to first neighbors are
studied in Sec. 6, which contains a calculation of the
relevant t-matrix elements in these cases. Finally, in
Sec. 7, the preceding results are applied to the theory
of ferromagnetism. Criteria are obtained for the
occurrence of ferromagnetism when electrons are
present in a single band and in degenerate bands. These
criteria are studied for somea pproximate band models.
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I K+—k, rp lPt&
—k, r& . (2.7}

2
'

2a«&(z)y. (k,r;) =Z.(k)y. (k,r;) (2.1)

could be exactly described in terms of one-electron wave substitution as
functions (Bloch functions) f (k,r). Here, a is the band fTZ'L.

& &3 a—i2 .r,
index and k the wave vector. These functions are
eigenfunctions of the single-particle Hamiltonian H«& (i)
with energies E (k)

H«&(i) includes the periodic potential. The Bloch
functions are normalized so that

f '(k, r)ft&(k', r)d»r =b.sb(k —k') . (2 2)

Localized functions (Wannier functions) are found
from the Bloch functions by

a.(r—R„)= exp( —ik R )P.(k,r)d'k (2.3)
(2~)3/2

in which R„is a lattice vector and the integration
includes a single Brillouin zone. '

For the purpose of evaluating the elements of t, we
need two different sets of basis states. Since the sum in
(1.1) includes only occupied states, we need for this
purpose a set of two-particle functions characterized by
wave vectors and band indices. First, however, we
must distinguish between triplet and singlet states of
the electron pair. In a triplet state the space part of the
wave function must be antisymmetric; in the singlet
case it must be symmetric. %e dehne the functions

4»~' '& (p, q; r~, r2) = (2)
—'12[/ (y, r&)f»(q, r2)

~4' (y r2)A(q r )j (2.4)

The + sign goes with the singlet state 4('~; the minus
sign goes with the triplet state. %'e will frequently
omit the superscripts s and t.

It will be observed that these functions have the
symmetry

C t&(y, q;r&,r2)=AC» (q, p;r&, r2). (2.5)

K= y+q,
2k= p—g.

(2.6)

In order to avoid the introduction of another symbol to
represent a wave function, we write the result of this

3 The utility of Wannier functions in calculations similar to this
is sometimes questioned on the basis that they are not invariant
under a change of phase of the basic Sloch functions. It can be
seen, however, that the expression for the ground-state energy is
unaffected by such a transformation. %'e will therefore assume that
the phase of the Bloch functions is chosen so as to make the
%annier functions as localized as possible.

It follows from (2.5) that the set of functions C is
redundant if one considers all possible values of e, P,
q, y. This redundancy can be removed by restricting
one of the momentum variables to a half-space.

It is convenient to introduce total and relative wave
vectors through

The symmetry relation (2.5) now implies that only
half of k space need be considered in the expansion of
an arbitrary two-particle wave function provided that
all pairs of bands are included.

The wave function (2.7) is normalized except for
k=o, in which case an additional factor of 2 'l' is
required. Since we will be concerned with integrations
over p and q, and a fj.nite change in the value of a
function at a single point does not affect the value of an
integral, we will not include this factor explicitly.

The two-particle Bloch functions are convenient for
the evaluation of sums such as (1.1). However, in
order to determine the elements of t, it is much more
convenient to work in a diRerent basis. %'e want a set
of functions characterized by a definite value of the
total wave vector K, but depending on a relative lattice
coordinate R; instead of a relative wave vector. %'e
will denote such functions as f», ,&* "(K,r&,rm). They
are given by

p»;&' '&(K,r&, rm)

=0&t't 16s'(1+i&; 0)g "' exp(iK R;/2)

XP exp(iK R„)La (r~—R„—R;)a»(rs —R„)
ri

aa. (r2—R„—R,)a» (r,—R„)g. (2.8)

As before, the + sign is associated with a singlet state,
and the —sign with a triplet state.

These functions satisfy Sloch's theorem for total
wave vector K:

p s;(K, r,+R(, r,+R,)
= exp(~K R()P t&;(K,r,,r ) , 2(2.9).

They have the symmetry

f p„(K,r, ,r~) = +P», (K,r„r,2) . (2.10)

In (2.10), the subscript i indicat—es that —R; replaces
R, in (2.8).

It follows from (2.10) that the set f s,; is redundant
as the C p were. Therefore we may restrict sums over
coordinate i to half the crystal or alternatively we
include a factor —', (1+8;,o) and sum over all values of i

The orthonormality properties of the f s,; are
summarized by

f~s,&*(K',r&,r2)P p, g(K, r&,rm)d'r&d r2

Xfb, ,8p, s8;,g&b, »bp, ~8;;j. (2.11)
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If the basic Bloch functions are complete, so that they
satisfy the relation

Let us 6rst consider the Green's function. The
quantities we require are denoted by

P *(k,r)P (k,r')d'k=b(r —r'),
(»,scq (8)~,zi)

(2.12)

P„,;*(K,r„r,)[E—e& (1,2)j-
then it can be shown that the two-electron functions
satisfy

g g &(1+8;,0) P p, ;*(K,rg, rg)f p, ;(K,rg', rm')d'X
aP

= s[5(r~—r~')b (rs—rm') &5(ra—rs')b(rs —rq')g. (2.13)

This relation guarantees that any properly syxrunetric or
antisyrnmetric two-electron function may be expanded

luther p,;
Next, we require the transformation equations

connecting the two sets of functions we have introduced.
In general, we have to write

C.p«'& (K,k,rg, r2) =g s(1+8;.0) d'E'

5=(K K—)Q'(8x') '[-(1+b;,)(1+b,),j »-2

X ~~,,Spy
exp(ik (R. ;—R;))

g +gp d'k
E—E.p(K,k)

XQt p„(K,rg, rm)d're'rp. (3.1)

This may be evaluated with the use of (2.8) and (2.3).
One point deserves comment: When the Wannier
functions appearing in f are expanded in terms of
Bloch functions, the operator Q eliminates those which
pertain to states which are occupied in the ground
configuration. We 6nally obtain

XP.p&'o(K, K',h, R,)y.p„&'t&(K',r„r,). (2.14a)
&h, )8p, ~

exp(ik (R,+R;))
g +gp d'k . (3.2)

E—E p(K,k)

This expression is, however, more cumbersome than is
necessary. It turns out that Ii p depends on K and K'
only through a multiplicative factor 5(K—K'). We
6nd. it convenient to suppress such factors, and work
within speci6c subspaces characterized by de6nite K.
Hence, instead of (2.14a), we have

K K
E.,(K,h) =E. —+k +E, —I ~.

2 2
(3.3)

As usual, the + sign in (3.2) occurs for singlet states
the —sign for triPlet states. The quantity E p(K k)
appearing in the denominator is de6ned by

C.p(K,k, rg, rr) =Q x(1+b,,o)P.p(k, R;)

It can be veri6ed that

Finally, the symbols p +, pp
— represent unit step

0

Xf p, '(K,ri, r~) . (2.14b) K
q +=g E —+h —Ep

2

( Q "'exp(ik R;)
F p«o(k R)=~ (aWP). (2.15)

(2s' (1jb; 0)"'
(K

np =~ Epl —h
~

—Er,
(3 4)

If a=/, Eq. (2.5) enables us to choose symmetrized
functions

( Q »' cosh R,
F~&'&(k,R;)=i

k2 ') (1+8; )"' (2.16a)

(Q»2
F p«&(h R;)=~ sink R;. (2.16b)

III. MATRIX ELEMENTS

In this section, we compute matrix elements of the
Green's function and the potential on the basis of the
functions P p,; defined in the previous section.

