Electric Field Shift in Paramagnetic Resonance for Four Ions in a Calcium Tungstate Lattice

W. B. MIMS

Bell Telephone Laboratories, New York, New York (Received 26 May 1965)

The electric field shift in paramagnetic resonance has been studied for the rare-earth ions Ce, Nd, Er, and Yb in a CaWO₄ lattice by means of electron spin echoes. In each case the four coefficients of the electric effect tensor have been obtained. A simple way of visualizing the changes which occur in the spin resonance of a Kramers doublet when an electric field is applied has been given in terms of the g ellipsoid. The symmetry of the paramagnetic site, and the possibility of observing electric spin resonance in suitable materials is discussed.

THE electron-echo method¹ has been used to study the effect of applying electric fields during paramagnetic resonance for the ions Ce, Nd, Er, and Yb in a CaWO₄ host lattice. In all four cases the lowest pair of levels consists of a Kramers doublet, and paramagnetic resonance, with or without applied electric fields, can be described in terms of a gellipsoid

$$g^2 = \hat{r} \cdot \mathbf{A} \cdot \hat{r}, \qquad (1)$$

where \hat{r} is a unit vector parallel to the magnetic field. A is the 3×3 symmetric matrix obtained by squaring the matrix corresponding to the elements of the g tensor, i.e.,

$$\mathbf{A} = \mathbf{g} \cdot \mathbf{g}. \tag{2}$$

The effect of applying an electric field is to introduce tilts and to make changes in the lengths of the principal axes of the ellipsoid. We shall begin by developing a description of the electric effect in geometrical terms, and show how this description is related to the more general formulation of the problem which can be made by adding electric field terms to the spin Hamiltonian. The advantage of such a geometrical formulation is that it makes it easy to visualize the changes which occur, and that it leads naturally to the representation of experimental data by simple trigonometrical expressions.

When an electric field is applied the matrix **A** is modified to $\mathbf{A}+\mathbf{\delta}\mathbf{A}$. If the field components are E_k (k=x, y, z), then $\mathbf{\delta}\mathbf{A}$ has the form

$$(\delta A)_{ij} = \sum_{k} B_{kij} E_k, \qquad (3)$$

and the electric effect can be described in terms of a third-rank tensor $\{B\}$, which, in the general case, has 18 independent coefficients. Since **g** and **A** are symmetric matrices, the coefficients δA_{ij} and B_{kij} are symmetric under the interchange of i, j, and from Eqs. (1) and

(3), we have that

. . . .

$$\delta(g^{2}) = \vec{r} \cdot \delta \mathbf{A} \cdot \vec{r}$$

$$= \sum_{k} E_{k} [B_{k11}l^{2} + B_{k22}m^{2} + B_{k33}n^{2} + (B_{k23} + B_{k32})mn + (B_{k13} + B_{k31})lm + (B_{k12} + B_{k22})ln]$$

$$= \sum_{k} E_{k} [B_{k11}l^{2} + B_{k22}m^{2} + B_{k33}n^{2} + 2B_{k23}mn + 2B_{k13}lm + 2B_{k12}ln], \quad (4)$$

where l, m, n, are the direction cosines of \hat{r} . $\{B\}$ has the same form and symmetry properties as the piezo-electric tensor.²

We may now reformulate the problem in terms of a spin Hamiltonian and show how the B_{kij} may be related to the coefficients which appear in it. For a Kramers doublet in applied electric and magnetic fields

$$\mathfrak{K} = \beta \left(\sum_{ij} g_{ij} H_i S_j \right) + \sum_{i,j,k} T_{kij} H_i S_j E_k.$$
(5)

