
DETERMINATION OF THE ENERGY GAP OF LiD

region of the left Rank of the curve where, according to
theory, the Compton component will not yet have
developed an important intensity. The existence of a
region free of Compton scattering can be investigated
by calculating the ratio of the ordinates of Figs. 4 and 5
after subtracting the continuous backgrounds. We found

by this method that, in e6ect, the ratio was constant
on a considerable region of the left Rank. Sy using this
constant value as a scale factor, Pigs. 4 and 5 can be
plotted together (Fig. 6). They show good fit on the
left side of the picture and a Compton component on
the right. On Fig. 7 the two components have been
drawn separately. The Compton spectrum shows a
rather well-de6ned limit on the side of the short wave-
lengths. Figures 8, 9, and 10 represent the correspond-
ing results for metallic lithium. We notice that, also in
this case, the Compton component shows a well-

defined limit (Fig. 10), but it is shifted towards shorter
wavelengths than in Fig. 7 by 0.065'. The difference

between the two limits gives an energy gap of 5.4 eV.
The error is evaluated to ~0.8 eV. The curves of the
Compton component in Pigs. 7 and 10 cannot be com-

pared directly with any theoretical curve of the Comp-
ton spectrum because, as mentioned, they are distorted.
We notice that their general forms are similar but
their widths diRer by 15%.As the distorting eRects are
the same in both cases, we conclude that the Compton
profile of Lin is wider than that of Li.

The e6ects of distortion can be evaluated in an
approximate way, by the method proposed by Lord
Rayleigh. "The deconvolution will give a sharper cuto6,
a steeper and more rectilinear Rank on the left side, a
sharper maximum and minor changes of the form on
the right side. The general form, however, will not
change much.

"J.W. Strutt, 3rd Baron Rayleigh, Scientific Papers (Cambridge
University Press, New York, 1899), Vol. I, p. 135.
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Optical-absorption line shapes arising from interaction of the electronic states of impurities with the vi-
brational modes of the crystal are considered. It is shown that this line shape may be expressed as an E-fold
convolution integral, where each element of the convolution is the line shape due to a single vibrational mode
of the ground state of the system. Two types of vibrational modes, linear and quadratic, are considered in
detail in both the semiclassical approximation and quantum mechanically. It is shown that the semi-
classica1 approximation, although often of use for linear interactions, has limited validity for quadratic
modes. Formal methods are developed for performing the convolution integral to obtain the line shape due
to a number of vibrational modes. Explicit numerical examples are presented.

I. INTRODUCTION
' PREVIOUS work on the inRuence of lattice vibra-

tions on impurity absorption bands has centered
largely on the simplest possible model of the lattice-
impurity interaction, i.e., a linear interaction. Such a
model was first considered by Muto, ' Huang and Rhys, '
and Pekar. ' Their calculations were extended and
formalized in an elegant paper by Lax' and later by
O'Rourke. ' This model has been successful in explaining
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the general features of the absorption line shape for
several impurity centers.

For many impurity centers of interest, this simple
model will not be wholly adequate. In particular, if the
impurity site is a center of inversion, the linear inter-
action will vanish by symmetry for half of the vibra-
tional modes (those of odd parity); and, for these
modes, a quadratic interaction will dominate. Previ-
ously, such modes have been considered only in the so-
called semiclassical approximation or in perturbation
theory. In this work, the 6rst thorough quantum treat-
ment of line shapes due to quadratic modes is presented.
The complications of quadratic modes are such that the

' S. Pekar, Zh. Eksperim. i Teor. Fiz. 20, 510 (1950); Uspekhi
Fiz. Nauk 50, 193 {1953).

4 M. Lax, J. Chem. Phys. 20, 1752 {1952).' R. C. O' Rourke, Phys. Rev. 91, 265 (1953).
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use of a digital computer in calculating the line shape is
convenient.

In addition to the quantum theory of linear and
quadratic modes, a commonly used method for de-
termining the approximate line shape, the semiclassical
approximation, is considered. The limitations and range
of validity of this method are carefully explored. In
particular, it is found that the semiclassical approxima-
tion, although often useful for linear interactions, has
extremely limited validity when applied to quadratic
modes; and, in fact, often leads to completely erroneous
results.

Contemporary with the work of Refs. 1 to 3,Williams, '
and Williams and Hebb~ independently developed an-
other treatment. They considered a model, first pro-
posed by von Hippel' and Seitz, ' in which only one
normal coordinate, referred to as the CC (configuration
coordinate), interacts appreciably with the center. For
many impurity centers, a single interaction is not an
adequate description of the system, and any realistic
model must include a variety of interacting modes.
McCumber" has developed interesting formal methods
for calculating the line shape when the interacting
modes form a dense set. These methods are appropriate
when the impurity has a relatively weak interaction
with the host crystal, and have proved, successful in
fitting a number of experimentally observed line shapes.
In this work, methods for including the interaction of an
arbitrary number of vibrational modes, both linear and
quadratic, are developed. These methods are particu-
larly appropriate to a relatively tightly bound, strongly
interacting impurity center.

The general plan of this work is as follows. In Sec. 1I
the theory of absorption line shapes is considered in
general terms. The principal result of this section is that
the total line shape for an impurity center can be ex-
pressed as an S-fold convolution, where each element of
the convolution is simply the line shape due to a single
normal mode of the ground state of the system. The
normal modes may then be divided into three types.
The first type, the linear mode, is reviewed both quan-
tum mechanically and in the semiclassical approxima-
tion in Sec. III.

Section IV is an exhaustive treatment of the second
type of mode, the quadratic mode. The quantum theory
of quadratic modes, first at zero temperature and then
for finite temperatures, is considered. The final part of
Sec. IV is a careful consideration of the semiclassical
approximation as applied to quadratic modes, and its
relation to the quantum theory. The third type of mode,
which contains both linear and quadratic interactions,
will not be considered here. Although modes of the third

~ F. E. Williams, J. Chem. Phys. 19, 457 (1951).
7 F. E. Williams and M. H. Hebb, Phys. Rev. 84, 1181 (1951).
8 A. von Hippel, Z. Physik 101, 680 (1936).
9 F. Seitz, Trans. Faraday Soc. 35, 79 {1939)."D. E. McCumber, Phys. Rev. 135, A1676 (1964); J. Math,

Phys. 5, 221 (1964); 5, 508 (1964).

type present no new difhculties, the increase in algebraic
complexity does not seem to be balanced by new
physical insight.

In Sec. V, the formal methods necessary to perform
the convolutions to obtain the line shape due to an
arbitrary number of interacting modes are developed.