Attention is called to the normalizing factors which
diGer by a factor of 2 from what one might expect.

where g(x) =0 if x&0; g(x) = 1 if x)0, and Er is the
Fermi energy of the ground con6guration

The presence of step functions in (3.2) has
consequence that the denominators in the integrals do
not vanish for E~&EI. The integrals are therefore well
de6ned as they stand. If, however, we are interested in
the case E&E&, then it would be necessary to specify
the manner in which the singularity is to be treated.
Conventionally, this is done by the addition of an
in6nitesimal imaginary part to the energy which is
allowed to vanish after the integral has been performed.
The Green's function then acquires an imaginary part
through the identity

(Ii
=I'~ —

~

—i1rb(x).~ x+ip &xi
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Next, we consider matrix elements of the potential. Ke will investigate the matrix elements of f as calculated
These are on the basis of the f p,;.

A formal solution of Eq. (1.2) is
(»,K j) V)aP, Ki&

f~o.g*(K',ri, ro) V (rg ro)g.—p„(K,rg, ro)d'rgd'ro

=tg'(K —K )e'xp(iK (R;—R;)/2)

t= V(1—gV) '.
Therefore, we have

(» jltl&, i&*=K 2 o(1+&g,o)(»,jl Vlt ~,t&*

(4 3)

X[(1+g'bg, o)(1+kg,o)j "'P exp(iK R )

X[V,o,.p(j, 0, i+m, m)

&V,o, p (j,0; m, i+rgb) j (.3.5)

The ~ sign has its usual sigm6cance. The multiplicative
factor b(K—K') occurs for any potential depending on
the relative position only, and indicates that such
interactions conserve the total wave vector. The
quantities in square brackets are given by

V».-p(j 0 i+m m) = a.*(rb—»)ag'(ro) V(rg —ro)

Xgb„(rg—R;—R„)gbp(ro—R„)d'rgd'r, . (3.6)

X(tgv, l [[1 g—Vj-')aP, i&x (4.4)

Ke will examine this equation in detail. Let us adopt
the following convention for arranging the matrix
elements. Each row and column is characterized by a
site index and a band index. %'e agree to group all the
band pairs for a given site. For example, if we consider
the ninth site and have two bands to consider, we get
rows and columns labeled i, 1, 9; 1, 2, 9; 2, 1, 9; 2, 2, 9.
The assumption that the potential is of 6nite range,
both in the sites and in the bands, which was discussed
at the end of the last section, implies'that the nonzero
portion of the V matrix is of 6nite dimension.

On the basis of the g/g p;, the matrix representing V
in a subspace of fixed E has the block form

Throughout this paper we will be concerned with
forces of 6nite range only. By this we mean that there
exists some lattice vector Ro such that

(4.S)

where the submatrix L', contains all the nonzero

(», K j~ V~gggp Ki&=0 if p;&po or pg&po. (3 7) elements of the potential. Let us divide the matrix of

g in the same way
Ke will also restrict ourselves to a 6nite set of bands.

As a consequence of the presence of the I-conserving
delta functions in both g and V, we are permitted to
consider subspaces of the two-particle Hilbert space
characterized by functions of 6xed K. %'e can calculate
I, in such a subspace, dropping the multiplicative delta
functions. Ke shall denote by (»,j ~

6
~
aP, i& K the matrix

element of a wave-vector-conserving operator 8 with
the delta function removed.

IV. CONSTRUCTION OP THE t MATRIX

(gaa gab

ggba gbb

(4.6)

Then the matrix I gV has the (—subdivided form)

It'lac —
g eUae 0I—gv=i

gbaUaa Ibb
(4.7)

Consider the submatrix in the upper-left portion.
This is a 6nite matrix and can be inverted.

(»,K'k'i t jatt, Kk)

=S(K—K') (»,k'
~
t jaP,k)

C',o'(K', k', rb, ro)t(1,2)C.p(K,k; r, ,ro)d'rgd'ro

where
P.a—gaa Uaa7 '= I'aa/D

g

D=detP, —g„U„],
(4.8)

(4.9)

(4.10)
I'„/D 0

LI-gVj- =
g, gg P /gg g„)... ..

(4.1) Then, on multiplying by V on the left, we get
Then from (2.14b) we have that

(»,k')t(ap, k)~
U„P,/D 0

gag —ov]-=( - -
)0 0

(4.11)

=Q -'(1+8'.o) (1+5,o)P o*(k', R,)
g2 Thus we see that, on the basis considered, the nonzero

X(»,j j t
~
gott, i)KI" p(k, R;) . (4.2) portion of t has the same dimensionality as the nonzero
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portion of V. We can now write Eq. (4.2) in the form

&»k'~t~apk)x=D-'p —,'(1+8;,o)(1+8;,p)F o*(k',R )

Vo=&«,0( V)«,0)x (4.14)

g,=(«,O[LZ—e,gi[«,O) . (4.1S)

Then D= 1—gpVp. With the use of Eq. (2.16) we have

0 Vp
(«,k'

~

t"
~ «,k)x —— (singlet state) (4.16)

4)ro 1—goVp

and this is independent of k and k'. The elements of t
are zero in the triplet state in this case.

In cases where the range of the potential is not zero,
it is still sometimes possible to simplify the computation
of t still further. Recall that the computation of t
involves the inversion of a matrix whose dimensionality
is determined by the range of the potential. It is there-
fore desirable to reduce this matrix as nearly as possible
to diagonal form. Some progress in this direction is made
possible by group-theoretical considerations. Ke sup-
pose that K is in the interior of the Hrillouin zone.

The discussion here parallels that of Ref. 2. The
potential in this case has the symmetry of the point
group of the total wave vector K. Except in special
cases, where K designates a symmetry point or axis
of the Brillouin zone, this group contains only the unit
element, and no reduction beyond that afI'orded by the
separation of singlet and triplet states is possible.
However, the special cases where the group of K is not
trivial are important enough to deserve a detailed
discussion. Let us designate functions transforming
according to the irreducible representations of the group
of K by subscripts r, s. If the representation is degen-

4 J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963).
5 J. Kanamori, Progr. Theoret. Phys. (Kyoto) 39, 21'5 {1963).' J. Callaway and D. M. Edwards, Phys. Rev. 136, A1333

(1964).
7 J.C. Slater, H. Staatz, and G. F. Koster, Phys. Rev. 91, 1323

(1953).

X&»j ~
VP

~
p)P,i)xF p(k, R,) (4.12)

in which the formal definition of the matrix I' is given by

&»,jlD-eVj- l~.s)x=D- &»,jlP l~,o)x &4.»)
and with D defined in (4.9). All the sums in Eqs.
(4.12) are finite as a consequence of the basic assump-
tion that the potential is of finite range. The quantity
&»j ~VP~aP, i)x in Eq. (4.12) refers to the matrix
product of V and P. It is apparent from Eq. (4.10) that
Eq. &4.13) refers only to those basis states corresponding
to the nonzero portion of V.