 $\{T\}$ is a third-rank tensor with 18 independent coefficients. Its relation to $\{B\}$ can be shown as follows. If the changes in 3C due to the second term in Eq. (5) are represented as changes δg_{ij} in the g tensor, we have that

$$\delta g_{ij} = (1/\beta) \sum_{k} E_k T_{kij}. \tag{6}$$

Differentiating (2) we obtain

$$\delta A_{ij} = g_{iq} \delta g_{qj} + \delta g_{iq} g_{qj}. \tag{7}$$

Eliminating δg_{ij} between (6) and (7) and comparing with (4) we have

$$(1/\beta)\sum_{k,q}E_k(g_{iq}T_{kqj}+T_{kiq}g_{qj})=\sum_kB_{kij}E_k,$$

and therefore

$$B_{kij} = (1/\beta) \left(g_{iq} T_{kqj} + T_{kiq} g_{qj} \right). \tag{8}$$

B, *g*, and *T* are symmetric in the suffixes *i* and *j*, and it is convenient when writing out expressions at length to adopt the condensed notation in which $g_{11}=g_1$, $g_{22}=g_2$, $g_{33}=g_3$, $g_{23}=g_{32}=g_4$, $g_{13}=g_{31}=g_5$, $g_{12}=g_{21}=g_6$,

¹ W. B. Mims, Phys. Rev. 133, A835 (1964).

² A table showing which coefficients vanish for various symmetries is given by C. S. Smith, Solid State Phys. 6, 229 (1958).

etc. In this notation Eq. (4) becomes

$$\delta(g^2) = \sum_{k} E_k (B_{k1}l^2 + B_{k2}m^2 + B_{k3}n^2 + 2B_{k4}mn + 2B_{k5}ln + 2B_{k6}lm), \quad (9)$$

and Eq. (8) gives the relations

$$B_{k1} = (2/\beta) [g_1 T_{k1} + g_5 T_{k5} + g_6 T_{k6}],$$

$$B_{k2} = (2/\beta) [g_2 T_{k2} + g_4 T_{k4} + g_6 T_{k6}],$$

$$B_{k3} = (2/\beta) [g_3 T_{k3} + g_5 T_{k5} + g_6 T_{k6}],$$

$$B_{k4} = (1/\beta) [g_6 T_{k5} + g_5 T_{k6} + g_2 T_{k4} + g_4 T_{k2} + g_4 T_{k3} + g_3 T_{k4}],$$

$$B_{k5} = (1/\beta) [g_5 T_{k3} + g_3 T_{k5} + g_1 T_{k6} + g_5 T_{k1} + g_6 T_{k4} + g_4 T_{k6}],$$

$$B_{k6} = (1/\beta) [g_5 T_{k4} + g_4 T_{k5} + g_1 T_{k6} + g_6 T_{k1} + g_6 T_{k2} + g_2 T_{k6}].$$
 (10)

EXPERIMENTAL

The experiments were conducted by establishing a right-angled axis system, in this case the a, b, c axes of the CaWO₄ crystal, then applying the electric field along one axis and varying the magnetic field direction in a plane containing any two axes. The frequency shifts were measured, converted into changes $\delta(g^2)$ and fitted to the specific form of Eq. (9) containing the appropriate *B* coefficients. For example, if we apply the electric field along the *z* axis and move the magnetic field in the *xy* plane, k=3, n=0, and

$$\delta(g^2) = E_3(B_{31}l^2 + B_{32}m^2 + 2B_{36}lm)$$

= $E_3[\frac{1}{2}(B_{31} + B_{32}) + {\frac{1}{4}(B_{31} - B_{32})^2 + B_{36}^2}^{1/2} \sin(2\varphi - 2\varphi_3)],$

where

$$\tan 2\varphi_3 = (B_{32} - B_{31})/B_{36}, \qquad (11)$$

and φ is the angle of the magnetic field with respect to the x axis. Similar expressions may be written down for all nine possible experiments of this kind. If, however, we assume that the rare-earth ions are situated at calcium sites, and that S_4 symmetry of these sites is not changed by the substitution, there are only four independent B coefficients as given by

$$\begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{bmatrix} \begin{bmatrix} B_{14} & B_{15} & B_{16} \\ B_{24} & B_{25} & B_{26} \\ B_{34} & B_{35} & B_{36} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ B_{31} & -B_{31} & 0 \end{bmatrix} \begin{bmatrix} B_{14} & B_{15} & 0 \\ -B_{15} & B_{14} & 0 \\ 0 & 0 & B_{36} \end{bmatrix}$$
(12)

and only three experiments are needed. Axis 3 of the tensor is the S_4 fourfold axis, and axes 1, 2, and 3 are the a, b, and c axes of the CaWO₄ crystal. With E along the c axis (or z axis) and H in the ab plane

$$(1/E_z)\delta(g^2) = (B_{31}^2 + B_{36}^2)^{1/2}\sin(2\varphi - 2\varphi_3),$$

where

$$\tan 2\varphi_3 = -B_{31}/B_{36}.$$
 (13)