II. GENERAL THEORY OF ABSORPTION
LINE SHAPES

A. The Line Shape Function

Following Lax' we can, in the adiabatic and Condon
approximations, write the normalized line shape func-
tion, for transitions from electronic state a to electronic
state b, as

Ioi, (E)=Av g~(ao~bP)~'B(ei, s—eo, E). (2.—1)

(aa
~

and (bP ~
are the vibrational wave functions for the

ground and excited electronic states, respectively, and
satisfy

(2.2)

where iy stands for either aa or bP, T~ is the nuclear
kinetic-energy operator, and X represents the nuclear
coordinates. E;(X) is the adiabatic potential in which
the nuclei move and is the energy eigenvalue of the
electronic part of the adiabatic Hamiltonian" for state i,

PTg+ U(r, X)j@,(r,X)=E,(X)y, (r,X), (2.3)

where T~ is the electronic kinetic-energy operator, r
represents the electronic coordinates, and U (r,X) stands
for all the terms in the total Hamiltonian except the
nuclear and electronic kinetic energies. Av„stands for a
thermal average over initial vibrational states and Pii
for a sum over final vibrational states.

The adiabatic potential Eo(X) for the ground state
may be expanded in a Taylor series in the displacements
of the nuclei from their equilibrium positions. Perform-
ing a normal-mode transformation, the adiabatic poten-
tial becomes

(2 4)

where Q;, 3E;, and a&,, are the normal coordinate, mass,
and frequency of the ith normal mode. Using T&
= —P;(b'/2M, ) (8'/BQP), Eq. (2.2) for the ground
state may be written

h' 8'
+i2iV,a&,,'Qp p, (X)

2M; BQP

"M. Born and K. Huang, Dynamical Theory of Crystal I.attkes
(Clarendon Press, Oxford, England, 1954), p. 406,
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The solutions to Eq. (2.S) are

(2.6)

coordinate functions pbbs,. satisfy

+;M-,~,b'QP+Q* ~'+ 2 l'* v'~u, *(Q )'
where y, , (Q~) satisfies

h' 8'
+~2M,~„'Qp q, , (Q,)

2M, BQ;2

= ~-;v-;(Q') (2 7)

and is a harmonic-oscillator wave function.
%'e are interested in transitions from the ground state

a to some excited state b In ord. er to evaluate Eq. (2.1)
we will need vibrational wave functions for the excited
state. These wave functions could be obtained in the
same way as those for the ground state; but in general
the Q; will be different, since the symmetry of the
excited electronic state, and hence of the adiabatic
potential, diGers from that of the ground state. Equa-
tion (2.1) will thus involve the evaluation of multi-
dimensional integrals. In order to avoid this complica-
tion, we expand the adiabatic potential for the excited
state b in the normal mode coordinates for the ground
state

XQtq es;(Q~)dQ& q b s(Q.) = e~s, q ~s, (Q;). (2.10)

Equation (2.10) has the form of a harmonic-oscillator
equation with displaced equilibrium. Thus by choosing a
self-consistent set of displacements from equilibrium,
we can obtain vibrational wave functions for the excited
state which are a product of harmonic-oscillator func-
tions (with changed equilibrium and frequency) in the
ground-state normal coordinates. These functions will,
of course, only be accurate if the cross term is not large;
but they will certainly be better than those obtained by
ignoring the cross term entirely.

Using the wave functions, Eqs. (2.6) and (2.9), the
spectral representation of the 5 function

b(E—&o) = dt exp ——(Eo—E), (2.11)
2mA

and the fact that

E~(X)=E s+Q .4,Q,+-', Q M,~,QQP

+ 2 I'*~Q.Q~ (2.8) xE m(
— )Lf(p, c)3

A~(x) =II v bt;(Q*). (2.9)

Using the variational principle" we 6nd that the one-

"See, e.g. , F. Seitz, 3Adern, Theory of Sohds (McGravr-Hill
Book Company, Inc. , Neer York, 1940), p. 677.

If the last term in Eq. (2.8) were zero, the vibrational
wave function for the excited state would be a product
of harmonic oscillator functions of the Q, , diGering from
the ground-state functions in their equilibrium posi-
tions, due to the appearance of the term linear in Q;, and
in their frequencies, due to the appearance of u;b
instead of co;,.

The cross term in Q; and Q; causes a severe problem.
In certain cases of high symmetry it may be shown to
vanish, but in many cases of interest it will not. One
method of dealing with this term is simply to assume
that it is small and neglect it. A second method is to use
the Hartree approximation to obtain a best set, in a
variational sense, of functions in the form of a product
of functions of the Q;. We take as a trial solution to
Eq. (2.2) for state b, with the adiabatic potential of
Eq. (2.8),

(2.12)

the line-shape function, Eq. (2.1), may be written

I., (E)= dt e~ —(E—Z.,) g g, (t), (2.13)
2grh

where

g, (t)=«., 2 1(bP, I ~') I'

it
)&exp ——(e,.,—e~p;) . (2.14)

The Fourier transform of the line-shape function is a
product of functions g, (t), which involve only the ith
normal coordinate. Notice that g, (t) is just the Fourier
transform of the line-shape function for the case in
which only the ith mode is present. Thus we may com-
pute a line-shape function for each mode independently
and then obtain the total line-shape function by taking
the Fourier inverse of the product of the individual
mode Fourier transforms. Alternatively, the convolution
theorem could be used to write Eq. (2.13) as an E-fold
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convolution,

Igb(E) = I.s"'(E )I p&'& (E2 Ef)

y I,~» (E EN—,)dE, dE~, (2.15)

where X is the total number of modes and I,q~'&(E) is
the line-shape function for mode i.

We may divide the vibrational modes into three
types. First, there are modes for which the frequencies
in the ground and excited states are the same, but the
excited state adiabatic potential contains a term linear
in the normal mode displacement. These linear modes
will be treated in Sec. III. For normal coordinates of
certain symmetries (e.g. , odd-parity modes), the linear
term in the excited state adiabatic potential will vanish,
and the two adiabatic potentials can diEer only in their
frequencies. This second type of mode will be treated in
Sec. IV. The third type of mode, which has both a linear
term and a frequency change, will not be considered
here.

B. General Features of Spectra

From Eq. (2.1) we see that the line-shape function
consists of a number of 8 functions, centered at various
energies. We shall see that as more interacting vibra-
tional modes of various frequencies are added, the
average spacing between adjacent b functions decreases,
until ultimately the spacing becomes less than the
bandwidth of the spectrometer, and the observed spec-
trum becomes continuous. A spectrometer set at an
energy E actually sees the absorption over a range of
energies from E—26E to E+-,'dE, where AE is the
bandpass of the instrument. Thus to obtain the ob-
served spectrum at E, we should add all of the weights
of the 6 functions in the range E—26E to E+2'd,E. This
amounts to enfolding the 6-function spectrum with a
square wave of unit height and width d,E. More
realistically, since the bandpass of a spectrometer is
more like a Gaussian, we should convolute the 5-function
spectrum with a Gaussian, whose width is the band-
width of the instrument. Using this arti6ce, we obtain
continuous spectra for comparison with experiment.