An important special case of (4.12) is that in which
the potential acts only when E;=8&=0, and there is
only one band a to consider. Potentials of this type
have been estensively used in the theory of ferro-
magnetism~'

crate, these subscripts are to be generalized appro-
priately to designate particular rows as well. %'e

construct symmetrized functions by means of a unitary
transformation

C, , p(k, R„)=Q'U(s,R„)Fp(k, R„). (4.17)

The summation over m includes all the different vectors
which can be found from any one of them by applying
the operators of the group. All these vectors have the
same length. A prime on the summation sign indicates
such a restricted sum.

Ke define transformed matrices through the equa-
tions

5, , V), s„„,(K, ,i,t)=Q' U(s, R,)(np, i) V[pv, l)x

In constructing the matrix I' in the new representa-
tion, it doesn t matter in principle whether we first
transform V and then 6nd P or invert the full 1—gV
and then transform. Of course, the former procedure is
more convenient. The determinant D can be expressed
as a product of factors each arising from a particular
irreducible representation, and each factor appears a
number of times equal to the degeneracy of the
representation.

(4.19)D=II D*

In (4.19), D, is constructed by considering only those
portions of 1—gV which, after transformation, involve
representation s.

The submatrices P, defined in (4.18) also contain a
product of factors D, for all r/s. Let us use this fact
to define a reduced submatrix P, through

P, .s „„(K,i,l)= (II D,)P...p,„„(K,i,l). (4.20)

This has the consequence that a portion of the matrix
L1—gVj ' corresponding to representation s contains
only a single factor from the determinant:

p U(s, R;)&ap,i ] $1 )oV5 ') p—v, l)xU'-(Ri, t)

=b„)D P„.s,„„(K,i,l) (4.21).
Since the transformation whose elements are U(s, R,)

is unitary, we have

P U'(R;, s)U(s, R))=b;i, ,(4.22)

where the summation over s includes each row of a
degenerate representation. Ke now have with the use

X U'(R ,i)t
(4»)

f')„,,P„.p „.(K i,l) =g U(s) R,)&ap)i,
~
P I pv, l)x

X Ut(Ri, t).
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of Eqs. (4.17)-(4.22),

,o(k', R;)(VP), ,„,p(K, i,j)c,, p(k, R;). (4.23)

In (4.23), the t-matrix element is separated into por-
tions coming from each of the irreducible representations
of the group of K. This separation is particularly useful
when the symmetrized functions C, have diGerent
dependences on the wave vector in lowest order, since
to a given order of approximation, certain representa-
tions may be discarded. The bar on the summation
indicates that we get contributions to the sum over
sites only from diferent lattice-vector types. There is
one contribution from each symmetrized linear com-
bination C, , p.

In considering the construction of the symmetrized
functions C, , p, we note that if the band indices are
equal, the basis functions I'

p which are combined to
form the C, are even or odd with respect to inversion
according as we consider singlet or triplet states. This
restricts, to some extent, the choice of representations
s which, for a given K, can contribute to (4.23). Only
those representations can contribute which have the
property that functions transforming according to that
representation can be constructed from even (or odd)
basis functions. For example, if K=o, and e=P, the
singlet state contains contributions from FI, FI2, etc;
the triplet state has contributions fronx F&~. Of course,
in any case, only those representations which have
basis functions of the form exp(ik R,) with R;(Eo
can contribute. Thus for a simple cubic lattice, assum-
ing nearest-neighbor interactions, at E=O only the
three representations named above can contribute.

One rather important conclusion can be immediately
inferred from these considerations. If we are studying a
one-band model of a low-density system so that we
require the t matrix only for small k, k', then the
contribution from singlet states will remain inite as
these wave vectors approach zero (unless as is the case
for spin waves, accidental cancellations occur); while the
contribution from triplet states is proportional to kk'.
Hence, insofar as contributions from terms in the t

matrix of order k' can be neglected, only interaction in
singlet states need be considered. However, in a two-
band or multiband system, triplet interactions will
contribute in the low-density limit.

V. OPTICAL POTENTIAL AND
GROUND-STATE ENERGY

For use in applications to the theory of ferromagnet-
ism, we require an expression for the energy of the
ground state. This is, of course, given formally by Eq.
(1.1), but it is desirable at this point to present some-
thing which is more explicit. As a byproduct, we also

obtain the "optical potential" which is of considerable
interest in itself.

The states ~me) which appear in Eq. (1.1) are
symmetrized combinations of one-particle states, each
of which is described by a wave vector, a band index,
and a spin index. For instance, we replace m by the
triple yes. Ke can now define an "optical potential"
for an electron with wave vector p and spin e in band a.

As long as there is no spin ordering, which we will

neglect at this point, the optical potential will not
depend on o. It is convenient now to separate the sum
into contributions from triplet and singlet states,
introducing thereby the symmetrized two-particle
states described in Sec. II.

The interaction energy is to be computed. from Kq.
(1.1), which can be expressed in terms of the optical
potential (5.1). It is important to recall that the two-

particle states are redundant. A factor of ~ must be
inserted if we are to sum over all values of yes corre-
sponding to occupied one-particle states. This factor
therefore prevents pair interactions from being counted
twice. Thus we have

par
(5.3a)

From the derivation in Ref. 1, which leads to our basic
Eq. (1.1), it follows that Eq. (5.3a) will be correct in
the low-density limit for a system of fermions interact-
ing by repulsive forces of finite range.

The transition from a summation to integration in
the application of Eq. (5.3) is made with the usual
replacement of g by '0/go' J'dop, where 'U is the volume
of the system. Thus

E=Eo+ Q dop V(pne) .
16m' p~

(5.3b)

As an example, let us consider the very simple
potential described in Eq. (4.14). Other examples will

be considered in subsequent sections. In applying Eq.
(5.2), we note that the necessary factors of 2or are
already contained in (4.16) so that

d g
1—go Vo

(5.4)

Equation (5.4) may be used for states above as
well as below the Fermi surface. Let us consider 6rst
the latter case, in the low-density limit in which go
may be replaced by its constant value for states at the

V(u )=Z[l(p, aP i&'I p, aP)

+l(p, qPlt'lp, aP)j (52)
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0 d'g

Sm' E(q) E
(5.5b)

I is therefore the average value of 1 E over the entire
band. Since the integration over q includes only occupied
states, we get

bottom of the band. For this case, we have from Ref. 6

lim go
————,'I,

B~O
K~O

In this case, we are concerned with states above the
Fermi surface. For such states, the potential V(pn) is
complex:

V(p, n) = I'+iW. (5.10)

The electron mean free path is determined from the
imaginary part W. The problem is quite analogous to
the optical model of the nucleus, "and in fact, it is this
analogy to which we call attention in referring to V(pu)
as the optical-model potential. A formal expression for
8' is determined easily. %'e put

Qkg' Vp
V=

6s' 1+gVof
(5.6)

go= gR+Zgi ~

Since Vp is real, we have at once

The average interaction energy per particle is

Qkp' 'U Vp Vp
E;„,= — = opQ-

36s' 1V 1+xo Vol 1+-,' Vol
(5.7)

Thus

and

Vp0
8=

8~ j+—'VpI

&in~= 2~p~

4
V (p,a) = (kpa)EF 4—xypa. ——

3Ã

(5.8)

(5.9)

This result is seen to be equivalent to the low-density
interaction energy for a hard-sphere Fermi gas if we
put y =k'/2m. o In fact, the simple potential (4.14) gives
a theory quite analogous to that of the hard-sphere
Fermi gas if the proper identi6cations are made.