With E along the axis (the x axis) and H in the ac plane

$$(1/E_x)\delta(g^2) = B_{15}\sin 2\theta$$
, (14)

and for E along the a axis and H in the bc plane

$$(1/E_x)\delta(g^2) = B_{14}\sin 2\theta. \tag{15}$$

No additional measurements with E along the b axis are needed since the b axis is equivalent to the a axis under inversion and 90° rotation. When E is along the a axis it is, however, sometimes useful to vary H in an arbitrary direction. For this case, by combining (14) and (15) we have that

$$(1/E_x)\delta(g^2) = (B_{14}^2 + B_{15}^2)^{1/2}\sin 2\theta \sin(\varphi - \varphi_1),$$

where

$$\tan\varphi_1 = -B_{15}/B_{14}.$$
 (16)

The S_4 g tensor is determined by only two independent quantities, and, in the system of axes used above, g is diagonal with components g_1 , g_1 , and g_{11} . By Eq. (10) the relations between the B and T coefficients are therefore as follows:

$$\beta B_{31} = 2g_1 T_{31},$$

$$\beta B_{36} = 2g_1 T_{36},$$

$$\beta B_{14} = (g_1 + g_{11})T_{14},$$

$$\beta B_{15} = (g_1 + g_{11})T_{15}.$$
(17)

Since g is diagonal, A is also diagonal and has elements g_1^2 , g_1^2 , and g_{11}^2 . The g ellipsoid is the spheroid $g^2 = g_{11}^2$ $\times \cos^2\theta + g_1^2 \sin^2\theta$. The changes in the geometry of the ellipsoid which occur when an electric field is applied can be visualized as follows. An electric field along the c axis produces no rotation of the ellipsoid and no change in the length of the g_{11} axis, but it breaks the degeneracy $g_1 = g_2 = g_1$ and gives new principal axes in the *ab* plane which differ from g_1 by δg_1 , where $2g_1\delta g_1 = (B_{31})^2$ $+B_{36}^{2})^{1/2}E_z$. The new axes are at angles of $\frac{1}{2} \arctan(B_{36}/B_{36})$ B_{31}) to the *a* and *b* axes. An electric field along the *a* axis produces no changes in the axis lengths but tilts the ellipsoid by an angle $(B_{14}^2 + B_{15}^2)^{1/2} E_x / (g_1^2 - g_{11}^2)$ about a line in the *ab* plane at an angle of $\arctan(B_{15})$ B_{14}) to the *a* axis. (A field along the *b* axis causes a similar tilt, but in the opposite sense, about a line similarly located with respect to the b axis.)

The measurements were made at a frequency of 9.42 Gc/sec and, except in the case of $(Ca,Er)WO_4$ crystals or of mixed crystals containing Er, all results were obtained at 4.2°K.³ There are two types of paramagnetic sites, the one being obtained from the other by inversion of the environment through the Ca lattice point. In ordinary paramagnetic resonance these sites are indistinguishable, but an applied electric field shifts the resonance frequencies of the two sites by equal

³ Rapid lattice relaxation causes the phase memory to be too short in $(Ca,Er)WO_4$ at 4.2°K. Shortening of the phase memory occurs for other ions also if Er is present in the crystal.