Of course this bandwidth e8ect is not the only source
of broadening of the 5 functions. We have assumed the
validity of the adiabatic approximation and retained
only harmonic terms in the adiabatic potentials. The
vibrational levels of the ground and excited states are
then stationary states of the system, neglecting the
radiation field. In a real crystal, deviations from these
approximations will give the phonon levels finite life-
times and hence widths.

�

p= 5
=2

]~ P FIG. 1.Vibrational transi-
tions for a linear mode at
T=O. The transition with
the lowest possible energy is
n =0~ P =0, and the line
shape has a cutoff on the
low-energy side.

Eg(q) =E,g+ aha& (neo/h)"'q+ ,'mafq', -
E.(q) =—,'nuu'q'.

(3.1)

q is the normal coordinate and a is a dimensionless con-
stant which characterizes the size of the interaction.
The solutions to Eq. (2.2) for the ground state are

(3.2)

where p=(nuu /)h"'q and H (s) is a Hermite poly-
nomial. "The ground. -state energies are

e..= (a+-', )Aced. (3.3)

The solutions to Eq. (2.2) for the excited state are

~'~'2~P!

with energies

(3.5)

In order to compute the function (2.13), we wish to
evaluate the overlap integral

(3.6)

It is easily shown" that this integral is given by

semiclassical approximation. 4 Most of the results of this
section are not new; however, we derive them from a
somewhat diferent point of view, providing a useful
introduction to the theory of quadratic modes. We take
as the excited- and ground-state adiabatic potentials

III. LINEAR MODES

In this section we will consider the line shape due to
linear modes in the quantum theory and also in the

~ E. T. Copson, Functions of a Complex Variable (Oxford Uni-
versity Press, London, 1935), p. 271.

'4 T. H. Keil, thesis, University of Rochester (unpublished).
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FIG. 2. The line shape due to a hnear mode at T=O for four values of the coupling constant: (a)
)u~=1.3, (b) )a~=2.0, (c) $e'=4.0, and (d) $a'~20.0. The energy coordinate is I'= (E—E~+a'%au /2)/~ )see Eq. (3.8)g. The continuous line in (c) and (d) is the semic~cal line shape.

The I.„"(z)'s are Laguerre polynomials. "For T=0,only
the a=O ground vibrational state is occupied and the
line-shape function may easily be evaluated; using
I.o"(z)= 1, and, letting p =P—cc, we find

&(b(p4)+E, b
—gaia'hem

—E) . (3.8)

The line-shape function, Eq. (3.8), consists of a series of
evenly spaced 8 functions, with varying weights. The
weights may be shown' " to increase as p increases,
reaching a maximum near p= pa' and then to decrease
as p increases further. Note that the line shape, Eq.
(3.8), has no contributions from negative p's; so there
is a cuto6 on the low-energy side of the absorption band.
This occurs because, at T=O, only the o, =O ground-
state vibrational level is occupied, and. the transition
with the lowest possible energy from this state is
cc=O~P=O (see Fig. 1), which gives P=O. For sea'

large, this cutoff will not be important, since most of the
absorption will be far away from the cutoff. Examples of
linear mode line shapes at T=O for four values of ~~a':
'u'= 1.3, &a'= 2.0, -'c'= 4.0 and -'u'= 20.0 are shown in
Figs. 2 (a)—2 (d). In these figures each 8 function is plotted

"E. T. Copson, Ref. 13, p. 270."J. J. Markham, Rev. Mod. Phys. 31, 956 (1959}.

as a vertical line, with height equal to the weight of the
cl function. The continuous curves in Figs. 2(c) and 2 (d)
are the semiclassical line shapes.

The linear mode line shape for arbitrary temperatures
may also be evaluated. Since the ground- and excited-
state frequencies are the same, the energy of a given
vibrational transition depends only on the difference
between excited- and ground-state vibrational quantum
numbers. Hence, the thermal average may be per-
formed in closed, form with the aid of the identity"

(~yt)
—mt 2 (x+y)t i 2(xyt)'"I, (3.9)

where I (z) is the Bessel function of the first kind with
imaginary argument. The line-shape function becomes

I c, (E)= Q h(phcu+Eoc, xmas E)— —

Xexp)(phcd/2k T)—sa' coth(hcd/2k T)j
XI„[)a'csch(ha&/2k T)j (3.10).

Examples of this line shape are shown in Figs. 3(a)
to 3(c).
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tanh(ko/2k T)
)&exp —(E—E,b)'

(aha))'
(3.11)

It can be shown'" that the line shape, Eq. (3.11), is a
good approximation to the quantum line shape in two
cases: first, if the frequency of the oscillator Aced is
small compared to the temperature kT, and second if
the coupling constant a is large. In the first case both
oscillators are treated classically, and in the second only
the excited-state oscillator is treated classically. tA'e will

see in Sec. IV that for quadratic modes the large
coupling case does not occur and the semiclassical ap-
proximation is correspondingly restricted. An example
of the semiclassical line shape for large coupling is
shown in Fig. 2(d).

IV. QUADRATIC MODES

A. Introduction

Thus far we have considered only the interaction of
vibrational modes for which the difference between the
excited- and ground-state adiabatic potentials is a con-
stant plus a term linear in the normal mode displace-
ment. If the impurity system possesses a center of
inversion, symmetry dictates that the linear term
vanish for odd-parity modes. In this case, the electron-
lattice interaction will be dominated in the Condon
approximation by the difference in frequency between
the ground- and excited-state oscillators. The adiabatic
potentials may be written

Ee(q) =E a+ Rcr/be/a'q',

E,(q) = ,'me/. 'q'. — (4.1)

Discrete quadratic modes have previously been con-
sidered only in the semiclassical approximation. "%e
present here the first thorough quantum treatment of

"Y.Toyozawa, Progr. Theoret. Phys. (Kyoto) 22, 455 (1959).

The semiclassical line shape4 for a linear mode is
given by

tanh(he//2k 2') '"
I,b"(E)=

ir (aha/)'

B. One Quadratic Mode, Zero Temperature

The solutions to Eq. (2.2) with the potentials of Eq.
(4.1) for the ground and excited states are

g -1/2

e "&'/'II. (-aq) )q-(q) =
~1~22-~!

(4.2)

~be(q) =
~1~22~pI

—1/t2

e—+&'/RII (bq)

where a= (i/ie/ /h)'/' and b= (etc/ /h)'/' The energies are

e..= (cc+-,')hc0. ,

abc= (P+ i)hcoa+E~b.
(4.3)

Using the density-matrix method of O' Rourke, ' the line

shape may be written as a Fourier integral

(~ ~ )1/2

I.a(eI) = [1—exp( —P.)g dt e—* '

where

&((n+'P1 —exp( —P,—in t)$'
—n 'p —e~(—p.—in, t)]'

Xexp (2icv bt) ) '/', (4.4—)

ce = (E E.b)/h+ ,'ee. ,'e—/ b)-——
po= hceo/k T,

Q+ = (c0~+cc/b)

n R= (coo—eea)R.