Another application of the optical potential concerns
the question of the mean free path of hot electrons in
metals. This problem has been studied both exper-
imentally and theoretically. ~'2 Experimental results
for the mean free path contain contributions from both
electron-electron and electron-phonon scatterings; here
we shall consider only the former. As a consequence of
dielectric screening, it is probably reasonable to assume
as a Grst approximation that two electrons interact
only when they are on the same site. If we con6ne our
attention to a single band, the interaction is character-
ized by the matrix element given in Eq. (4.14).

L. Landau and E. M. Lifshitz, StNistica/ I'byes (Addison-
%'esley Publishing Company, Boston, 1958), p. 249.' J. J. Quinn and R. H. Ferrell, Phys. Rev. 112, 812 (1958);
J. J. Quinn, ibid. 123, 1453 (1962}."S.L. Adler, Phys. Rev. 130, 1654 (1963}."C. R. Crowell, %'. G. Spitzer, L. E. Howarth, and E. E. La
Bate, Phys. Rev. 127, 2006 (1962},and references cited therein.

~ R. Stuart, I. %'ooten, and W. E. Spicer, Phys. Rev. 135,
A495 (1964}.

in which we have used the relation kp'=3m p, where
p= S/'U is the density of particles. This relation can be
transformed into a more familiar form by observing
that the scattering length 0 resulting from the interac-
tion Vp is, according to Ref. 6, for a spherical band
with E(k) =yk'

p' 2g,
d g.

(1—ga Vo)'+ Vo'g'o
(5.11)

Calculations of electron mean free paths based on
Eq. (5.11) are in progress and will be reported sub-
sequently. A preliminary account has already been
published elsewhere, " so we will give here only the
result in the low-density limit for states of wave vector
p close to the Fermi surface in a spherical band.

2
IV= (kr a)'—Er ((p/kF) 1)'—(5.12)

(» 0I V I& 0)x= V~o s.(6.1)

It is easy to show that the elements V, , V p, p,
and V s,s are real (without any assumptions concern-
ing the Wannier functions). Forsimiplicityand toreduce
the number of independent parameters somewhat, we

"G. Shaw, Ann. Phys. (N. Y.) 8, 509 (1.959).
'4 J. Callaway, Phys. Letters 14, 176 (1965).

VI. EXTENDED POTENTIALS

Ke now consider the determination of the ) matrix
for two more complicated cases of interest in the theory
of ferromagnetism. These include (1) an interaction
restricted to a single site but coupling two bands,
and (2) the case of an interaction extending to 6rst
neighbors.

Slater, Statz, and Roster considered the case in
which two electrons (or holes) in an otherwise empty
band interact through a short-range potential. ~ They
concluded that if only a single band was considered,
the spins would not be parallel, but that if two bands
were included, it was possible for the triplet state of the
pair to lie below the singlet. The techniques described
in this paper enable a more rigorous discussion of this
question, and lead to a rather different conclusion:
that ferromagnetism will not occur in the limit of
vanishing density.

Let the bands considered be designated by indices 0,
1. Ke denote the matrix elements of the interaction
potential by
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0
g01—— LE—E01(K,t) j-'OiO+Oil

—dlk. (6.2b)
8x'

Then the triplet potentiaL-energy submatrix has the
form

V=~e (6.3)

where the rows and columns are numbered by the band
index pairs 01, 10. Likewise, the relevant portion of
the matrix g is, on this basis,

g 0g01 (6.4)

These results follow from Eqs. (3.2) and (3.5). Then,
following the procedures of Sec. 4, we have, on the basis
of functions deaned in Eq. (2.8),

1 Q 1
t'=—

2 1—go»ot —1 1
(6.5)

The singlet state is more complicated. Let us introduce
the additional abbreviations

follow Slater, Statz, and Roster' by assuming that the
elements V, s(PWa) are zero.

In the triplet state, the construction of the t matrix
is particularly simple. It is seen from Eq. (1.1) that we
require only the diagonal elements of t. Let us introduce
the abbreviations

Vp», 01 V01,10

1
~»0 t»0, 10 4I01,0»

2 1—golgi

(6.10)

il Vl'/(1 ———gllV1') . (6.15)

Equations (6.14) and (6.15) and their obvious general-
izations can be shown to hold when any number of
bands are considered if Vo', V»', etc., are suitably
de6ned.

In order to obtain matrix elements on the basis of
symmetrized Bloch functions, it is necessary to multiply
(6.5), (6.14), and (6.15) by 0/4ro to take account of
the functions F in Eq. (4.12). When this is done, the
similarity to the one-band result, Eq. (4.16), is obvious.
A two-band model introduces more elements of and
causes a redeanition of the effective potential, but does
not alter the general structure. In particular, in the
limit of a large effective potential

Vl(1—g00 Vo)+goo l Vol I'
(6.11)

(1—goo Vo) (1—gu Vl) —googll I Vol I

'

Equations (6.9) and (6.11) may be written in a more
convenient form if we define the combinations

Vo'= VO+gll
I
Vol I'/(1 —gllV1), (6 12)

Vl'= Vl+gooI VolI'/(1 —gooVQ) (6 13)

Since cp and a» are orthogonal, we expect that
I V01 I (Vo or Vl. At energies below the Fermi energy
in the respective bands, gpp and g»1 are negative. Thus,
for occupied states, Vo CVp and V»'& V». With these
substitutions, we have

to= Vo'/(1 —gooVQ'), (6.14)

g00=(OO OI BIOO,O) a, Vo= Voo, oo, (6.6a)
li.~i 0 ( + i)gl'i (6.16)

gll=(110 I g I11,0) a, Vl= Vll. ll (6 6b)

P= VQ1,01+ V01,10 ) Vpl Voo, 11 ~ (6.6c)

Then the singlet potential-energy submatrix is

Vo

Ve 0
0

.V»o

0 0

OP kP
0 0

Vol
0
0 (6 'I)

goo

Qe— 0
0.0

0
g gpl

ggo»

0

0 0"
ggo»

~ggo»

gll

(6.8)

After a simple calculation, we 6nd the following
nonzero diagonal elements of t for singlet states

VO(1 —gu Vl)+gu I Vol I
'

&0 = &00,00= — —,(6.9)
(1 gOOV0)(1 gllV1) googllI Vol I

The rows and columns are numbered by the index
pairs 00, 01, 10, 11. The appropriate Green's function
submatrix is

These results have one interesting consequence for
the optical-model calculations discussed in Sec. 5.
If the occupied states are con6ned to band 0, say,
and the excited electron is also in band 0, then Kq.
(5.4) which defines the optical-model potential remains
valid when a second band is considered, provided that
VO is replaced by VO' as delned in (6.12). Also, if the
energy of the excited state in band 0 does not equal
that of any state in band 1, then Vp' is real so that
Eq. (5.4) remains valid.