amounts in opposite directions. The method of measurement has already been described in some detail with $(Ca, Ce)WO_4$ as an example,¹ so that here it will only be necessary to consider the accuracy of the present experiments, and to discuss some problems arising from ambiguities in determining the sign of the tensor coefficients. The measurement gives directly $1/\delta f$, which is the reciprocal of the shift in the Larmor frequency of each spin packet in the resonance line. Since g can be measured more precisely than δf there is no loss of accuracy in converting this to $\delta(g^2)$ by means of the relation $\delta(g^2) = 2g\delta g = 2g^2\delta f/f$, and the results can be fitted to sine curves as in Eqs. (13)-(15). Examples are shown in Figs. 1 and 2. It can be seen from the figures that the quantities most readily derived from the experiments are the amplitudes $(B_{31}^2+B_{36}^2)^{1/2}$, B_{14} , B_{15} , and the angle of zero shift φ_3 . The amplitude $(B_{31}^2 + B_{36}^2)^{1/2}$ is sensitive to the accuracy with which the time $1/\delta f$ and the electric field E_z are measured, but is insensitive to the orientation of the magnetic field. φ_3 is, on the other hand, a purely angular measurement depending on the precision with which the crystal is aligned. B_{14} , B_{15} depend on field measurements, time measurements, and on orientation of the magnetic field, but these factors may be separated from one another by deriving an amplitude (B_{14}^2) $+B_{15}^{2})^{1/2}$ and an angle φ_1 as in Eq. (16). The angle φ_1 , which defines a plane of zero δg (the plane of intersection of the original g ellipsoid and the ellipsoid produced by applying an electric field along the a axis) can also be located by making a suitable rotation of the Zeeman field. For some of the rare earths the Zeeman field required only a small rotation out of the ac or bc planes in which the frequency shifts were being measured, and in these cases the angle φ_1 was determined directly and checked against the value of $\arctan(-B_{15}/$ B_{14}). Errors in the alignment of the electric field are

FIG. 1. $|\delta(g^2)| \times 10^3$ for an electric field of 1 V/cm along the *c* axis in (Ca,Yb)WO₄. *H* is varied in the *ab* plane. The angle at which $\delta(g^2)$ is zero, is given by $\varphi_3 = \frac{1}{2} \arctan{(-B_{31}/B_{36})}$. The maximum amplitude of the curve is $(B_{31}^2 + B_{36}^2)^{1/2}$.

FIG. 2. $|\delta(g^4)| \times 10^9$ for an electric field of 1 V/cm along the *a* axis in (Ca, Yb)WO₄. For *H* in the *ac* plane the maximum amplitude of the curve gives B_{15} . For *H* in the *bc* plane the maximum amplitude gives B_{14} .

liable to affect the values of the angles φ_1 and φ_3 , and also the amplitudes $(B_{14}^2 + B_{15}^2)^{1/2}$ and $(B_{31}^2 + B_{36}^2)^{1/2}$. These errors were minimized by aligning the specimens with an x-ray goniometer and by carefully machining the parallel faces which constitute the electrodes. Typical dimensions were 0.22 cm \times 0.45 cm \times 0.45 cm, the electrodes being placed on the 0.45 cm \times 0.45 cm faces. Since low applied fields of not more than a few kilovolts/cm are quite adequate when the electron-echo method is used to determine electric field shifts, there is no need to use a very thin specimen, and the electrodes can be taken all the way to the edge of the crystal faces without risk of breakdown. Consideration of the magnitudes involved shows that it is not likely that errors in the alignment of the electric field limited the over-all accuracy except in the case of (Ca,Er)WO₄ where the coefficients for the z axis field are much larger than those for an x axis field, and a small E_z component can make an appreciable difference in an E_x experiment. In experiments with different specimens the amplitudes $(B_{14}^2+B_{15}^2)^{1/2}$ and $(B_{31}^2+B_{36}^2)^{1/2}$ were repeatable to within 10%, and the angles φ_1 and φ_3 to within 2°, except in the case of the angle φ_1 and the amplitude $(B_{14}^2+B_{15}^2)^{1/2}$ in (Ca,Er)WO₄. In most instances the whole of the angular error can be attributed to errors in the mounting of the crystal in the cavity, it being possible for any given assembly of the apparatus to repeat measurements of the zero shift angle to within a fraction of a degree.⁴ Errors of 2° in angle may of course imply quite large uncertainties in a particular tensor coefficient. For example if the angle φ_1 for Ca,CeWO₄ were to be changed from 3° to 1°, this would alter B_{15} by a factor of 3.