For zero temperature the line shape is

(~ ~ )1/2

I,b(cv) =

(4.5)

dt e c~'Ln+ —n exp(2ie&at)] '/ . (4.6)

quadratic modes. In Parts 3, C, and D we derive
explicit expressions for the quantum line shape, first for
zero temperature and then for arbitrary temperatures.
In Part E we explore the semiclassical line shape and
consider its validity and relation to the quantum line

shape.
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Expanding the factor in brackets in a power series in
exp(2icuql) and using Eq. (2.11), the line-shape function
becomes

CdCIM I5 ceI.c,((o) = P b(2lcdc, —cd)
Gr~+(Ar g

TABLE I. Q eight functions for one- and three-dimensional
quadratic modes.

2) (/22 1{)I)2 (2~+1)!/2"(~!)'

1
1/2 =0.500
3/8 =0.375

5/16 =0.312
35/128 =0.274
63/256 =0.245

231/1024 =0.221

1

3/2 = 1.50
15/8 = 1.88

35/16 =2.08
315/128 =2.46
693/256 =2.71

3003/1024 =2.93

Equation (4.7) consists of a series of equally spaced 8
functions with spacing twice the excited-state vibra-
tional frequency. The quantities 2l!/2" (l!)' for the hrst
few values of l are listed in Table I.

Inspection of Table I shows that for all admissible

values of the parameter

x'= ((ah co.)'/(—(oc,+cd,)'&1, (4.8)

the weights of the 5 functions decrease monotonically
with increasing l. Thus the peak of the line shape is
always at l=0 (ra=0). No absorption appears on the
low-energy side of co=0 and the line shape has a tail on
the high-energy side regardless of whether the excited- or
ground-state frequency is larger. Using Stirling's for-
mula it can be shown that the weight function decreases
like l "'exp( —Cl) for large l (C is a constant). The
sharp cutoG on the low-energy side at 7=0 results from
the fact that only the 0.=0 state is occupied, and the
transition with the lowest possible energy isn =0 —+ P=0.

Figures 4(a)—4(d) give examples of the line-shape
function, Eq. (4.7). The zero of energy is given by
Ace=0 [see Eq. 4.5)j and the energy is in units of the
excited-state vibrational frequency ~&. '@lith x' defined
in Eq. (4.8), Fig. 4(a) corresponds to xm=-,', Fig. 4(b) to
x'=-'„Fig. 4(c) to x'=4, and Fig. 4(d) to x'=x~. hco, is
plotted as a barred line in each figure. The half-width of
the line-shape function occurs, from Table I, when
0&1&1. Thus the half-width is on the order of the
excited-state vibrational frequency.

The energy variable Aced is dered with respect to the
difference in zero-point energy of the ground- and
excited-state oscillators Lsee Eq. (4.5)j. Since the peak
of the absorption lies at bee=0, changing this di6'erence
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W /W = (m'/m)"'. (4.10)

The corresponding expression for a linear mode at 7=0
contains a fourth root instead of a square root."Both
the peak shift and width change are expected to be
sensitive to temperature since the mass appears in
Puuo/kT.

For completeness we give the first three moments of
Eq. (4.7)

M"& = L»,((o. o) g)'/4—au~&„

m&'& = (N&)'(a).' ra&2)/R—o,'(v &2, (4.11)
m"'= (h a)'(~.'—~s')'(~.'+~0)/S .'~~'.

Here

(e.g. , by changing the mass of the oscillators) shifts the
peak. This is in direct contrast to the linear mode case,
where changing the oscillator mass does not shift the
peak. The peak shift for a quadratic mode is given by

6 peak= )[1—(m/m')'&2)h(co, —au&), (4.9)

where m is the original mass and m' the new (ca, and &a&,

are the original frequencies), and Apeak is taken as
positive if the shift is to higher energy.

Ke also expect a change in the half-width with a
change in the oscillator mass. The weights of the 5

functions do not change with a change in mass. Hence
the change in width is due only to the change in Aced&, and
we may write the ratio of the half-widths as

Here, &u= (E—E,q)/f&+-2~, . Thus for ra&&&ruo the dis-
crete line shape goes over into a continuous curve. The
absorption has a sharp cutoG on the low-energy side,
with absorption beginning at E=E, &

)h—ca, and. de-
creasing exponentially as E increases further.

It may seem surprising that, for zero frequency in the
excited state, the line shape should become a continuous
function of energy with finite width. Inspection of
Figs. 4(a) to 4(d) shows that as x' becomes close to one
(which means, for co fixed, as s&q tends to zero), the
ground-state vibrational functions overlap appreciably
with a larger number of excited-state vibrational func-
tions. Roughly, this number increases linearly with
&o /cu», and becomes large as coq —+ 0. At the same time,
the spacing between excited vibrational states decreases
like coq/&u, . In the limit these two effects "cancel" and
the line shape (4.13) is obtained.

C. Degenerate Quadratic Modes, Zero Temperature

In a real crystal, two- and three-fold degenerate (as
well as nondegenerate) vibrations may be present.
Hence it is of interest to examine the line shapes due to
multidimensional quadratic modes. First we consider
two quadratic modes, where the two ground-state fre-
quencies are co and the two excited-state frequencies are
&oq. From Eqs. (2.13) and (4.6) the line shape is

M&"&= I.&, ((o) (lI4&) "d(ha))
I.&,((») = dte '"'[0+'—0 'exp(2m~/)] ', (4.14)

and

m'"'= I.»(al)(hrd —Mo&)"d(bed).
where co= (E—E &,)/f&+&a, —s», . Proceeding as before,
we obtain

For quadratic modes the line shape is highly asymmetric
and the first moment has little relation to the peak of
the absorption.

Finally we consider the case for which coq&(co,. %e
expand Eq. (4.6) in the small quantity &a&/&uo and keep
only lowest order terms, that is

0+ =(de +2ci0aMg p

0 =M~ MgN& ) (4.12)

exp (2uog) = 1+2&a»t.

The line-shape function becomes

1 00

I.b(ra) =—(2cu,)
—'&' dk e''[2/ce. -iQ'&'-

The integral may be performed" and the line shape is

s-"(2/(u. )' 'a)-"' exp( —2ar/au. ) ((o&0)""'= 0 (.&0). (4.13)
' C. C. Klick and J.H. Schulman, Solid State Physics, edited by

F. Seitz and D. Yurnbull (Academic Press Inc., New York,
1957), Vol. 5.

19 J3atemae Maguscript Project, Tabks of Irftegra/ Transforms,
edited by H. Erdelyi (McGraw-Hill Book Company, Inc. , Neer
York, 1954},Vol. 1, p. 119.

4CO~Gl f&I.g(co) = Q 5(2tcob —(a) . (4.15)
(~.+~b)' &~ a+5

'The first three moments of Eq. (4.15) are just twice the
corresponding single-mode moments, Eq. (4.11)."This
simple additivity does not apply for higher moments.
The general features of the two-dimensional quadratic
mode line shape are similar to those of the one-dimen-
sional line shape. The absorption is generally broader,
but the peak is still at ~=0, and the sharp cutoG on
the low-energy side and the high-energy tail are still
present.