Let us next determine the form of the t matrix when
the interaction extends to nearest neighbors. Only one
band is considered. This situation is in a certain sense
complementary to that just discussed, and we shall
find that here also, the general structure of the t matrix
remains similar to that of Eq. (4.16).

Ke determine the matrix elements of the potential
from Eq. (3.5). Since there is only one band in this
instance, we drop all band indices. Ke assume that we
have a lattice structure such that two sites which are
nearest neighbors of the origin are not nearest neighbors
of each other. Simple-cubic and body-centered-cubic
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lattices are examples of this situation. Kith references
to Eq. (3.5) and (3.6), we have in the singlet state

(0) V[0) =g exp(iK R „)V(00,; m,m). (6.17)

In the sum over m, we retain only the terms in which
m=0 or is a nearest neighbor of the origin. Ke denote
the result by a. If, as is the case for integrals determined
from s-lite atomic functions, V(0,0; m, m) is independ-
ent of the direction of R, we have

(0)v[0) =a= v,+v(o,o,d,d)s(K, d), (6.1s)

S(K,d)=+exp(iK R ); (E =d)

and d is the nearest-neighbor distance. Next, consider

(0) V[i)K——v2 exp(iK R;/2) Q exp(iK R )„
X V(0,0; m, +i, ns) . (6.19)

The leading terms in this sum come from m=0 and
m= —i; other terms are three-center integrals. Ke
suppose again that the integrals are independent of
direction, and write

K R;
(0~ Vji)~=2%2cosx2K R,v(0,0;d,o)=bcos

2
(6.20)

where k = 2v2 V(o,o,d,o).
Similarly, we have the diagonal matrix clement

(i~ V~i)x, where R; is a nearest neighbor of the origin.
In this case, if three-center integrals are dropped, the
result is

B(Kk)=E(—+k)+E(—k)

K R;= 2 Ep+Ey g cos cost' R . (6.25)
2

Hence, we have, after a little algebra

K
P cos—R,(0[g~i)x——(E,v2)—' (E—2E,)

2

X&o I 8 I o)x-
8x'

d'kgb . (6.26)

The second term in (6.26) is the fraction of the volume
of the Brillouin zone in which the twin conditions
E(K/2+k))EF and E(K/2 —k))E) are satisfied. In
the low-density limit in which E&-:0 and only states
with E—4 are occupied, this quantity approaches
unity. We de6ne U(K) by

The assumption expressed in Eq. (6.23) is valuable
because it provides us with a set of identities which
substantially reduce the number of independent
quantities which have to be calculated. Consider the
6rst-neighbor singlet Green's function. From Eq. (3.2)
we have

cosk- R;
d'k g+q (6.24)

E—E(K,k)

in which R; is a nearest-neighbor-site vector. The
quantity E(K,k) can be written as

(i [ V
/ i)x= c= V(d 0; d 0)+V (d 0; 0 d) . (6 21) d'kq+rl = 1—U(K)

Sx'
(6.27)

E(k) =ED+Er Q cost R; (6.23)

in which the sum includes only those sites R; which
are nearest neighbors of the origin. The parameter E&

will be left unspecified. It has, however, a simple
physical signihcance as the 6rst-neighbor interaction
integral.

If we agree to discard all three- and four-center integrals,
there is no contribution from the general element

(q~ V~i)x for i~qWO.
The preceding results pertain to the singlet state.

In the triplet state, it is readily verihed that the
elements (0) V)0)x and (0[ V)i)x are zero. A nonzero
contribution is furnished by the elements.

(i) V~i)x= f= V(d,o;d,o)—V(d, o;O,d). (6.22)

Ke next consider the Green's functions. Ke need the
elements involving nearest-neighbor sites. In order to
simplify the calculations we will assume that a situation
of tight binding holds in which the one-particle energies
are given by

so that U vanishes in this limit. Thus

K
P cos—R;(0[gji) = (E v2) L(E—2Eo)

2
X(0~ g)0)x—1+U(K)]. (6.2S)

For special values of K, this result may be simplified
through the use of symmetry properties of the Green's
function. Let R; and R~ be nearest-neighbor site vectors,
so that R;= eR~, where e is an orthogonal transformation
in the point group of the crystal. Then

0 cose—'k. Ri
(OIBli)K= g+g d'k.

4s M E—E(K,k)

Now let k'= n 'k. The Jacobian of this transformation
is unity. Also, since the energy is invariant under such
a transformation, we have
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Thus,
&o I g li&K= &0l g I». , (6.29)

Also, we have E( K, k—) =E(K,k). Thus, if e is such
that eK= K, then

&olgli& =&olgl» =&olgl —'& =&olgl —», . (6.3o)

This result reduces the number of independent 6rst-
neighbor Green's functions. In particular, for E=O,
there is only one such function, so that Eq. (6.28)
becomes

&Ol gli&, = (zE,n)-~I (E—2E,)
x&OI glo), —1+U(0)] (6.31)

in which the number of nearest neighbors is denoted by
z. We also infer that (0I gl0)x has full cubic symmetry
under rotation of K, and that (Ol gl i)x is even in K.

A similar argument can be applied to the Green's
function &ilgl j)x where both R, and R; are nearest
neighbors of the origin. Suppose as before that R;= eR~
and also that Rj QR„.Then we have

(6.32)

In addition we have also

&il g I j)x——
&
—il g I j&*=&il g I

—j&x
=

&
—il gl —j&x= &il g I j&-x=(jl g Ii&x, (6 33)

etc. As a consequence we see that for a simple cubic
crystal for K=O, there are only two independent
Green s functions of this type: (il gli)o and &il gl j&0,
j~i, —i. There are also two and three independent
Green's functions in body-centered and face-centered
cubic lattices, respectively. Since (il gl j&x is even in
K, the foregoing statement must hold up to second
order in K.

An identity involving (jl gl i&x can also be derived.
We consider only the singlet Green's function. From
Eq. (3.2), this can be written as

exp(ik R;)cosk R;
q+g d'k. (6.34)

E—E(K,k)

Now we form the sum, involving all nearest neighbors,
then use (6.24) and (6.25). After some algebra we have

K
E c»—R'&jlgli&x=(~2E) '(E—2E)&olglj&*

2

see that in the low-density limit the second term on the
right side of (6.35) vanishes. Let us define

U(K, R;)= (1—g+g )exp(ik R;)d'k (6.37)
8x'

so that U(K)= U(K,O), where U(K) was defined in
Eq. (6.27). Thus we get

K
Ez P cos—R,(jl gli)K

2

=2—' '(E—2EO)(olgl j&x+U(K,R;). (6.38)

We will now proceed to construct the 3 matrix for
nearest-neighbor interactions. From the beginning we
will stay in the low-density 1imit which means that, as
long as we consider only occupied states, only small
values of K are important. We therefore put E=O.

At this point, we follow the procedures of Sec. 4.
It is possible to 6nd a unitary transformation U which
will reduce the potential and Green's-function matrices
for E=o. (In general, this will not be possible for
arbitrary K, so that in such a case one must invert
the matrix of dimension z/2+ 1.) The irreducible
representations of interest in constructing t are found
as follows:

For singlet states we have contributions from the
representations of the cubic point group of even parity
and such that functions transforming appropriately
can be constructed from components cosh. R;, where R;
is a nearest neighbor. For triplet states, odd-parity
representations are required, and the components are
sink R;. However, since we are concerned with low
densities, we need only F~, for the singlet states. Since
the functions C(k, R;) for triplet states are formed from
sink. R; the triplet contribution to the diagonal elements
of t is of order k', and is neglected here. If we were to
include it, the lowest representation to contribute would
be I'gs.