Each individual measurement gives the magnitude but not the sign of the electric field shift, and a set of isolated measurements of B coefficients would, therefore, leave a considerable degree of ambiguity in the electric effect tensor. It is, however, possible to reduce

⁴ It is often possible to detect some shift even at a zero. This is probably caused by inhomogeneity in the line. For $(Ca,Er)WO_4$ the zero shift occurred at slightly different angles φ_3 in the center and on the wings of the line, indicating that some of the observed inhomogeneity is due to irregularities in the alignment of crystal fields in the sample.

FIG. 3. Diagram showing the relation between characteristic azimuthal angles.

 $\varphi_1 = \arctan(-B_{15}/B_{14})$ and $\varphi_3 = \frac{1}{2} \arctan(-B_{31}/B_{36})$.

 $\varphi(\operatorname{Gd} \operatorname{max} H)$ serves as a reference angle. It denotes the angle at which the $-\frac{3}{2} \Longrightarrow -\frac{1}{2}$ interval is least when normal paramagnetic resonance of (Ca,Gd)WO₄ is observed with H in the ab plane.

this ambiguity by comparing the angles φ_1 and φ_3 with one another in the same specimen and by relating their sign to some other property of the crystal which shows a variation in the *ab* plane. φ_3 establishes the sign of the ratio B_{31}/B_{36} and φ_1 the sign of the ratio B_{15}/B_{14} . A different type of experiment in which the electric field direction was gradually varied would give the sign of one more ratio, e.g., B_{31}/B_{14} , but no such experiment was attempted here. One final ambiguity, the sign in front of the whole B tensor, cannot be resolved by any method for a crystal such as CaWO₄ which contains inversion image sites, since there is no way of labeling one particular site of the pair. The signs of φ_1 and φ_3 were found as follows. An individual crystal was marked in accordance with an arbitrarily assigned right-handed axis system and used in two experiments. one with E along the c axis and one with E along the a axis. The Zeeman field was rotated in appropriate manner, changes in δf were noted, and the relative signs of φ_1 and φ_3 were thus obtained for a particular rare-earth ion. Measurements were then made on crystals containing two or more types of ion in order to compare signs for different rare earths. Finally, the sign of φ_3 was compared with the sign of the angle φ_{Gd} at which the energy levels of the Gd³⁺ ion have a maximum or minimum separation when the normal paramagnetic resonance (Ca,Gd)WO4 is studied in the ab plane,⁵ by making measurements on а (Ca,Ce,Gd)WO₄ mixed crystal. The angular relations are shown diagrammatically in Fig. 3. The amplitudes $(B_{31}^2 + B_{36}^2)^{1/2}$, $(B_{14}^2 + B_{15}^2)^{1/2}$ and angles φ_1 , φ_3 are given in Table I.

DISCUSSION

A detailed analysis of the results in terms of crystalfield theory is being undertaken by A. Kiel, and the discussion here will be confined to two topics: the use of the electric-effect measurements in determining site symmetry, and some experimental indications that transitions were caused by the microwave electric field. We have so far assumed that the rare-earth ions substitute for calcium in the CaWO₄ lattice and that they are situated in a crystalline field with S_4 point symmetry. This assumption is based on prior knowledge of the CaWO₄ crystal structure obtained by x-ray diffraction, on reasonable guesses as to the likely substitution site and as to the limits of possible distortions caused by the substitution, and on information contained in the g tensor. Although there is little reason to doubt these assumptions here, it may be of interest, if only as an illustration of the way in which electriceffect measurements can contribute to the solution of more complex problems, to show how the S_4 site symmetry may be established from resonance data only. Let us therefore assume that we have no prior knowledge regarding the host and its crystalline axes. The observation of a g tensor with two distinct principal values restricts consideration to the trigonal, tetragonal, and hexagonal systems, and establishes one unique axis, the g_{11} axis, which in the notation of Ref. 2 is axis number 3. Only the 13 point groups belonging to these systems and lacking inversion symmetry need be considered, i.e., C3, D3, C3v, C4, D4, C4v, S4, D2d, C6, D6, C_{6v} , C_{3h} , and D_{3h} . In all experiments with E and H both along the g_{11} axis the electric effect was zero, hence all symmetries having a third-rank tensor with a 33 element can be deleted, leaving D_3 , D_4 , S_4 , D_{2d} , D_6 , C_{3h} , and D_{3h} . However, in experiments with the electric field along the g_{11} axis, effects were noted at some orientations of H in the perpendicular plane. Therefore the 31, 32,and 36 elements cannot simultaneously be zero, and all symmetries but S_4 and D_{2d} are ruled out. Since the g tensor does not define any unique axes in the perpendicular plane, axes 1 and 2 are not known, and we cannot draw the final conclusion by mere inspection of the data. Certain relations between the characteristic angles φ_1 and φ_3 of Eqs. (16) and (13) will, however, hold for a D_{2d} symmetry and not for S_4 . If the