Next we consider three quadratic modes, where the
three ground-state frequencies are co and the three
excited-state frequencies are co&. The line shape is now

(~ ~»)I.a(~) =

)( dt e '"'[0 '—0 'exp(2uv&)| "' (4.16)

~ A. Gold and T. H. Keil (to be published); see also Ref. 14.
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where co= (E E,c)/h+—3co /2 3coc/2; an—d in terms of
5 functions

8 (co~co g) i co

I„g(co)= —g b(2lcoc, —co)
(co.+~~)' c~

(2l+1)! co,—coc,
"

X — . (4.17)2"(l!)' co,+coc,

The 6rst few coeKcients (2l+1) ~/22c(l!)' are listed in
Table I. The erst three moments of Eq. (4.17) are given
by three times the corresponding single-mode moments,
Eq (411) 'o

In Figs. 5(a) through 5 (d) we have plotted Eq. (4.17)
for four values of x': x =~~, x'=-,', x'=g, and x =$.
Again the absorption is broader than for a single mode,
and a low-energy cutoff and high-energy tail appear.
One new feature appears; for 0& ~~, the lowest energy,
cv =0 peak is no longer the highest. Inspection of Table I
shows that the peak will be pushed to higher energies
(in units of hcoc,) as x' becomes closer to one.

Methods for treating more complicated cases of
degeneracy (e.g. , if the degeneracies for the ground and
excited states are difFerent) will be developed in Sec. V.

D. Quadratic Modes, Finite Temyeratures

1. General Considerations

The essential complication for quadratic modes at
finite temperatures is that the energy of a given transi-

tion does not depend solely on the difference between
ground- and excited-state vibrational quantum num-
bers. Because of this, the line shape becomes signifi-
cantly more complicated and can no longer be expressed
in a simple form. The most convenient way to calculate
the line shape is to let a digital computer do most of the
work. %'e have written a computer program" which
calculates the line shape and, with the aid of a digital
plotter, draws this line shape on graph paper. For the
relatively complicated line shapes considered here, such
methods are essential.

The moments of Eq. (4.4) are easily obtained, and
before proceeding to calculate the line shape we tabulate
the 6rst three moments,

M"&= h f (co,—cog)'+ (co,'—coc,')
X[1—coth(hco, /2kT) j)/4co„

m'" = h'(co '—coc2)' coth'(hco /2kT)/Sco, ' (4.18)
~'"= h'(co '

coc,')'[2co ' c—oth(hco. /2kT)
+ (coc,

'—co ') coth'(hco /2kT) j/Scoo'.

M(" is again measured with respect to bee=0.
The calculation of the line shape begins with Eq. (2.1)

I l&(hco) = [1—exp (—hco, /kT) jP exp( —cchco, /kT)

XP!IS p!'b(Phcoc, ochco, lao), (4.19)— —

2'T. H. Keil, report, University of Rochester, 1965 (unpub-
lished).
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where

z -(q) z ~//(q)dq.

we expect that most of the contribution to the overlap
integrals occurs for a=P. It can be shown" that, for

(4.2o) „, „
c/a~(q) and q I,s(q) are defined by Eq. (4.2), and cd by
Kq. (4.5). In Appendix A we develop several expressions
for S p, the most compact of which is

(1 xz)1/2-1/2 ( ])a/4 —/I/4+1/4

S p
——

(a IP I)c /z

(1—x')'/z~
XPa/2 p/z+c/z~"+&"+'" z l, (4.21)

where x= (cdc, —cd,)/(co/+cd, ), and P„"(i)iss the as-
sociated Legendre function. ~ The selection rules are
contained in the factor P„"(is) For /c and c h.alf integers,
I'„" is a polynomial in g. For p and v integers, I', I' is
identically zero. Thus 5 /z will be nonzero when a and P
are either both even or both odd, and zero otherwise.
This is just a consequence of the parity of the vibra-
tional states.

Z. .4 Skald CG$8: (d =co(,

One simple case is immediately suggested. If the
ground- and excited-state frequencies are nearly equal,

'2 See Ref. 13, p. 272.

S = 1 'x'(cP+a—+-1) . (4.22)

Assuming that terms of 0(xz) may be neglected, Eq.
(4.19) becomes

I./, (fzcd) =
I 1—exp( —h~. /fcT)g P exp( —a///co. /kT)

Xf/(n(&/, M.) hx j—(4.2—3).
Equation (4.23) is a series of equally spaced cI functions,
with spacing h(c0 —coz)L 0(x)], whose weights simply
reflect the Boltzmann distribution of oscillators in the
electronic ground state Lat T=O, Kq. (4.23) becomes a
single ll function at llco=Oj. The largest 5 function
occurs for a=O(Izc/=0) and the others fall on the low-
energy side of So=0 if co &(d~ and on the high-energy
side lf co(t, +co~.

In Figs. 6(a,) through 6(d) examples of the line-shape
function, Eq. (4.23), are plotted. In these figures the
energy coordinate is E—E,&. In all four 6gures the
frequencies are her =0.032 and bar~= 0.027; the temper-
ature varies from AT=0.02 to kT=0.08. The energy
units are arbitrary (but the sizes of the numbers are
chosen to correspond roughly to electron volts). The
additional structure to the high-energy side of the her =0
peak in Figs. 6(c) and 6(d) is due to that fact that for
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the frequencies chosen ~q=cu, is not a very good
appl oxlDlatlon.

Notice that there is in some sense a competition be-
t~ee~ making ~co~—cu,

~
small enough so that x' is

negligible and, the consequent reduction in the total
width of the line shape necessitated by the reduction in
the spacing between 5 functions. Rewriting the 6rst
moment Eq. (4.18) in terms of x, neglecting terms
of O(x')

M &'& = —Am, L1—coth(A4d, /2k T)]. (4.24)

m&»=2~kr, (4.25)

and the center of gravity is imited to a fraction of kT.
Thus the total width is essentially limited to N, or kT,
whichever is larger.

3. Genera/ Values of the Frequencies

roughly gives the width, never gets more than a few
ku away from Ace=0. For very high temperatures
coth(hd /2kT) 2kT/N„and the first moment be-
comes

For reasonable temperatures coth(Aced, /2AT) may range For the general case it is instructive to rewrite
between 1 and 10; so that the center of gravity, which Kq. (4.19) as

1.~(A ) =|1—m (—A ./AT)]{& I~o, »I'h(2PA ~—A )+2 e~(—A ./AT) I~i,»+il'

XhL2PAd 6
—

(AM/
—ha& 5)—Iud]+ P exp ( 2hcdo/—k T) ( 52,» )

'8 (2PPudy 2hcog —AM)—

+& exp( 3~—o/kT) I~i»+i~'~, pp ~ (3'—.—iud~) —A ]+" I. (4.26)

I.g (iud) = L1—exp (—iud. /k T)]Ad= abc' —(a even),

Ad = —(ahd —Add g) (a odd) .
(4.27)

X Q P'exp( —alud /kT)
The successive 8 functions extend toward higher energy.