For the nearest neighbors, the contribution to U
from I'~ is U(I'~, R;)= (2/z)'~'. After applying this
transformation, we are concerned only with the 2)&2
submatrices coming from F~. These are as follows
Lwith reference to Eqs. (6.18)—(6.21)]:

(6.39)

exp(ik R;)g+g
—d'k. (6.35)

Sx'Eg (
8 l~"'8)

(6.40)

In the low-density limit, the excluded volume is sma11.
Since

in which go=(olglo)0, gi=&olgli&0, i is any first
neighbor, and

exp(ik R,)d'k=o (6.36) g.'=0 2&iI gl j&o= (2~&Ji~) '(E 2EO)ni—
(6.41)

when the integral includes an entire Brillouin zone, we 21/2 g
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In the second step in Eq. (6.41), we have used. the low-
density forms of Eq. (6.35).

It is now a straightforward matter to go through the
algebra involved in Eq. (4.23). The result is greatly
simplified with the use of (6.31). First, let us calculate
the determinant Dq. This is, with the use of (6.31),

where
D&= 1+(2sEg) '(Vo"—a) —Vo"go, (6.42)

Vo" a+2"——sb+zc+ (2Eg) '(-'b'z —ac) . (6.43)

VII. APPLICATION TO FERROMAGNETISM

We will now apply these results to an investigation of
the conditions under which particles interacting as
described in the preceding sections might become
ferromagnetic. Specificially, we will show rigorously
that at sufBciently low densities ferromagnetism will
not occur. At higher densities, a transition to a ferro-
magnetic state is possible, but we are unable to make a
completely definitive statement as to whether it does
occur since high-order terms in a certain series must be
examined.

Our approach here resembles quite closely that of
Kanamori. ' In addition, a very closely related problem
concerning the possible ferromagnetism of a gas of hard-
sphere fermions has been examined. by Ehrman" and
Huang. "Our conclusions are in many respects similar

"J. B.Khrman, Phil. Mag. 43, 404 (1957)."K.Huang, Statistical Mechanics I'John Wiley R Sons, Inc. ,
New York, 1963), Chap. 13.

The form of D~ is similar to that of the denominator
appearing in Eqs. (4.16) and (6.14) with the exception
that the term (Vo" a)/2sE—j appears A.fter some
algebra involving use of the Green s-function identities,
we have, with some restoration of indices

(aa,k i t'i aa, k) o

nv, " n fl

(6.44)
4n'Dq 4n' 1+(2zE&) '(Vo"—a)—Vo"go

The resemblance between Eqs. (6.44), (6.14), and
(4.16) should be noted carefully. The t-matrix element
has the same general form in each example. In partic-
ular, in the limit of large eEective potential, we obtain
t' a 2/I /where I is defined in Eq. (5.5b)$ for each case.
Moreover, the addition of other sites to the one-band,
one-site problem seems to have the e6ect of increasing
the efI'ective potential. This remark cannot be rigorously
proved, but is quite plausible since Ei will be negative
for a band with a minimum at k=0, and we expect
c&b, while b should be of the general order of magnitude
of ~E~~. Since we do not wish to consider a detailed
model of a crystal with specific wave functions, we will
not consider this point further. In the next section,
most of our arguments will be based on the large-
interaction limit of t.

to theirs, differences being primarily due to our inclusion
of band structure e6ects.

We desire to obtain a condition for ferromagnetism. It
should first be mentioned that in discussing the ferro-
magnetic state, we will consider only unsaturated
ferromagnetism. In the unsaturated ferromagnetic
state, there is a slight excess of spin parallel to some
direction, whereas in the completely ferromagnetic
state, all spins are aligned. We consider here the
unsaturated case, since it is possible to express a condi-
tion for its occurrence in terms of quantities evaluated
at the Fermi energy in the nonferromagnetic material.
This is not possible for the state of complete alignment.

In the following discussion we will refer in the
common manner to spin up and spin down, or to states
of + spin and those of —spin. It should. be realized,
however, that the discussion, perhaps in spite of
appearances, is reasonably free of ambiguity concerning
spin directions. We may define ferromagnetism as any
state in which more than 4 of the pairs of particles are
in triplet states, and less than —,

' are in singlet states.
It is this definition which is actually implied.

Moreover, we will examine this problem only in the
low-density limit in which the elements of t are constant.
The results of the previous section indicate that in this
case it is not particularly important to distinguish
between the situations in which interactions occur on a
single site and that in which they extend to first
neighbors. The latter case is slightly more favorable to
ferromagnetism, since the t-matrix elements are larger
on account of the term (Vo"—u)/2sE~ in (6.44)

Let us consider a set of S-degenerate bands, by which
we mean that, even in the low-density limit, there is
some occupation of states in each band. The bands are
represented by E (p) (a= 1, 2 ., N), the functions E
being computed with the electron interaction neglected.
Also, going with each E (y), there is a density of
states G (E), which we take to refer to a single spin
direction. Let us also define a total density of states

G(E)= Z G-(E)

2 G(E)dE= p, P 2)

where p is the density of particles.
Now consider the possibility of ferromagnetism. If it

occurs, the density of electrons of the majority spin
(up) will be greater than that of electrons of spin down
by an amount we denote by pf'. We wish to compute
the total energy of the system as a function of f. It is
convenient in doing this to regard the electrons of up

and adopt the convention that the energy of the lowest
occupied state is E=0.Then states of the noninteracting
system are occupied up to a Fermi energy p, , which is
determined by
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and down spins as having diferent Fermi energies,
which we denote by p+, and we also put p+= p, +by+.

It is first necessary to relate bIo~ to I'. This is easily
done by examining the condition

G(E)dE= ,'p(-1&)). (I 3)

If the integral on the left side of (7.3) is expanded to
second order in 8g, we find, correct to second order in f,

4+= ~el/2G6 ) I'f'o—G'(I )/8G'6 ) (7 4)

In Eq. (7.4), G'(p) denotes the derivative of the
density of states at the Fermi energy. We can now
calculate the average energy Eo Lthe first term in
(1.1) and (5.3a)j. If

2'U EG(E)dE =E„ (7 5)

where U is the volume of the entire system, we get

pof 2

gp —jV +~
4G(p)

(7.6)

This result is correct to second order in f and is in-
dependent of the detailed band shape except through
the assumption that G4c) exists.

We must now calculate the change in potential
energy. This calculation becomes more complex if more
than one band must be considered, so we consider the
one-band case 6rst. If the nonzero element of t is
constant, acting only in the singlet state, we have, with
the use of Eqs. (4.N) and (5.5), a potential energy

P.E.= 'UO/p

where

G(E)dE G(E)dE, (7.7a)

~o= Vo/(1 —BoVo) = Vo/(1+-', M), (7-7b)

We obtain after a simple calculation

P.E.= ''UQp'lo(1 -f'o) . — (7 8)

The condition for ferromagnetism in the one-band
model is evidently

nG(1.)~o&1.