TABLE I. g values and electric-field-effect coefficients for four ions in CaWO₄. Amplitudes $(B_{14}^2+B_{15}^2)^{1/2}$ and $(B_{31}^2+B_{36}^2)^{1/2}$ are in units of $\delta(g^2)$ per V/cm times 10⁹, and are accurate to within 10%. Angles φ_1 and φ_3 are accurate to within 2°. φ_1 repeats every 180° and φ_3 every 90°. $\varphi_1 = \arctan(-B_{16}/B_{14}), \varphi_2 = \frac{1}{2}\arctan(B_{31}/B_{36})$. Errors in the coefficients $B_{14}, B_{15}, B_{31}, B_{36}$, depend on the particular values of φ_1 and φ_3 in each case. Ambiguities of sign are discussed in the text.

Ion	Ce ³⁺	Nd³+	Er ³⁺	Yb³+
$\begin{array}{c} g_{11} \\ g_{1} \\ (B_{14}^2 + B_{15}^2)^{1/3} \\ (B_{31}^2 + B_{36}^2)^{1/2} \\ \varphi_{1} \\ \varphi_{2} \\ B_{14} \\ B_{15} \\ B_{31} \\ B_{35} \\ \end{array}$	2.92	2.03	1.2	1.05
	1.43	2.52	8.3	3.93
	170	209	1800	212
	87	37	11 000	81
	3°	106°	55°	106°
	8°	72°	31°	47°
	170	58	1060	58
	9	201	1470	204
	24	22	9700	81
	84	30	5200	6

⁵ C. F. Hempstead and K. D. Bowers, Phys. Rev. 118, 131 (1960).

twofold axes are axes 1 and 2, then the third-rank tensor for D_{2d} symmetry assumes the form

(0	0	0	B_{14}'	0	0)	
0	0	0	0	B_{14}'	0	
0	0	0	0	0	B36'	

Rotation of the twofold axes by an arbitrary angle φ' in the 12 plane gives a tensor or the same form as the S_4 tensor [Eq. (12)], with the coefficients

$$B_{14} = B_{14}' \cos 2\varphi', \quad B_{15} = B_{14}' \sin 2\varphi', \\ B_{36} = B_{36}' \cos 2\varphi', \quad B_{31} = B_{36}' \sin 2\varphi'.$$

These coefficients, if substituted in Eqs. (16) and (13), would give characteristic angles φ_1 and φ_3 related to φ' as follows: $\varphi_1 = 2\varphi' + n\pi$ and $\varphi_3 = \varphi' + \frac{1}{2}m\pi$. The test for D_{2d} symmetry is therefore that $\varphi_3 - \frac{1}{2}\varphi_1 = 0 + \frac{1}{2}m\pi$; and, in the event that this condition is satisfied, the angles φ_3 or $\frac{1}{2}\varphi_1$ will give the twofold axes characteristic of the local D_{2d} crystal field. The values of $\varphi_3 - \frac{1}{2}\varphi_1$ in the cases of Ce, Nd, Er, and Yb are 6°, -19° , 4°, and -6° , respectively. These discrepancies are considerably smaller than the maximum possible discrepancy of $\pm 45^\circ$, but they lie outside experimental error and indicate that the point symmetry is indeed S_4 and cannot be approximated by D_{2d} .