In Figs. 7(a) and 7(b) we have plotted examples of
6nite-temperature quadratic modes. In both the energy
variable is E—E &, the ground-state frequency is
~,=0.0j.38, and the excited-state frequency is Ace~

=0.001 (which gives x'=xs). In Fig. 7(a) the tempera-
ture is kT=0.03 and in Fig. 7(b) kT=0.04. In Fig. 7(a)
the first 8 function of each term in Eq. (4.26) is marked
by a pair of numbers (a,p), the ground- and excited-
state vibrational quantum numbers, respectively. As the
temperature increases we expect the +=0 transitions
Drom the first term of Eq. (4.26)] to become relatively
less important and transitions for higher values of 0, to
increase in importance. Inspection of Fig. 7(b) shows
that this is the case. The continuous curve in Fig. 7(b)
is the semiclassical line shape which will be discussed
later.

For computer analysis it is convenient to write Eq.
(4.19) in a somewhat different form. Assume that there
exist integers n and eq, such that

X ~S.,~2h(&A ./n. —A ), (4.30)

where P ' means sum over those a such that, with 7
fixed, P= (y+anq)/n, is an integer.

Hence in Eq. (4.30) we have obtained a series of
evenly spaced h functions (spacing hc&d/n), indexed by
y, each of whose weight is given by

F(y) = L1—exp( —iud, /kT)]

XP' exp( —aloud, /AT) (S e(' (4.31)

and the line shape may be written

I.s(A )= g F(y)b(y~a/n. Add). (4.32)—

Ea,ch term consists of a series of equally spaced h func- Kq. (4.19) by converting the sum over a and p to a sum
tions at intervals of 2hcob, with the first 5 function from over y and e .'
each term located at an energy given by

+o+a—~@My (4.28) 4. The Limiting Case: ca~&&+

The argument of the h function in Kq. (4.19) can be
rewritten as

Pha g ai'ud iud =—(Pn, any) Aa) g/n —iud (4.29)— .

We now define the integer y=Pn, —any and rewrite

Finally, we consider the case for which co~&&co,. As in
the zero-temperature case, the line shape in the limit
goes from a discrete series of lines to a continuous line
shape. Working with the line shape in the form of
Eq. (4.4), expanding in the small quantity a»/~„and
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using Eq. (4.12), we obtain, for cob&(co,

1
~. ( )=—[1—em( —P.)3

2%.

dte c~'[1 exp( —Pa cede—t)] —' '

X [(1—~~is&,t) —(1+~~cb/ot)

)&exp(—p, —«co,t)g '/2. (4.33)

Here, cd = (E—E,b)/h+ 2«cd, . The integral may be
performed, and, as is shown in Appendix 8, the line
shape is

I.b(~) = (2/~'~. )"'[1—exp( —P.)12 (~+~~) '"

)&exp( —c«P.) exp[ —2 ((a+a«0.)/(o.j
&&f-[4(~+~~.)/~.3 (4 34)

where

l.„'+(z) is the associated Laguerre function. f (z) is a
polynomial of degree cc in z. The 6rst few f (z) are given

by Eq. (36) of Appendix B.
The line shape, Eq. (4.34), consists of a series of

terms, each of which is associated with a particular
value of e, the ground-state quantum number. For 0,

even, the leading term in f (z) is a constant, so Eq.
(4.34) has singularities at cd = —cca&, (a even), due to the
(co+ncoo) '' dependence. Thus the line shape has a
series of sharp peaks, with spacing 2'„extending
towards lower energy, superimposed on a broad
continuous background. Such a line shape is shown in
Fig. 8, where Ace =0.02 and kT=0.04. Physically one
might expect to see such a line shape if the ground
state of the impurity is very well localized, and couples
strongly to the vibrational mode in question; while the
excited state of the impurity is very diffuse and couples
only weakly to that mode.

I'(m+-,')
f-()=Z (-1)---1-.=/ (.) (.&o)

m~ yyg!

=0 (z&0).

E. Quadratic Modes, Semiclassical

The semiclassical line-shape function for a quadratic

(4 35) mode is easily calculated, using the methods of Ref. 4.
We obtain, for (ub&(a,

j I.c.(E')—
1 2(o, tanh(hco /2hT)-»'

g~—1(2 exp
~1/2 h(~ 2 ~ 2)

2E'co, tanh (hs), /2k T)—

h(b/b' ~ ')
(E' &0)

and for coypu,

=0 (E'&0), (4.36)

I "(E')=o (E'&o)

1 2«d tanh (hb/, /2hT)- »2
E' 'I2 exp

h(«0b cd )— 2E'(o, tanh(hu), /2hT)-
(E &o).

h(cob2 —«0.')
(4.37)

Here E'=E—E,q.

Equation (4.36) for sob&cd„shows an exponent)a))y
decreasing energy dependence to the low-energy side of

E'=0 and a sharp cutoff on the high-energy side,
even at T=O. This is in direct contrast to the quantum
result at T=O, Eq. (4.7), which has a high-energy tail
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Eq. (4.36) are identical to the corresponding quantum
moments Eq. (4.18). Hence even though the quantum
and semiclassical line shapes are as difFerent as shown
in Figs. 8(a) and 8(b) the first two moments are
identical. This is an excellent example of the care which
must be taken when using moments. '4

The semiclassical approxixnation consists of neglecting
the commutator of the excited- and ground-state
vibrational Hamiltonians. ' This commutator is given by

LHg, H,g= -,'k'(raP —&o.') (1+F8/Bg) . (4.38)

0
-O. I 0 -0,05 0

ENERGY (e~l

f

0.05

and a low-energy cutoff. In Fig. 9(a) we have plotted
Eq. (4.36) for T 0 and co =Bceuf, together with the
corresponding quantum line shape. In Fig. 9(b) we
have plotted the same thing but with ~ =13.9 ~q.
The energy variable here is qua t see Kq. (4.5)g and is in
units of hro&. The contrast is quite striking. Clearly the
semiclassical approximation is not very good for T=O
and GPb(40g.

It is easily shown that the 6rst two moments of

FIG. 8. The line shape due to a quadratic mode with M, =0.02,
Mk, =0.0, and kT=0.04. The energy coordinate is 4o t see Kq.
(4 &3)j

When Eq. (4.38) is zero, the argument of the exponential
in Kqs. (4.36) and (4.37) is singular. The interesting case
is, therefore, that for which the commutator PHq, H ]
is zero, while the argunent of the exponentials remains
finite. For hey, «kT, tanh(fuao/2kT) =faro, /2kT, and the
argument of the exponential becomes L

—(E'/kT)/
co.'/(&oa' —~ ')$. We wish to have co,'/(~s' ~,') finite
while co&2—co,2= 0. This implies that both frequencies are
small (the case for which &o, =coq is trivial: both quan-
tum and semiclassical methods lead to a single 8
function at E'= 0).