This condition was erst obtained by Kanamori. ' In
the special case of a parabolic band LE(k) =yk'j, we
have

G(p) =ko/4or'y.

The total energy per particle is found by adding (7.6)
and (7.8), and then dividing by the number of particles
P3. %e get

Eo E, pQ 1—=—+—Ip+f' - - ——4
lV V 4 OG(y)

Then, with the use of the scattering length given in
(5.8), the condition becomes

kg'8 ~~ —
~2' (7.11)

We underestimate this quantity (thereby favoring
ferromagnetism) if we replace the actual Brillouin zone
by the sphere of equal volume (whose radius is k ).
Then we 6nd immediately

(7.13a)

k&o= Le+2k„/orko j-', (7.13b)

"W. Kohn and S. J. Nettel, Phys. Rev. Letters 5, 8 (1960).

which was obtained by Huang" for a hard-sphere Fermi
gas. A more elaborate calculation for the hard. -sphere
Fermi gas was attempted by Ehrman, "who suggests
that if the calculation is made properly at higher
densities, the number or/2 on the right of (7.11) should
be raised to 1.674, an increase of less than 10%.

It should be emphasized that the relation (7.10) is,
in the low-density approximation, valid regardless of
the range of the interaction either with respect to the
site index or the band index, provided that states in
only one band are occupied. It is necessary to inquire
under what circumstances the condition can be satisfied,
and in particular, if it can be satis6ed at densities low
enough so that the assumption of constant tp remains
valid. We have not proved rigorously that if it is
satis6ed ferromagnetism will necessarily result, because
we have not shown that the ferromagnetic state would
have a lower energy than that of some other order and
stat" — --for instance, a spin-density wave. Such a
possibility seems, however, somewhat remote in view
of the work of Kohn and Nettel. "

The condition for the occurrence of ferromagnetism,
Eq. (7.10), becomes independent of Vo when Vo is large.
Then we must have

2QG(p)/I &~ 1. (7.12)

In this form, the condition actually depends on the band
shape rather than the bandwidth. This may be seen
if we multiply the energy band. function E(lr) by a
constant k It can then be determined that (7.12) is
independent of ). A similar argument shows that the
magnitude of the energy diGerence between ferro-
magnetic and nonferromagnetic states is proportional
to A, , and thus vanishes if the bandwidth tends to zero.

Next, we will show that (7.11) cannot be satisfied at
all. To do this, we require an expression for k~c. For the
parabolic band, the quantity I appearing in (5.8) and
(7.7b) is given by

0 d'k
I=

8x' yk'
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QG(E)dE= 1. (7.15)

This gives one relation between the parameters

m.E ~ n n
a+bEp"+'B —+1,—+1 = 1

8 2 2
(7.16)

in which 8 is a beta function. We must therefore have
(defining a combination parameter s)

z= bEo"+'B —+1,—+1 & 1.
2 '2 (7.17)

where c is a positive constant: c= (QVokz/8~) '. We
then observe that the condition (7.11) cannot be
satisfied for k /ki &~ 1. But k must be greater than ki
since the Fermi surface must lie within the Srillouin
zone, from which our conclusion follows.

In the general case, we observe that since G(E)
approaches zero continuously as E approaches zero, for
any finite tp it is always possible to 6nd a density low
enough so that (7.10) is not satisfied. In other words,
ferromagnetism cannot occur for vanishingly small
densities if only one band is occupied. This result is
essentially the same as that of Slater, Statz, and Koster.

Next, let us try to 6nd an example in which ferro-
magnetism will occur, that is, we will invent a simple
density of states which, for some value of the Fermi
energy p (and therefore of the density p), satisfies Kq.
(7.10). Moreover, the density should be low. It is
apparent from the structure of Kqs. (7.10) and (7.7b)
that in order to accomplish this we need G(p) large, but
we must not make I unduly large at the same time. In
order to do this, we want to have a high sharp peak in
G(E) near the bottom of the band, since if p falls in
the peak, G(p) will be large, but by keeping the peak
narrow, we will not affect I so strongly. In this short
calculation, we will assume that Vp is large enough so
that to can be replaced by its limiting value of 2/I.

Let us assume the following simple form for G(E)

G(E)=gEU2(E E)12—
+bE"/'(Eo E)nnrl(Eo —E) (7 14)—

in which q is a unit step function:

q(x) =1 for x)0,
g(x) =0 for x(0.

The integer n appearing in the second term is
arbitrary. The quantities a and b are assumed to be
positive. This function gives a simple representation of
an energy band whose width is E (E )Eqby hypoth-
esis) on which is superimposed a peak which occurs
close to E0/2. The height and width of the peak are
controlled by adjusting the parameters b, Ep, n as
required. . We suppose that this band can contain at
most one electron of each spin, so that

A simple calculation shows that

lr g nI=—E a+bEp"B —,—+1
2 2'2 (7.18)

In+1
X 1—s 1—— — &~1. (7.19)

2 n

When values of the beta function are inserted in (7.19),
it is seen to be possible to satisfy the condition for some
values of z «& 1, for any value of n~& 3, and any value of
l. In particular, for large values of l and n, we can in
this simple model, achieve ferromagnetism for small
values of z, thus remaining in a low-density region.

One other example to which the criterion (7.10) may
be applied is the simple cubic lattice with an energy
band

E=Ep+ 2Ei(cosk~+ cosk&c+ cosk~o) (7.20)

in which a is the lattice parameter and E~ is negative.
This band was also considered in Sec. VI. In this case,
the quantity I is known as is the density of states. "
Equation (7.10) (with to 2/I) yi——elds the result that
ferromagnetism will occur provided the Fermi energy
is such that

LQGC ))&0123/IEil. (7.21)

Since the maximum value of the density of states is
about

L«(E)) =0.145/lE, l (7.22)

ferromagnetism would appear to be possible in this case.
Consideration of the actual form of the density of states
shows, however, that this value of the density of states
is not attained until the band is nearly 3 full, and we
do not know whether the approximations involved in
the derivation of (7.10) are still valid.

our general discussion would be more rigorous if it
could be shown that the approximation of a constant
t matrix is not too bad for reasonable densities. This
question is quite dificult to answer for bandshapes
which are favorable to ferromagnetism. A numerical
calculation for the case of the parabolic band, which
will not be described in detail here, suggests that the
optical potential, which is given by Kq. (5.4), varies

"T.Wolfram and J. Callaway, Phys. Rev. 130, 2207 {1963).

To obtain very nearly the maximum advantage from
the peak we have inserted, we will put Ii= Eo/2. Also,
we will define a quantity /=E„/Es (l)1). After a
straightforward calculation, it is possible to express the
condition for ferromagnetism in the form

2 (2l—1)'I'
1—z 1—

n n
4B —+1,—+1 2"(21—1)"'

2 '2
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p.E.=vo P Q r.,(~,~')
aP o, e'

G (E)dE

G, (E)dE. (7.23)

In this equation t s(o,g') refers to a matrix element of
t involving two electrons whose spins are 0 and 0-'. The
sum over spins can readily be expressed in terms of
triplet and singlet states. To simplify the rather
lengthy expression which is obtained, we define the
notat. ion

G (E)dL'=p, . (7.24)

remarkably little from its value for p= 0 all the way up
to the Fermi energy for a wide range of densities. In
this case, at least, the approximation is excellent.