These results may be contrasted with results obtained in conventional spin-resonance experiments on the ions Mn²⁺ and Gd³⁺ in CaWO₄.⁵ For these S-state ions the angular dependence of the spectrum and the symmetry of the Hamiltonian was found to be closely related to the D_{2d} axes of the nearest-neighbor oxygen atoms, which have been determined by x-ray measurements⁶ to lie at an angle of 8.4° to the a and b axes in the ab plane. The Mn and Gd spectra showed maximum and minimum separation between levels when the magnetic field was at $9^{\circ}\pm 2^{\circ}$ to the *a* or *b* axes. Of the electriceffect parameters on the other hand, only those belonging to Ce show any correlation with this angle. For the remaining ions it is apparent from Fig. 3 that the angles $\frac{1}{2}\varphi_1$ and φ_3 are spread out over a considerable range, and that a wide assortment of distortions would have to be invoked to force the results to fit an approximate D_{2d} symmetry. This, and the clear evidence for S_4 as distinct from D_{2d} symmetry, indicates that at least three out of the four rare-earth ions studied here interact strongly with the more remote atoms in the crystal as well as with the eight oxygen nearest neighbors.

During experiments with $(Ca,Er)WO_4$ crystals it was observed that, for certain orientations of the Zeeman field in the *ab* plane, the echo-signal strength changed rapidly as a function of Zeeman field angle in a manner very reminiscent of the sharp variation of the electric effect near a point of zero shift. The electric effect in $(Ca,Er)WO_4$ is exceptionally large, and suggests the possibility that an electric microwave resonance, as distinct from a magnetic microwave resonance, might have been observed. Consideration of the magnitudes involved will show that such an observation would be unlikely in a simple TE_{110} cavity and that it must be attributed here to an unexpectedly large distortion of microwave fields in the cavity, arising, possibly, from a nearby resonance in the electrode structure.⁷ It would, however, be easy to design a cavity to concentrate the oscillating electric field inside the sample and to give a strong microwave electric resonance signal for a material such as (Ca,Er)WO₄. Since the electric effect consists of a modulation of g, such an electric resonance would be increasingly easy to observe at higher Larmor frequencies. To illustrate the relations which exist between the field vectors required to give electric and magnetic resonance let us take a particular case in which the only magnetic field is a Zeeman field H_0 in the x direction and the only electric field an oscillating field E_z in the z direction. For S_4 point symmetry the Hamiltonian (5) then reduces to

$$\mathcal{K} = g_{\perp} \beta H_0 S_x + T_{31} H_0 E_z S_x + T_{36} H_0 E_z S_y.$$
(18)

This may be compared with the Hamiltonian for the case when there is a Zeeman field in the x direction, no electric field, and an oscillating magnetic field H_{y} in the y direction

$$\mathcal{K} = g_{\perp}\beta H_0 S_x + g_{\perp}\beta H_y S_y. \tag{19}$$

By comparing (18) and (19) it can be seen that the oscillating electric field term $T_{36}H_0E_zS_y$ plays a role equivalent to that of an oscillating magnetic field term $g_1\beta H_yS_y$. Equating the two we find the ratio between electric and magnetic field intensities which would give the same resonance effects

$$E_{z}/H_{y} = (g_{\perp}\beta)/(T_{36}H_{0}) = 2g_{\perp}^{2}/(B_{36}H_{0}).$$
(20)

For $(Ca,Er)WO_4 B_{36}=5.2\times10^{-6}$ per V/cm, $g_1=8.3$, and at a resonance frequency of 9.42 Gc/sec, $H_0=810$ G. The microwave electric field with an effect equivalent to 1 G magnetic field is therefore 33 000 V/cm (i.e., E_x/H_y is over 100 times larger than the ratio which exists between the peak amplitudes of electric and magnetic fields in an empty TE₁₁₀ cavity). It may be noted that the coefficient B_{36} has one sign for half the sites in CaWO₄ and the opposite sign for the other half. This is of no consequence so long as there is only an electric oscillating field, but it implies that electrically generated echoes will not couple with a microwave magnetic field and vice versa, and may give rise to interference effects in mixed fields.

ACKNOWLEDGMENT

Throughout this work the author has profited by the advice and suggestions of his colleague Alvin Kiel. It is a great pleasure to acknowledge this help here.

⁶ A. Zalkin and D. H. Templeton, J. Chem. Phys. 40, 501 (1964).

⁷ Figure 6 in Ref. 1. This interpretation is consistent with the fact that no such effect has been observed with $CaErWO_4$ in a cavity without electrodes.