The connection between the quantum and semi-
classical results may be established by working with
Kq. (4.4) for the quantum line shape. Expanding in the
small quantities eo and co&, and retaining only lowest
order terms, we obtain

- 112

(4.39)

The plus sign applies for ~&&~, and the minus sign for ~ &co&. The integral may be performed'9 and

I.s(E') = Ws '12(co '/AT(rue' —~.')g)'"E'-'~' expL —(E'/kT)~ 2/(~p —
&g 2)J (E'~0 „~„)

=0 (E'~~0; (»g~~co.) . (4.40)

This result is in agreement with Kqs. (4.36) and (4.37)
if Ace,(&kT.

Thus, the semiclassica1 approximation for a quadratic
mode will be valid for small frequencies co, and co~ and
for temperatures large compared to the ground-state
frequency co . For a linear mode we found that the
semiclassical approximation was valid for small fre-
quency and large temperature, but in addition the
semiclassical line shape gave a good approximation to
the envel. ope of the line shape for large couphng
(a'/2))1). The approximation failed completely only
for small coupling and low temperatures. For quadratic
modes, the semiclassical approximation is much more
restricted. In Fig. 7(b) the continuous line is the
semiclassical line shape. In this figure Aced, =0.0138,
fan&

——0.001, and AT=0.04. Hence, this is an example of
a strongly coupled quadratic mode (ruq/au, (&1). The
semiclassical approximation does not give a good fit
to the envelope of the quantum line shape. Thus the
semiclassical line shape for quadratic modes will hoId

only for small frequencies and high temperatures. For
tightly bound impurities, the local modes will typically
have frequencies on the order of k times the Debye
temperature, so that this condition will generally not
be satisded.

The resemblance between the semiclassical line shape,
Eq. (4.36), and the Urbach rule for absorption in
insulators~ has led several authors"»" to propose that
interaction with quadratic modes supplies the low-
energy exponential tail of the Urbach rule. As we have
seen, it is not possible to obtain a low-energy tail from
a quadratic mode at low temperatures. Hence the
proposed model for the Urbach rule, although possibly
adequate for high temperature, is somewhat suspect

'g F. Urbach, Phys. Rev. 92, 1324 {1953).
H. Mahr, Phy .Rev. i,32, 1880 (&m).

~' Y. Toyozawa, Progr. Theoret. Phys. (Kyoto), Suppl. 12, 111
(1959). V. Toyozawa, Institute for Solid State Physics, Tokyo,
1964, Technical Report A119 (to be published).
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for temperatures small compared to the relevant
frequencies.

Finally, we make a few remarks about the singularity
appearing in the semiclassical line shapes, Eqs. (4.36)
and (4.37), [and in Eqs. (4.13) and (434), the quantum
line shapes for cob=0]. This singularity is essentially
due to a singularity in the Jacobian which takes the

probability distribution function for the oscillator from
displacement to energy units. The presence of more
than one mode removes the singularity, since there is no
singularity in the Jacobian for two or higher dimensions.
As an example we consider two quadratic modes, where
the two ground-state frequencies are co and the two-
excited, -state frequencies are co~, in the semiclassical

approximation. The line shape is, for coq&co,

I bs.e.(p) —{g2/[h2 (g 2 &bb)]) exp[ (E /h2')bb 2/(&b2 g 2)]
=0 (E')0),

and the singularity is gone. Similarly, for three degenerate quadratic modes, the line shape for co&&co is

I "(E')=—2s —'I'(bb '/[hT(co. '—cab')])bl'E"I'exp[ —(E'/hT)a&, '/(a) '—co.')] (E'(0)
=0 (E')0),

(4.41)

(4.42)

and again no singularity appears. Similar considerations mode
apply to Eqs. (4.13) and (4.34).

V. MAlWY MODES
Ib(E) = P L(P)b(Phbbbyab E), —(5.2)

We have obtained line-shape functions, for linear
modes [Eq. (3.10)] and for quadratic modes [Eq.
(4.32)], which consist of a series of evenly spaced b

functions, each multiplied by an appropriate weight
factor. Hence in our analysis the most general line-shape
function is

where fuo2 and 52 are, in general, not equal to Ace& and
6&. The line shape due to both modes is just the convolu-
tion of I~ and I2. Using one of the 0 functions to perform
the convolution, we obtain the line-shape function due
to both modes

I,(E)= P P(y)b(yhcub+Db —E).
I.(E)= 2 Z P(~)L(p)

(5.1) y~ P oo

Xb(phd&b+P&b+6, +6,—E). (5.3)
Here P(Y) is the weight function, Ace~ is the spacing of
the 8 functions, and d ~ includes the diGerence in zero-
point energy for the ground- and excited-vibrational
states.

Consider a second line-shape function due to another

The arguments of the b functions in Eq. (5.3) are in a
somewhat inconvenient form since they are not arranged
in order of increasing energy. To remedy this, we assume
there exist integers ej. and n2 such that ngo~=n~~.
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Equation (5.3) becomes

Letting n=yez+pmz, Eq. (5.4) may be written.

I„(E)= Q &(n)h(n~n+~i2 —E), (5.5)

where
ACO gs —k(I)2/S 1

4u= &i+~2,
(5.6)

and the new weight function &(~) is given by

&(o)=E' ~(V)L (p) (5 &)

where P»' means sum over all y such that P= (n yn2)/—
n~ is an integer.

The line-shape function Eq. (5.5) is in the same
form as Eqs. (5.1) and (5.2), i.e. , a series of evenly
spaced 8 functions. To include a third mode we simply
apply the same method again. In this way all of the E
modes assumed to interact are enfolded giving the total
line-shape function for the system. Equation (5.5) is
easily evaluated by a digital computer. If a smooth
line shape is desired, a spectrometer bandpass is
included and enfolded with the calculated line shape.

VQ. CONCLUSION

%'e have considered the theory of optical-absorption
line shapes for impurities in insulating solids. The theory
may also be applied to emission line shapes by simply
reversing the role of initial and 6nal states. Within the
adiabatic and Condon approximations, and assuming
that quadratic cross terms may be neglected or treated
by the variational method given here, we have shown
that the line shape is given by an E-fold convolution,
with each contribution to the convolution being the
line shape due to a single normal vibrational mode of
the ground skate of the system. The line shapes due to
these modes may be divided into three types, character-
ized by the difference in the adiabatic potentials of the
ground and excited states. The 6rst type is character-
ized by a term linear in the normal mode displacement.
Because of their relative simplicity, only linear modes
have been treated in any detail in the past. The second
type, characterized by a term quadratic in the normal
mode displacement, has received only approximate
treatment. %'e have presented the 6rst thorough quan-
tum treatment of these quadratic modes. Modes of
the third type were not treated here. The complexities of
quadratic modes are such that the aid of a digital

1»(E,)= ~ 2 ~(v)L(p)
y~oO P~ao

Xbp(ynm+pn~)ku2/F1++1+~2 &] (5 4)

computer is essential for the calculation of line shapes.
Ke have developed computer programs which not only
calculate the line shapes but also, using a digital plotter,
draw pro6les of this line shape.