We may summarize this study of the condition for
ferromagnetism in the low-density limit with only one
band occupied as follows:

(1) For sufficiently low particle density, regardless
of the nature of the density of states, ferromagnetism is
impossible. This conclusion is rigorously true.

(2) For some band shapes, such as the parabolic
band, ferromagnetism appears to be impossible for
all particle densities.

(3) If the density of states contains a sharp peak at
low energy, ferromagnetism is predicted if the Fermi
energy falls in the peak. This conclusion is, however,
not quite rigorous for two reasons: (1) higher terms (in
the density) in the 1-matrix expansion have not been
examined for bandshapes for which ferromagnetism is
predicted, and (2) the possibility of a spin ordering
more complicated than ferromagnetism has not been
considered.

Now we will discuss the condition for ferromagnetism
when more than one band is occupied. The basic
objective is to determine whether the existence of
exchange coupling between electrons in different bands
but "on the same atom" materially increases the
tendency toward ferromagnetism with respect to the
one-band situation discussed earlier. This clearly relates
to the old question as to whether the exchange coupling,
which tends to align the spins of electrons in partially
filled shells of free atoms, is of major importance in the
theory of ferromagnetism of metals. Of course, our use
of the t matrix implies that we can discuss this question
only in the low-density limit.

Let us assume that E bands are degenerate at 8=0.
In this case, Eq. (7.6) remains valid (recall that G is the
combined density of states). The calculation of the
potential energy must, however, be repeated.

In place of Kq. (7.7a) we have instead

The calculation is facilitated by the expansion

p-+= p-(p)+&p~G-(I )+2(bl ~)'G-'(p) (7.26)

valid for small differences in the numbers of electrons
of "up" and "down" spin. The quantities by+ can be
related to the spin excess through Eq. (7.4), which
still holds. We will not give the details of the rather
tedious calculation. To order f'2, we have

Eo/&=E./~'+nfl Z(3f-s'+Vs')I -I s/u'

+f'2[p/4G(p) ——208'g P.27)

in which p|——p|(p) etc. , and

M'= [pQ/2G(p)'jp(( '—t ')G (p)G (s)

+ (34p'+us') p-2&'(p)GP(p)IG(I ) Gs'(—I )j) (7 2g)

The quantity k8' has been de6ned so that the expres-
sion for the spin dependence of the total energy would,
for small 0., have the same form as that occurring in the
collective electron theory. The condition for the
occurrence of ferromagnetism is now

2G6 )&~'/u= Lfl/G(d )jZC(4s' —~-s')G-( )Gs6 )

where
+ (Bt '+t ')p ssG (p)]) 1, (7.29)

~a= G~(~) 'L&'6 )G~(J )/G(~) Gs'6 )]—

(sz G,)„' (7.30)

One conclusion can be obtained immediately. We may
assume that G (E) approaches zero as E"' when E goes
to zero (regardless of a). It follows that the left-hand
side of (7.29) goes to zero as p'" as p-+0; thus for
suf6ciently low densities, the inequality (7.29) cannot
be satisfied. Thus, just as we saw to be the case in the
one-band problem, ferromagnetism will not occur at
vanishingly low densities, regardless of how strong the
interaction is. At this point our conclusions diGer from
those of Slater and Koster, who suggested as a result
of their study of the two-particle problem, that ferro-
magnetism might be possible in the case of degenerate
bands at arbitrarily low densities.

The general condition may perhaps be interpreted
more easily if we examine a two-band case explicitly:
Let us introduce the ratio of the density of states of
bands 0, 1 at energy E:

r(E) =Gg(E)/Go(E) .

Then we have

012 Z(~a8 pa+ps++pa pp—+—pa+Ps j—
nP

+t p'p +ps ). (7.25)
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'lA'e can choose to number the bands in such a way that
r(P)(1, that is, GO(P))G1(P). Also we note that
s0(E)= —si(E). Then, on introducing r and performing
the sum, we put (7.29) in the form:

QGO(P)L1+r(P) j '{&00'+&'(P)~11'+2&(P)(&01'—&01')

+PO(P)/GO(P) j[PAOO' —Pi&11'

+ (Pl PO) (3~01 +~01')7}&~1. (7.31)

Let us begin to examine (7.31) by first introducing
the assumption that the two bands have the same shape
near the Fermi energy so that r(E) is nearly constant
near E=IJ,. This condition would be satisfied for two
spherical bands with diferent effective masses, for
instance. Then s0(P) may be neglected and only the
first term survives. Since r&1, the contribution from
the first two terms of (7.31) (including the term 1+r in
the denominator) will be less than or equal to QGO

times the larger of tpp' and t~j.'. There is no reason to
expect this contribution to the inequality to be appre-
ciably more favorable to ferromagnetism than in the
one-band case; in fact, the contrary seems more
probable. However, there remains the additional term
proportional to

2Vpi. ~p

2 (/01 $01 ) = . (7.32)
L1 gOll 01 01$ g01 i 01,10

This is the "true" exchange term. It is probably always
much smaller than the leading term involving tpp ol
t'ai'. First, we always expect Vpy, ygC(Vpy, py' and second,
the screening, which is dominated by the large element
with Vp& p&) ls quite strong. The term 1—

gp&Vp&, p& is
squared.

Thus, the "true" exchange term does make some
small contribution to the dominant tpp' and ti~' terms.
It is certainly unlikely that it would ever make the
dominant contribution to kg' although it might be
possible that this contribution would make the dif-
ference between paramagnetism and ferromagnetism in
some material. In the case in which the two bands are
spherical, the term (7.32) does make it possible, in

principle, to satisfy the criterion (7.31). This only
occurs, however, for extreme values of the parameters.

We will look brie6y at the remaining term in (7.31).
The quantity sp can be large in magnitude if the Fermi
energy is in the vicinity of a critical point. Either sign
is possible in this case, and it is conceivable that an
important contribution could be obtained. Also, a
positive contribution, proportional to p, '" to lowest
order, results in the case in which band 0 is narrow and
band 1 is wide. Thus, this term may be of some signif-
icance in the s—d exchange interaction. Further
investigation would require a more detailed band model
than is appropriate here.

VIII. SUMMARY

A useful set of properly symmetrized two-electron
wave functions has been introduced which facilitates
calculation of the t matrix.

Explicit formulas have been obtained for elements of
the 3 matrix in the low-density limit for (1) interactions
in a single band on a single site, (2) interactions on a
single site connecting a pair of bands, and (3) interac-
tions in a single band extending to first neighbors.

An expression has been obtained for an effective
one-body "optical potential, "which has been evaluated
in a simple example.

The occurrence of unsaturated ferromagnetism in a
low-density system has been studied. The ferromagnetic
state is predicted to be the ground state of the system,
subject to certain possible reservations concerning
other kinds of spin ordering not discussed here, in the
case of the interactions mentioned above, if certain
inequalities are satisfied. It can be concluded rigorously
that ferromagnetism cannot occur for sufficiently
low particle density, whatever the band structure.
Somewhat less rigorously, ferromagnetism is predicted
to be possible for certain band structures, particularly
favorable conditions existing when the Fermi energy is
close to the maximum of a narrow peak in the density
of states.