In addition to the quantum theory of linear and
quadratic modes we have also discussed a commonly
used approximate method for treating line shapes: the
semiclassical approximation. The limitations, range of
validity, and relation to the full quantum theory were
clearly established. In particular we showed that the
semiclassical approximation, although of great value for
linear modes, is of limited use for quadratic modes; and
in fact often leads to completely erroneous results.

For any realistic impurity system, we expect that a
variety of different modes, both linear and quadratic,
will interact with the center. Hence, we have developed
formal methods for performing the necessary convolu-
tions to obtain the total line shape due to an arbitrary
number of interacting modes. These methods will be
applied to a model of a simple impurity system, an
atomic hydrogen impurity in solid argon, in a forth-
coming publication. "

Strictly speaking the theory which we have presented
applies only to singlet-to-singlet transitions. If the
excited state is a member of a degenerate multiplet,
the adiabatic approximation is expected to fail, and the
theory will not be applicable. These degenerate multi-
plets have not yet been successfully treated theoreti-
cally. The problem of degeneracy must be regarded as
one of the major unsolved problems in the theory of
absorption line shapes. Experience has shown, however,
that many absorption bands involving degenerate
multiplets may still be usefully analyzed with the
singlet-to-singlet theory. For emission processes the
transitions involved are often effectively singlet to
singlet and the theory applies directly. The initial state
for emission is the relaxed excited state and, even though
it is still a member of a degenerate multiplet, the
different states of the multiplet now differ in their
respective lattice con6gurations. If the vibrational
wave functions for these lattice con6gurations do not
overlap appreciably in con6guration space (i.e. , small
dynamical Jahn-Teller coupling), the members of the
multiplet are not coupled, and the emission process is
effectively singlet to single.

The present theory makes possible and feasible a
realistic treatment of the interaction of impurity
centers with lattice vibrations. Although assuming
interaction with only one linear mode has been success-
fully used for some centers, we expect that many more
types of centers will interact appreciably with a larger
number of lattice modes. Hence, it is hoped that the
methods developed here will 6nd many applications in
the analysis of line shapes for a variety of impurity
centers.

"T.H. Keil and A. Gold (to be published).
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APPENDIX A

We wish to evaluate the quadratic-mode overlap integral

ob 1/2

2-P Ipl)
dq exp( —

—2, (a2+b2)p]H (aq)Hs(bq),

where a=(m",/b)'/2 and b= (mco2/b)'/2. We multiply hy tl t2'(a!p!) ",sum over a and p, use the generating func-
tion for Hermite polynomials"

exp(2tz t2) =—P ~„(s)t /I!, (A2)

perform the integral over q, equate equal powers of t& and t2 on the right- and left-hand sides, and obtain for the
overlap integral

2a!2P! '/' (-1)"2"
S2.2p= (1—+)1/2 (—1) x"' x-'»(1 —2)»,

22a+2P (a v)!2—V!(p v)!—

(2a+1)!(2p+1)! '/'

S2-+1.2s+1= (1—+)'"
22a+2P+2

(- i (-1)"2'"
(—1) x"s x '»(1 —2)»,- (--.) (2&+1).(p-v).

(A3)

where x= (~2—"o)/(~2+~ ) and (a,pj means the lesser of a and p. Overlaps for which one index is odd, and the
other even, vanish because of the parity of the wave functions. The sums over y may be taken from 0 to ~, since
the denominator of the summand becomes in6nite for y&fa,pj, and cuts oE the sum.

The overlaps may be written in terms of hypergeometric functions

2a!2p! '"
S2,2p= (1—x)'' (—1) x"s(alp!) 'Fr- —a, —p, y', —(1—8)/Hj,

22a+2P

(2a+1)!(2P+1)! "'
S2 ~l,g4-1= (1—~)'/' (—1)-x-sr(,')pa!p!r(2)plpL- —, p, —,', (1 ~)/x2j

22a+2P+2

(A4)

and in terms of associated Legendre functions

S s=(2x)—1/2(1 —g)1/4(aJpJ) —1/2( —1)&e4 1/4 1/2p
/2 s

—a/2+—p/2+1/2[)'(1 y)1/2/

Several recurrence relations for S p may be established.

(P—) (1—~)'/'S. „=xfg(+1)]'/'S.', ~,+xr-a(P+1)g S. , ~„
(P+1)1/2S xPl/2S (1 g)1/2al/2S

—xE(P+1)~+2)~"S 2=xLa(a —1)3'"S.-2.a+2+(a—P+2)S .w2,
—xQ(P—1)O'"S-s=*L(a+1)(a+2)3'"S-+2.2-2+(a—P+2)S. p 2, -

(A5)

(A6)

The last two of these, together with the phase relations

S2-,2P= (—1) +&S2P,2-,
S2N+1,2/+1 ( 1) S2~1,2m+i(

and Spp in principle allow one to calculate all of the 5 p.

(A7)
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APPENDXK 3
We wish to evaluate the integral in Eq. (4.33). Expanding both brackets in the integrand in powers of

exp[—P —icaotj, we find

1/2 2mI 21 t

I. ( )=—— [1—exp( —P.)j Z 2 — e&[—(t+ )P.]
2X' 07tz m~ /m 22~(m/)z 2zt(t/)z

—1—I/2

dt exp[ ir—ut i—(t+m)cu, t5~ +it— —it-
(/J~ /dg

The integral in (81) may be performed"

lt 2 —l—1/2

Ct exp[—uot —i(l+m)a&, t)~ +i—t

=-2-(4/-. )-"«(t+:)j-~ ~;,„(4y/-.) b&0)
(82)=0 (y&0),

where y=co+ (l+m)coo and W„„is the Whittaker function of the second kind. "Using the identity29

W~~~/2, ~„(x)= (—1)"I!x~+'"exp( —x/2)L„"(x),

where L„(s) is the Laguerre function, the line-shape function may be written

(83)

I, /, (s&) = (2/x cu,)"'[1—exp( —P )jP (a&+m&, ) '/' exp( —aP, ) exp[ 2(~+—a~ )/~, jf [4(a&+au&, )/~, j, (84)
aW

f-(z)= Z 1"(m+z)(m') '(—1)™L=='"(z)(»o)

=0 (s&0).

The f (z) are polynomials of the ath degree in z, the first few of which are

f (z) —xl/2

f, (z) =s'/'z

f2(z) =m'/2(-' —z+zzz')

f3 (z) =m'/2 (3z/2 —s'+-,'z'),

(85)

(86)
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